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Nonlinear stability of nonlinear periodic solutions of the regu-
larized Benjamin–Ono equation and the Benjamin–Bona–Mahony
equation with respect to perturbations of the same wavelength is
analytically studied. These perturbations are shown to be stable.
We also develop a global well-posedness theory for the regularized
Benjamin–Ono equation in the periodic and in the line setting. In
particular, we show that the Cauchy problem (in both periodic and
nonperiodic case) cannot be solved by an iteration scheme based
on the Duhamel formula for negative Sobolev indices.
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1. Introduction

The principal focus of this work is to study stability properties of periodic traveling wave solutions
for two basic nonlinear wave models of the dynamic of fluids, the regularized Benjamin–Ono equation
(rBO equation henceforth) and the Benjamin–Bona–Mahony equation (BBM equation henceforth). The
rBO equation is given by

ut + ux + uux + Huxt = 0, (1.1)
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where u = u(x, t) is a real-valued function with x, t ∈ R and H denotes the Hilbert transform defined
via the Fourier transform as

Ĥ f (k) = −i sgn(k) f̂ (k),

where

sgn(k) =
{−1, k < 0,

1, k > 0.

The regularized Benjamin–Ono equation is a model for the time evolution of long-crested waves at
the interface between two immiscible fluids. Some situations in which the equation is useful are the
pycnocline in the deep ocean, and the two-layer system created by the inflow of fresh water from a
river into the sea, see Kalisch [30]. This equation is formally equivalent to the Benjamin–Ono equation
(BO equation henceforth)

vt + vx + v vx − Hvxx = 0, (1.2)

which was first introduced by Benjamin [14] and later by Ono [36] as a model equation for the same
situation as the rBO. More exactly, for suitably restricted initial conditions, the solutions u of (1.1)
and v of (1.2) are nearly identical at least for values of t in [0, T ] where T is quite large, see Albert
and Bona [4] for more details. See also [4] for a more detailed discussion about the advantages and
disadvantages of using either equation (1.2) or (1.1) for modeling the propagation of small-amplitude
long waves.

This paper is dedicated to an important qualitative aspect of nonlinear dispersive equations, the
traveling wave solutions, which depending on the specific boundary conditions on the wave’s shape
can be either solitary or periodic waves. The existence, the nonlinear stability and the instability of
solitary-wave solutions have been discussed in the past two decades from several points of view.
Many techniques have been created to find solutions and sufficient conditions have been obtained
to insure the stability or instability of this kind of waves, see for instance [2,3,5,13,14,16,23,24,36,40,
41]. In contrast to the study of solitary waves, the periodic traveling wave solutions has received less
attention. In recent years some papers in this subject have appeared, see [8,10–12,21,22,27,25,31].

The periodic traveling wave solutions we are interested are solutions of the general form u(x, t) =
φ(x − ct), where φ : R → R is a smooth 2L-periodic function and c �= 1. Then, by replacing these
permanent wave form into (1.1), integrating and considering zero the constant of integration, we
obtain

cHφ′
c + (c − 1)φc − 1

2
φ2

c = 0. (1.3)

In the framework of traveling waves of solitary type, it is known the existence of solutions for (1.3)
of the form

φc(x) = 4(c − 1)

1 + ( c−1
c x)2

, (1.4)

where c > 1 (see Benjamin [14]). The nonlinear stability for these solitary wave by the flow of the rBO
equation was established by Albert, Bona and Henry [3]. Additionally, Kalisch [30] exhibited a periodic
family of traveling wave solutions (depending of the speed) with period 2π for the rBO and used it to
test the rate of convergence of a numerical scheme, which was introduced in Bona and Kalisch [18]
to prove that Eq. (1.1) does not constitute an infinite-dimensional completely integrable system.
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By using the Benjamin’s periodic traveling wave solution profile for the BO equation [14] we obtain
the existence of the following smooth curve, c → φc , of positive, even, periodic solutions for Eq. (1.1)
with minimal period 2L,

φc(ξ) = 2cπ

L

sinh(η)

cosh(η) − cos(πξ
L )

, (1.5)

with η satisfying

η(c) = tanh−1
(

cπ

(c − 1)L

)
(1.6)

and L > π with c > L
L−π . It is our purpose here to consider the stability of these latter waveforms. As

our general experience with nonlinear, dispersive evolution equations indicates that traveling wave,
when they exist, are of fundamental importance in the development of a broad range of disturbance,
we expect the issue of stability of periodic waves to be of interest.

We approach the question of stability of the profile φc in H
1
2
per([−L, L]) by the periodic rBO’s flow

by extending the classical theory developed by Benjamin [13], Bona [16] and Weinstein [40] to the
periodic case.

In our stability theory, we will use that the rBO equation possesses the following conservation
laws

E(u) = 1

2

∫ (
uHux − 1

3
u3
)

dx and F (u) = 1

2

∫ (
u2 + uHux

)
dx, (1.7)

and that φc is a critical point for the functional E + (c − 1)F , in other words, we have the equation
in (1.3). Moreover, we need to have a specific spectral structure associated to the nonlocal operator

L = cH∂x + c − 1 − φc, (1.8)

in a periodic framework. More exactly, L has a single negative eigenvalue, which is simple; zero is
also a simple eigenvalue with eigenfunction φ′

c and the remainder of the spectrum is bounded away
from zero. In order to get these spectral conditions we use the recent theory developed by Angulo and
Natali [11] which is based in positive properties of the Fourier transform of φc . We note that since we
need to obtain the Fourier coefficients of φc , we use the Poisson Summation theorem for obtaining
the profile in (1.5). We believe that this strategy for obtaining periodic profiles has prospects for the
study of other similar problems.

Previous results of Spector and Miloh [37] established that a normalized family of periodic solu-
tions of the BO equation with profile determined by (1.5) are linearly stable. Their result was obtained
by using that the BO equation is completely integrable, so, the inverse scattering transform scheme
was applied. In this work we make no use of their technique for studying the operator L in (1.8).

In the last section of the paper the theory for the rBO equation is extended for a general family of
regularized equations. We study a class of equations of the form

ut + ux + upux + Hut = 0, (1.9)

where p � 1 is an integer and H is a differential or pseudo-differential operator in the context of
periodic functions. Note that a considerable range of equations with this form arise in practice. For
instance, if we consider H = −∂2

x we obtain the generalized Benjamin–Bona–Mahony equation, in
particular for p = 1 we obtain the BBM equation [15], and if H = H∂x we obtain the generalized
regularized Benjamin–Ono equation [3]. This kind of generalization in the context of solitary waves
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have been studied before, see for example Albert, Bona and Henry [3] and Bona and Chen [17]. In
the periodic setting Hărăguş [26] studied the spectral stability of periodic traveling wave solutions
for the generalized BBM, which are small perturbations of the constant solution u = (c − 1)1/p, in
both L2(R) and Cb(R). In the case 1 � p � 2, she proved spectral stability for c > 1 and for p � 3,

her result says that there exists a critical speed cp such that the periodic waves are spectrally stable
for c ∈ (cp,

p
p−3 ), and unstable for c ∈ (1, cp) ∪ (

p
p−3 ,∞).1 It is worth to note that Hakkaev, Iliev and

Kirchev [25] studied the orbital stability of a type of generalized BBM and Camassa–Holm equations.
The family of BBM equations that they investigated were of the form

ut + 2ωux + 3uux − uxxt = 0, ω ∈ R.

They proved the existence solutions of the cnoidal type, but they only proved the orbital stability of
this solutions in the case ω = 0.

In this paper, we give sufficient conditions to obtain the nonlinear stability by any periodic per-
turbation, of periodic wave solutions associated to equations of the type (1.9) with the same periodic
structure as the underlying wave. As an example we prove that the cnoidal wave solutions of the
Benjamin–Bona–Mahony equation (BBM equation), with a profile given by

φc(x) = α1 + α2 cn2(α3x;k), (1.10)

are orbitally stable in H1
per([0, L]).

We believe that our approach of stability is of relevance to understand the behavior of systems of
dispersive type. Further, our analysis allows a possible numerical simulation in the real world of the
behavior of either water waves in the interface of two fluids or gravity water waves in the long-wave
regime.

We note that, recently, Johnson [29] studied the stability of a four parameter family of spatially
periodic traveling wave solutions ϕ(·; p) of the generalized Benjamin–Bona–Mahoney equation. In
particular, he showed that periodic waves of sufficiently long wavelength (in other words, with a fun-
damental period sufficiently large) are nonlinearly stable for 1 � p < 4 by any periodic perturbation
on the following smooth submanifold of H1

per of codimension two,

Σp =
{

f ∈ H1
per:

∫
f (x)dx =

∫
ϕ(x; p)dx,

∫
f 2(x) + f ′2(x)dx =

∫
ϕ2(x; p) + ϕ′2(x; p)dx

}
.

In an upcoming work (Angulo, Banquet, and Scialom [9]) we will use our approach to obtaining a
stability theory for the modified BBM equation (p = 2) and for the critical BBM equation (p = 4) by
any periodic perturbation.

A second interest of study in this paper is about the well-posedness problem associated to the
rBO equation in the periodic Sobolev spaces Hs

per([−L, L]) or Hs(R). Indeed, we show that the rBO is
globally well-posed if s > 1/2. As far as we known this material is new and not published elsewhere.
In our results we improve an estimative of Mammeri in [32] for the periodic rBO equation. In his
paper he establishes a global well-posedness result for the equation

ut + ux + αuux + βHuxt = 0, (1.11)

where α and β are constants such that 0 < α,β � 1. Mammeri also proved that the Cauchy problem
associated to Eq. (1.11) is globally well-posed in Hs

0([−L, L]), for s > 1/2, where Hs
0([−L, L]) means

the elements f of Hs([−L, L]) with mean zero. Since we are interested in establishing a stability

1 Here p
p−3 = ∞, if p = 3.
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theory for the rBO equation without this type of restrictions the result of Mammeri is not complete.
This shows the relevance of our result of well-posedness for the periodic rBO equation.

It is also worth to note that our result of global well-posedness in the continuous case is an
improvement of the result obtained by Bona and Kalish [18], where a global well-posedness result
for the rBO was proved in Hs(R) with s � 3/2. The conservation laws in (1.7) suggest that the space

H
1
2 (R) (or H

1
2
per) is a good candidate to study the Cauchy problem to Eq. (1.1). This problem is open in

Hs(R) (or Hs
per) with s � 1/2 and one of the goals of this paper is to present some obstructions to its

solution by an iteration methods. More precisely, we prove that the map data-solution cannot be C2

for s < 0, in both, periodic and nonperiodic case. This kind of ill-posedness was studied by Bourgain
[19] and Tzvetkov [39] for the KdV equation. Molinet, Saut and Tzvetkov [33,34] did the same for
the Benjamin–Ono equation and the Kadomtsev–Petviashvili I (KPI) equation, respectively. So, for the
sake of completeness we write an ill-posedness result for the rBO on the periodic and nonperiodic
cases.

Finally, this paper is organized as follows: In Section 2 we introduced some notations to be used
throughout the whole article. In Section 3, we prove global well-posedness and ill-posedness result
in the periodic and nonperiodic setting. In Section 4, we show the existence of periodic traveling
waves using the Poisson Summation theorem. The spectral properties needed to obtain the non-
linear stability are given in Section 5. In Section 6, we get the stability of the periodic traveling
waves based on the ideas in [16,11,13,40]. Finally, we present an extension of the theory for the
rBO and then we used it to prove the stability of cnoidal waves associated to the BBM equation in
Section 7.

2. Notation and preliminaries

Our notation is the standard one in partial differential equations, for further details see Iorio and
Iorio [28]. Let P = C∞

per denote the collection of all functions f : R → C which are C∞ and periodic
with period 2L > 0, and P ′ the set of periodic distributions. If Ψ ∈ P ′ then we denote the value of
Ψ at ϕ by Ψ (ϕ) = 〈Ψ,ϕ〉. The Fourier transform of Ψ is the function Ψ̂ : Z → C defined by the
formula Ψ̂ (k) = 1

2L 〈Ψ,Θk〉, where Θk(x) = exp(π ikx/L), k ∈ Z, x ∈ R. So, if Ψ is a periodic function
with period 2L, we have

Ψ̂ (k) = 1

2L

L∫
−L

Ψ (x)e− ikπx
L dx.

For s ∈ R, the Sobolev space of order s, denoted by Hs
per([−L, L]) is the set of all f ∈ P ′ such that

(1 + |k|2) s
2 f̂ (k) ∈ l2(Z), with norm ‖ f ‖2

Hs
per

= 2L
∑∞

k=−∞(1 + |k|2)s |̂ f (k)|2. In the case s = 0, H0
per is

denoted by L2
per , with ( f , g) = ∫ L

−L f g dx and ‖ · ‖H0
per

= ‖ · ‖L2
per

.

If Y is a Banach space and T > 0, then C([0, T ]; Y ) is the space of continuous mappings from [0, T ]
to Y and, for k � 0, Ck([0, T ]; Y ) is the subspace of mappings t �→ u(t) such that ∂

j
t u ∈ C([0, T ]; Y ) for

0 � j � k, where the derivative is taken in the sense of vector-valued distributions. This space carries
the standard norm

‖u‖Ck([0,T ];Y ) =
k∑

j=0

max
0�t�T

∥∥∂ j
t u(t)

∥∥
Y .

Finally μ(A) denotes the Lebesgue measure of the set A.
Next, we establish the Poisson Summation theorem. It will be useful in Sections 4 and 7 to find

the periodic traveling wave solutions for the rBO and for the BBM equations, respectively.
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Theorem 2.1. Let f̂ R(ξ) = ∫∞
−∞ f (x)e−2π ixξ dx and f (x) = ∫∞

−∞ f̂ R(ξ)e2π ixξ dξ satisfy

∣∣ f (x)
∣∣� A

(1 + |x|)1+δ
and

∣∣ f̂ R(ξ)
∣∣� A

(1 + |ξ |)1+δ
,

where A > 0 and δ > 0 (then f and f̂ can be assumed continuous functions). Thus, for L > 0

∞∑
n=−∞

f (x + 2Ln) = 1

2L

∞∑
n=−∞

f̂ R

(
n

2L

)
e

π inx
L .

The two series above converge absolutely.

Proof. See Stein and Weiss [38]. �
3. Well-posedness and ill-posedness results for the rBO

We start our study for the rBO equation by establishing several results associated to the well-
posedness problem on the periodic and nonperiodic setting. The periodic case theory will be neces-
sary in our nonlinear stability study of the waveforms solutions of Eq. (1.5).

We say that the initial value problem (IVP) associated to (1.1) is locally well-posed in X (Banach
space) if the solution uniquely exists in certain time interval [−T , T ] (unique existence), the solution
describes a continuous curve in X in the interval [−T , T ] whenever the initial data belongs to X
(persistence), and the solution varies continuously depending upon the initial data (continuous de-
pendence) i.e., we have the continuity of the application u0 → u(t) from X to C([0, T ]; X). We say
that the IVP associated to (1.1) is globally well-posed in X if the same properties hold for all time
T > 0. If some property in the definition of locally well-posed fails, we say that the IVP is ill-posed.

3.1. Global well-posedness in Hs
per and Hs(R) with s > 1/2

First, we study the periodic case and for simplicity we consider L = π. So, we rewrite (1.1) as

(1 + H∂x)ut = −
(

u + 1

2
u2
)

x
,

and since H∂x � 0, formally we have

ut = −∂x(1 + H∂x)
−1
(

u + 1

2
u2
)

= K

(
u + 1

2
u2
)

,

where K is such that its Fourier transform satisfies K̂ f (n) = −in
1+|n| f̂ (n). Integrating and using the

initial condition we get

u(x, t) = u0(x) +
t∫

0

K

(
u + 1

2
u2
)

(x, τ )dτ , x ∈ R, t > 0.

Using the fact that Hs
per with s > 1/2 is Banach algebra and standard arguments of fixed point type

(see also Theorem 2.1 [32]), we obtain the next result.
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Theorem 3.1. Suppose s > 1/2, then for all u0 ∈ Hs
per there exists T = T (‖u0‖Hs

per
) > 0 and a unique solution

of (1.1) on the interval [−T , T ], such that u ∈ C([−T , T ]; Hs
per). Furthermore, for all T ′ < T there exists a

neighborhood V of u0 in Hs
per such that

F : V −→ C
([−T ′, T ′]; Hs

per

)
, ũ0 → ũ(t),

is Lipschitz. Moreover, if T < ∞ then limt→T − ‖u(t)‖Hs = ∞.

In what follows, for the sake of completeness we prove an estimative of Brezis–Gallouet type.

Lemma 3.2. Let f ∈ Hs
per, with s > 1/2. Then, there exists a constant C > 0 such that

‖ f ‖∞ � C
(
1 +

√
log
(
1 + ‖ f ‖Hs

per

)‖ f ‖
H

1
2

per

)
. (3.1)

Proof. Consider f ∈ C∞
per . Then by Fourier theorem f (x) =∑k∈Z

f̂ (k)eikx . Thus for R > 0, where R
will be chosen later, we have that

∣∣ f (x)
∣∣�∑

k∈Z

∣∣ f̂ (k)
∣∣= ∑

|k|<R

(1 + |k|)1/2

(1 + |k|)1/2

∣∣ f̂ (k)
∣∣+ ∑

|k|�R

(1 + |k|)s

(1 + |k|)s

∣∣ f̂ (k)
∣∣

�
( ∑

|k|<R

1

1 + |k|
)1/2

‖ f ‖
H

1
2

per

+ C0

(R + 1)ε
‖ f ‖Hs

per
,

where ε > 0 is such that 2(s − ε) > 1. Note that for [·] denoting the integer part we have

∑
|k|<R

1

1 + |k| = 1 + 2

(
1

2
+ 1

3
+ · · · + 1

[R]
)

� 2e log 2 + 2e

(
1

2
+ 1

3
+ · · · + 1

[R]
)

� 2e

2∫
1

1

x
dx + 2e

1+R∫
2

1

x
dx = 2e log(1 + R).

Therefore

‖ f ‖∞ � C1

√
log(1 + R)‖ f ‖

H
1
2

per

+ C0

(R + 1)ε
‖ f ‖Hs

per
.

Choosing R = (1 + ‖ f ‖Hs
per

)
1
ε − 1, we get that

‖ f ‖∞ � C1ε
− 1

2

√
log(1 + ‖ f ‖Hs

per
)‖ f ‖

H
1
2

per

+ C0‖ f ‖Hs
per

1 + ‖ f ‖Hs
per

. �

We obtain the next corollary following the proof of Theorem 2.3 in [32] and using Lemma 3.2
above.
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Corollary 3.3. The periodic initial value problem associated to (1.1) is globally well-posed in Hs
per for s > 1/2.

Proof. Let u0 ∈ Hs
per and t ∈ [−T , T ]. Initially, we have the Duhamel formula

u(t) = S(t)u0 + 1

2

t∫
0

S(t − τ )
(

K u2)(τ )dτ ,

with S(t) f ≡∑n∈Z
e−it k

1+|k| f̂ (k)eikx . So, from Lemma 3.2 we obtain

∥∥u(t)
∥∥

s � ‖u0‖s + 1

2

t∫
0

∥∥u(τ )
∥∥∞
∥∥u(τ )

∥∥
s dτ

� ‖u0‖s + C0

t∫
0

(
1 +

√
log
(
1 + ∥∥u(τ )

∥∥
s

) )∥∥u(τ )
∥∥

s dτ ≡ Φ(t)

with C0 depending only on ‖u0‖ 1
2

-norm. Using standard argument we have that there exists C1 > 0

such that

d

dt
log
(
1 + log

(
1 + Φ(t)

))
� C1.

Therefore we deduce that there exist C2 > 0 and C3 > 0 such that for all t ∈ [−T , T ], ‖u(t)‖s � eC2eC3t
.

In particular, ‖u(t)‖s remains bounded on every finite time interval and the solution can be extended
in time at all R. �

It is well known that in the nonperiodic case, the estimative (3.1) is also valid. In this case

∣∣ f (x)
∣∣� ∫

R

∣∣ f̂ (ξ)
∣∣dξ =

∫
|ξ |<R

(1 + |ξ |)1/2

(1 + |ξ |)1/2

∣∣ f̂ (ξ)
∣∣dξ +

∫
|ξ |�R

(1 + |ξ |)s

(1 + |ξ |)s

∣∣ f̂ (ξ)
∣∣dξ

�
( ∫

|ξ |<R

dξ

1 + |ξ |
)1/2

‖ f ‖
H

1
2 (R)

+ C0

(R + 1)ε
‖ f ‖Hs(R)

= √
2
√

log(1 + R)‖ f ‖
H

1
2 (R)

+ C0

(R + 1)ε
‖ f ‖Hs(R).

Therefore, a similar analysis as in the periodic case lead to the next corollary which improved the
result of Bona and Kalish [18].

Corollary 3.4. The Cauchy problem associated to the rBO equation is globally well-posed in Hs(R), for
s > 1/2.
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3.2. Ill-posedness in Hs
per and Hs(R) with s < 0

In this subsection we show that the map data-solution for the Cauchy problem associated to the
rBO equation is not C2 at the origin for initial data in Hs

per (or Hs(R)), with s < 0. Therefore, we
cannot apply the Contraction Principle to solve the integral equation (3.2), see below.

First, we analyze the problem on the periodic setting. For simplicity we consider functions of
period 2π. We know that the linear problem associated to (1.1) with initial datum ψ has solution

u(x, t) = S(t)ψ(x) =
+∞∑

n=−∞
einx− in

1+|n| t
ψ̂(n).

Now, if u is solution of (1.1), then by Duhamel principle we have that

u(x, t) = S(t)ψ(x) −
t∫

0

S(t − τ )Λ
[
u(x, τ )ux(x, τ )

]
dτ , (3.2)

where Λ̂u(n) = (1 + |n|)−1û(n).
The following theorem is the principal result of this section.

Theorem 3.5. Let s < 0 and T a positive number. Then there does not exist a space XT continuously embedded
in C([−T , T ]; Hs

per) such that there exist c0 > 0 satisfying∥∥S(t)ψ
∥∥

XT
� c0‖ψ‖Hs

per
, ∀ψ ∈ Hs

per (3.3)

and ∥∥∥∥∥
t∫

0

S(t − τ )Λ
[
ux(τ )u(τ )

]
dτ

∥∥∥∥∥
XT

� c0‖u‖2
XT

, ∀u ∈ XT . (3.4)

Proof. Suppose by contradiction that there exists such a space. Consider ψ ∈ Hs
per and define u :=

S(t)ψ. Then, from (3.3) we have that u ∈ XT and since XT ↪→ C([−T , T ]; Hs
per), we get from (3.4) that

∥∥∥∥∥
t∫

0

S(t − τ )Λ
[

S(t)ψ
(

S(t)ψ
)

x

]
dτ

∥∥∥∥∥
Hs

per

� c0‖ψ‖2
Hs

per
. (3.5)

Next we prove that choosing ψ , appropriately, (3.5) does not hold. In fact, consider

ψ(x) := N−s cos(Nx), with N ∈ N, N � 1.

It easy to see that S(t)ψ(x) = N−s cos(Nx − N
1+N t). Then,

ϕ(x, t) :=
t∫

0

S(t − τ )Λ
[

S(t)ψ(x)
(

S(t)ψ(x)
)

x

]
dτ

= −1

2
N−2s+1

t∫
S(t − τ )Λ

[
sin

(
2Nx − 2N

1 + N
τ

)]
dτ .
0
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Now, using the specific form of Λ we obtain that

t∫
0

S(t − τ )Λ

[
sin

(
2Nx − 2N

1 + N
τ

)]
dτ = − 1

2(1 + 2N)γN

[
ei(2Nx− 2N

1+2N t) − ei(2Nx− 2N
1+N t)]

+ 1

2(1 + 2N)γN

[
e−i(2Nx− 2N

1+N t) − e−i(2Nx− 2N
1+2N t)],

where γN = 2N2

(1+N)(1+2N)
. Therefore

ϕ(x, t) = 1

2
N−2s+1 1

γN(1 + 2N)

[
cos

(
2Nx − 2N

1 + 2N
t

)
− cos

(
2Nx − 2N

1 + N
t

)]
.

Hence, ∥∥ϕ(·, t)
∥∥2

Hs
per

∼ N−4s
∣∣e−i 2N

1+2N t − e−i 2N
1+N t

∣∣2(1 + 4N2)s ∼ N−2s(1 − cos(γNt)
)
.

Note that ‖ψ‖2
Hs

per
∼ 1, then for all t ∈ (0, T ) we have

‖ϕ(·, t)‖Hs
per

‖ψ‖2
Hs

per

∼ N−s(1 − cos(γNt)
) 1

2 .

Without loss of generality we can suppose 0 < T < 2π. For s < 0 fixed, we obtain that

‖ϕ(·, t)‖Hs
per

‖ψ‖2
Hs

per

−→ +∞,

as N → +∞, for all 0 < t < T , which contradict (3.5). �
As a consequence we get the next result.

Corollary 3.6. Fix s < 0. There does not exist a T > 0 such that (1.1) admits a unique local solution defined on
the interval [−T , T ] and such that for any fixed t ∈ [−T , T ] the map

ψ �−→ u(t)

is C2 differentiable at zero from Hs
per to Hs

per .

Proof. Consider the Cauchy problem{
ut + ux + uux + Huxt = 0,

u(x,0) = ψγ (x), 0 < γ � 1,
(3.6)

where ψγ (x) := γψ(x). Suppose that u(γ , t, x) is a local solution of (3.6) and the map data-solution
is C2 at the origin from Hs

per to Hs
per . Then

∂u

∂γ
(γ , t, x)

∣∣∣∣ = S(t)ψ(x)

γ =0
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and

∂2u

∂γ
(γ , t, x)

∣∣∣∣
γ =0

= −2

t∫
0

S(t − τ )Λ
[(

S(τ )ψ
)(

S(τ )ψ
)

x

]
dτ .

Using the assumption, we have

∥∥∥∥∥
t∫

0

S(t − τ )Λ
[(

S(τ )ψ
)(

S(τ )ψ
)

x

]
dτ

∥∥∥∥∥
Hs

per

� c0‖ψ‖2
Hs

per
.

The last estimative is the same as in (3.5), which has been shown to fail in the last theorem. �
Now we establish the same type of previous results in the nonperiodic setting. Recall that in this

case we have

S(t)ψ(x) =
∫
R

ψ̂(ξ)ei(ξx− ξ
1+|ξ | t) dξ

and Λ̂u(ξ) = (1 + |ξ |)−1û(ξ), for ξ ∈ R.

Theorem 3.7. Fix s < 0. There does not exist a T > 0 such that (1.1) admits a unique local solution defined on
the interval [−T , T ] and such that for any fixed t ∈ [−T , T ] the map

ψ �−→ u(t)

is C2 differentiable at zero from Hs(R) to Hs(R).

The following lemma is found in Molinet and Saut [33].

Lemma 3.8.

t∫
0

S(t − τ )Λ
[(

S(τ )ψ
)(

S(τ )ψ
)

x

]
dτ = c0

∫
R2

ei(ξx−p(ξ)t) ξ

1 + |ξ | ψ̂(η)ψ̂(ξ − η)
e−itχ(ξ,η) − 1

χ(ξ,η)
dηdξ,

where p(ξ) = ξ
1+|ξ | and χ(ξ,η) = p(η) + p(ξ − η) − p(ξ).

Proof of Theorem 3.7. We define

ϕ(x, t) :=
t∫

0

S(t − τ )Λ
[(

S(τ )ψ
)(

S(τ )ψ
)

x

]
dτ .

Then, using the last lemma we have

ϕ̂(ξ, t) = c0
ξ

1 + |ξ |e−ip(ξ)t
∫

ψ̂(η)ψ̂(ξ − η)
e−itχ(ξ,η) − 1

χ(ξ,η)
dη. (3.7)
R
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In this case we consider

ψ̂(ξ) := N−sχ[N,N+1](ξ), with N ∈ N, N � 1,

where χA denotes the characteristic function of A. Note that ‖ψ‖Hs(R) ∼ 1 and using (3.7) we obtain

ϕ̂(ξ, t) = c0
ξ

1 + |ξ |e−p(ξ)t N−2s
∫
Ωξ

e−itχ(ξ,η) − 1

χ(ξ,η)
dη,

with Ωξ = {η: η ∈ supp ψ̂ and ξ −η ∈ supp ψ̂}. Since s < 0, we can choose ε > 0 such that −s−ε > 0.
Now, consider t = N−ε and note that for ξ ∈ (2N + 1

2 ,2N + 1) we have μ(Ωξ ) � 1. It is easy to see
that

χ(ξ,η) = η(ξ − η)(2 + ξ)

(1 + η)(1 + ξ − η)(1 + ξ)
� 3, ∀η, ξ − η ∈ [N, N + 1].

Then, for N big enough we compute that

∥∥ϕ(·, t)
∥∥2

Hs(R)
�

2N+1∫
2N+ 1

2

(
1 + |ξ |2)s

N−4s |ξ |2
(1 + |ξ |)2

|t|2
∣∣∣∣ ∫
Ωξ

e−itχ(ξ,η) − 1

tχ(ξ,η)
dη

∣∣∣∣2 dξ

�
2N+1∫

2N+ 1
2

(
1 + |ξ |2)s

N−4s |ξ |2
(1 + |ξ |)2

|t|2
∣∣∣∣ ∫
Ωξ

sin(tχ(ξ,η))

tχ(ξ,η)
dη

∣∣∣∣∣
2

dξ

� N−4s N2st2.

Hence 1 ∼ ‖ψ‖Hs(R) � ‖ϕ(·, t)‖Hs(R) � N−s−ε , which is a contradiction for N � 1. This completes the
proof in the nonperiodic case. �
4. Periodic traveling wave solutions for the rBO

The aim of this section is to obtain the existence of a smooth curve of periodic traveling wave
solutions for (1.3) via the Poisson Summation theorem. In fact, the equation

w Hϕ′
w + (w − 1)ϕw − 1

2
ϕ2

w = 0

determines the following solitary traveling wave solutions

ϕw(x) = 4(w − 1)

1 + ( w−1
w x)2

, x ∈ R, w > 1,

such that its Fourier transform is given by ϕ̂ R
w (ξ) = 4π we−2π | w

w−1 ξ | . Now, using the Poisson Summa-
tion theorem and some manipulations we get the following periodic function
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ψw(x) := 2π w

L

∞∑
n=−∞

e− 2π w|n|
2(w−1)L e

π inx
L = 2π w

L

∞∑
n=0

εn e− 2π wn
2(w−1)L cos

(
nπx

L

)

= 2π w

L

( sinh( 2π w
2(w−1)L )

cosh( 2π w
2(w−1)L ) − cos(π

L x)

)
, (4.1)

where we used the Fourier expansion 1.89 in Oberhettinger [35] and εn = 1 if n = 0 and εn = 2 if
n = 1,2,3, . . . , to obtain the last identity. Next, we find the right solitary-wave velocity w such that
ψw becomes a periodic traveling wave solution for the rBO. To that, we consider φc with c �= 1 a
smooth periodic solution of Eq. (1.3). We express φc and φ2

c as

φc(x) =
∞∑

n=−∞
ane

iπnx
L and φ2

c (x) =
∞∑

n=−∞
bne

iπnx
L . (4.2)

Replacing (4.2) in (1.3) we obtain that

can

[
1 + π

L
|n|
]

− an = 1

2

∞∑
m=−∞

aman−m, ∀n ∈ Z. (4.3)

Inspired by (4.1), we choose an = 2πc
L e−η|n|, with η > 0, for all n ∈ Z, then we obtain

∞∑
m=−∞

aman−m = 4π2c2

L2
e−η|n|

[
|n| + 1 + 2

∞∑
k=1

e−2ηk

]
= 4π2c2

L2
e−η|n|(|n| + cothη

)
.

Therefore, we conclude from (4.3) that

c

[
1 + π

L
|n|
]

− 1 = πc

L

(|n| + cothη
)
, ∀n ∈ Z. (4.4)

Then, from (4.1) by denoting η = 2π w
2(w−1)L and considering c such that 0 < c

c−1 < L
π , we choose w =

w(c) > 1 such that tanh(η) = πc
(c−1)L . Then, from (4.4) we have that φc = c

w ψw(c). Therefore we obtain
that φc has the form established in (1.5) with η > 0 satisfying tanh(η) = πc

(c−1)L .

Remark 4.1.

(1) Note that, from the fact that c �= 1 satisfies 0 < c
c−1 < L

π we have three cases to consider:
(a) If L = π , then c ∈ (−∞,0).
(b) If L < π , then c ∈ ( L

L−π ,0).

(c) If L > π , then c ∈ (−∞,0) ∪ ( L
L−π ,+∞).

(2) Observe that the sign of the solution φc depends on the sign of c. Since we are interested in
positive solutions (to apply the theory in [11]) we will suppose that L > π and c > L

L−π .
(3) If we consider c = 1 in (1.3), then the unique real smooth solution that we obtain is φ ≡ 0. In

fact, in this case φ satisfies Hφ′ − 1
2 φ2 = 0. Taking Fourier transform we arrive at

2π

L
|n|φ̂(n) −

+∞∑
k=−∞

φ̂(n − k)φ̂(k) = 0, ∀n ∈ N.
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In particular for n = 0,
∑+∞

k=−∞ φ̂(−k)φ̂(k) = 0. Since φ is a real solution we have that φ̂(−k) = φ̂(k).

Thus using the smoothness of φ we get that φ ≡ 0.

Lastly, since η(c) = tanh−1( cπ
(c−1)L ) is a differentiable function if c �= 1, we have the next result.

Proposition 4.2. Let L > π. Then the curve c ∈ ( L
L−π ,+∞) → φc ∈ H

1
2
per([−L, L]) is of class Cn, where φc is

given by (1.5). Furthermore, since c > 0, we have that φc > 0.

5. Spectral analysis for the rBO

This section is dedicated to study specific spectral properties associated to the linear operator L =
cH∂x − 1 + c − φc , where φc is the periodic solution (1.5) given by Proposition 4.2 with fundamental
period 2L, L > π and c > L

L−π . This information will be basic in our stability theory for the rBO
equation. Our analysis focuses on the periodic eigenvalue problem considered on [−L, L]

{
χ ∈ H1

per,

Lχ = λχ.
(5.1)

We will show that problem (5.1) determines exactly the existence of a single negative eigenvalue,
which is simple; zero is also a simple eigenvalue with eigenfunction φ′

c and the remainder of the
spectrum is bounded away from zero.

Next, from Eq. (1.3) we obtain immediately that Lφ′
c = 0. The theory of compact self-adjoint oper-

ators applied to (5.1) implies that the spectrum of L is a countable infinity set of eigenvalues {λn}∞n=0
with λ0 < λ1 � λ2 � · · ·, where λn → ∞ as n → ∞ (see for instance Proposition 3.1 in [11]). Now,
for the sake of completeness we present here a summary of the theory developed by Angulo and
Natali [11]. In their work, it was studied the existence and the nonlinear stability of periodic traveling
wave solutions for the family of equations

ut + upux − (Mu)x = 0, (5.2)

where p � 1 is an integer and M is a differential or pseudo-differential operator in the context of
periodic functions. The operator M was defined through Fourier multipliers as M̂g(k) = ζ(k)̂g(k), for
all k ∈ Z, whose symbol ζ is a real, measurable, locally bounded and even function satisfying

A1|n|m1 �
∣∣ζ(n)

∣∣� A2
(
1 + |n|)m2

, (5.3)

for 1 � m1 � m2, |n| � n0, ζ(n) > b for all n ∈ Z and Ai > 0, i = 1,2. The main result in [11] reads as
follows.

Theorem 5.1. Consider the self-adjoint operator L0 : D(L0) → L2
per([−L, L]) given by

L0u = (M + c)u − ϕpu,

where D(L0) is dense in L2
per([−L, L]) and ϕc is a periodic traveling wave solution of Eq. (5.2). Suppose that

ϕc is a positive even solution of (5.2) such that ϕ̂c > 0 and ϕ̂
p
c ∈ P F (2) discrete (see (5.4) below). Then,

(a) L0 has a unique negative eigenvalue λ, and it is simple;
(b) the eigenvalue 0 is simple.
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We say that a sequence α = (αn)n∈Z ⊆ R belongs to P F (2) discrete if

(i) αn > 0 for all n ∈ Z,

(ii) αn1−m1αn2−m2 − αn1−m2αn2−m1 > 0 for n1 < n2 and m1 < m2. (5.4)

Although the rBO does not have the form (5.2), we still can apply Theorem 5.1 to get the required
spectrum information for the operator in (1.8). Indeed, assume L > π, c > L

L−π and define M :=
cH∂x − 1, then L = (M + c) − φc . In this case M̂ f (k) = ζ(k) f̂ (k), where ζ(k) ≡ c|k| − 1, for all k ∈ Z.
Then for A1 = c/2, A2 = c + 1 and m1 = m2 = 1, it easy to see that there exists N0 ∈ N such that ζ

satisfies (5.3) for all k � N0.
From the analysis in Section 4, we have that the Fourier transform of φc in (1.5) is given by

an = φ̂c(n) = 2πc
L e−η|n| > 0, n ∈ N.

Before continuing with the study of the spectrum of L, we note that Theorem 5.1 is still valid if
we replace (ii) in (5.4) by the weaker condition

(ii′)
{

αn1−m1αn2−m2 − αn1−m2αn2−m1 � 0, for all n1 < n2 and m1 < m2,

αn1−m1αn2−m2 − αn1−m2αn2−m1 > 0, if n1 < n2, m1 < m2, n2 > m1, and n1 < m2.

In order to prove that φ̂c ∈ P F (2) discrete, we just have to show that an = 2cπ
L e−η|n| satisfies (ii′),

which is equivalent to prove that

(a) |n1 − m1| + |n2 − m2| � |n1 − m2| + |n2 − m1|, if n1 < n2 and m1 < m2, and

(b) |n1 − m1| + |n2 − m2| < |n1 − m2| + |n2 − m1|, if n1 < n2, m1 < m2, n2 > m1

and n1 < m2.

As the proofs of (a) and (b) are easy, so we skip the details. Then as a consequence of this analysis
we have the next result.

Proposition 5.2. Let φc be the periodic wave solution given by Proposition 4.2, with c > L
L−π and L > π. Then,

the linear operator L define by (1.8) with domain H1
per([−L, L]) has its first two eigenvalues simple with zero

being the second one. Moreover, the remainder of the spectrum is formed by a discrete sequence of eigenvalues
which converge to +∞.

6. Stability of periodic traveling wave solutions for the rBO in H
1
2

per

In this section we extend the Lyapunov method developed by Benjamin [13], Bona [16] and We-
instein [40] for studying the nonlinear stability of the periodic solutions φc given by Proposition 4.2.
The notion of stability that we will use is the orbital stability, see Definition 7.2 below. So, in the case

of the rBO equation we take m2 = 1. Since we do not have a global well-posedness result in H
1
2
per, we

need to choose s0 > 1/2.
Before establishing our main stability result we will prove a useful lemma.

Lemma 6.1. Let φc be the wave solution given by Proposition 4.2 with c ∈ ( L
L−π ,+∞) and L > π. Then, the

linear operator L = cH∂x − 1 + c − φc satisfies

(a) α := inf
{
(L f , f ): ‖ f ‖L2

per
= 1 and

(
f , φc + Hφ′

c

)= 0
}= 0, (6.1)

(b) β := inf
{
(L f , f ): ‖ f ‖L2

per
= 1,

(
f , φc + Hφ′

c

)= 0 and
(

f , φcφ
′
c

)= 0
}

> 0. (6.2)
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Proof. (a) Because φc is bounded, it is inferred that α is finite. Since (φ,φc + Hφ′
c) = 0 and Lφ′

c =
0 it follows that α � 0. Next we show that the inf in (6.1) is attained. In fact, since α is finite,

there exists a sequence { f j}∞j=0 ⊂ H
1
2
per with ‖ f j‖L2

per
= 1, ( f j, φc + Hφ′

c) = 0 and (L f j, f j) → α as

j → ∞. It follows that ‖ f j‖
H

1
2

per

is uniformly bounded as j varies. So, there exists a subsequence

of f j, which we denote { f j} again and a function f ∗ ∈ H
1
2
per such that f j ⇀ f ∗ in H

1
2
per. Since the

embedding H
1
2
per ↪→ L2

per is compact we obtain that ( f ∗, φc + Hφ′
c) = 0 and (φc f j, f j) → (φc f ∗, f ∗)

when j → ∞. Thus f ∗ �= 0 and since the weak convergence is lower continuous we obtain for D
1
2
x

defined as
̂
D

1
2
x f (k) = |k|1/2 f̂ (k), that∥∥D

1
2
x f ∗∥∥2

L2
per

� lim inf
j→∞

∥∥D
1
2
x f j
∥∥2

L2
per

.

Now, define f = f ∗
‖ f ∗‖L2

, then ( f , φc + Hφ′
c) = 0, ‖ f ‖L2

per
= 1 and

α � (L f , f ) � α

‖ f ∗‖2
L2

per

� α.

Therefore, α is a minimum. Next, we show that α � 0. For this purpose, we apply Lemma E1 in
Weinstein [40] (which works in the periodic setting) with A = L and R = φc + Hφ′

c . In fact, from
Proposition 5.2, L has the spectral required properties in [40]. Next, we need to find χ such that

Lχ = φc + Hφ′
c, and

(
χ,φc + Hφ′

c

)
� 0.

From Proposition 4.2 we have that the mapping c ∈ ( L
L−π ,+∞) �→ φc ∈ H

1
2
per([−L, L]) is of class C1,

so by differentiating (1.3) with regard to c we obtain that χ = − d
dc φc satisfies Lχ = φc + Hφ′

c . Now,
we observe that

(
χ,φc + Hφ′

c

)= −L
d

dc

∞∑
n=−∞

(
1 + |n|)∣∣φ̂c(n)

∣∣2
= −8π2c

L

∞∑
n=−∞

(
1 + |n|)e−4π |n|η + 8π2c2

L

dη

dc

∞∑
n=−∞

(
1 + |n|)|n|e−4π |n|η.

Then, from (1.6) and using the fact that c > L
L−π , we obtain

dη

dc
= d

dc

(
tanh−1

(
cπ

(c − 1)L

))
= − π

(c − 1)2L

(
1 −

(
cπ

(c − 1)L

)2)−1

< 0.

Therefore (χ,φc + Hφ′
c) < 0, which gives us that α � 0. This finishes the proof of (6.1).

(b) We infer from part (a) that β � 0. Suppose that β = 0. Then we can find a function f such
that ‖ f ‖L2

per
= 1 and ( f , φc + Hφ′

c) = ( f , φcφ
′
c) = (L f , f ) = 0. Thus, there exist γ , θ, ν such that

L f = γ f + θ
(
φc + Hφ′

c

)+ νφcφ
′
c,

bringing on γ = ν = 0. Now, consider χ = − d
dc φc, it follows that L( f − θχ) = 0, then ( f − θχ,φc +

Hφ′
c) = 0 = ( f , φc + Hφ′

c) − θ(χ,φc + Hφ′
c). Hence, θ = 0, because (χ,φc + Hφ′

c) �= 0, therefore
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L f = 0, and so there exists a λ ∈ R − {0} such that f = λφ′
c, and hence φ′

c is orthogonal to φcφ
′
c,

which is a contradiction. Therefore β > 0 and the proof is completed. �
We note that from (6.2) and the specific form of L that if ( f , φc + Hφ′

c) = 0 and ( f , φcφ
′
c) = 0,

then there exists β0 > 0 such that

(L f , f ) � β0‖ f ‖2

H
1
2

per

.

The main result of this section reads as follows.

Theorem 6.2. Let L > π and φc be the periodic wave solution for the rBO equation given by Proposition 4.2
with c ∈ ( L

L−π ,+∞). Then the orbit Oφc is nonlinear stable with regard to the periodic flow generated by the
rBO equation.

Proof. The proof is based in the ideas developed in [11,13,16,41]. We shall give only an outline of the
proof. Initially, we note from (1.7) that F ′(u) = u + Hux and E ′(u) = Hux − 1

2 u2, then φc is a critical
point of the functional B := E + (c − 1)F . Additionally, since F ′′(u) = 1 + H∂x and E ′′(u) = H∂x − u,
we have

E ′′(φc) + (c − 1)F ′′(φc) = cH∂x + (c − 1) − φc = L.

Now, define for r ∈ [−L, L] and t ∈ R,

Ωt(r) := ∥∥D
1
2 u(· + r, t) − D

1
2 φc
∥∥2

L2
per

+ c − 1

c

∥∥u(· + r, t) − φc
∥∥2

L2
per

.

Then, using standard arguments (see [13,16]) there exists an interval of time I = [0, T ] such that the
infr∈R Ωt(r) is attained in γ = γ (t) for every t ∈ I . Hence,

Ωt
(
γ (t)

)= inf
r∈R

Ωt(r). (6.3)

Consider the perturbation of the periodic traveling wave φc

u(x + γ , t) = φc(x) + v(x, t) (6.4)

for t ∈ [0, T ] and γ = γ (t) determined by (6.3). Then, differentiating Ωt(r) with respect to r, evaluat-
ing at values that minimize Ωt(r) and using (6.4) we obtain that v satisfies the compatibility relation

L∫
−L

φ′
c(x)φc(x)v(x, t)dx = 0, (6.5)

for all t ∈ [0, T ]. Next, using that E and F are conserved quantities, the representation (6.4), the

embedding H
1
2
per([−L, L]) ↪→ Lr([−L, L]) for all r � 2, and the fact that φc satisfies (1.3), we conclude

�B(t) = B(u0) − B(φc) = B
(
φc + v(·, t)

)− B(φc) � 1

2
(Lv, v) − c0‖v‖3

H
1
2

, (6.6)

per
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where c0 is a positive constant. To obtain our result we need to establish a suitable bound for the
quadratic form in (6.6). Initially, we consider the normalization F (u0) = F (φc), then

L∫
−L

u2(t) + (D 1
2 u(t)

)2
dx =

L∫
−L

φ2
c + (D 1

2 φc
)2

dx

for all t ∈ [0, T ]. By (6.4) it follows

−2
(

v, φc + Hφ′
c

)= ∥∥v(t)
∥∥2

L2
per

+ ∥∥D
1
2 v
∥∥2

L2
per

.

Without loss of generality, we suppose that ‖φc + Hφ′
c‖L2

per
= 1. Define v‖ and v⊥ as v‖ = (v, φc +

Hφ′
c)(φc + Hφ′

c) and v⊥ = v − v‖. So, (v⊥, φc + Hφ′
c) = 0 and (v⊥, φcφ

′
c) = 0. By (6.5) and Lemma 6.1

it follows that

(Lv⊥, v⊥) � β‖v⊥‖2
L2

per
� β‖v‖2

L2
per

− β̃3‖v‖4

H
1
2

per

(6.7)

with β, β̃3 > 0. Again, without loss of generality suppose that (L(φc + Hφ′
c),φc + Hφ′

c) < 0, then

(Lv‖, v‖) � −β̃4‖v‖4

H
1
2

per

. (6.8)

Furthermore, using the Cauchy–Schwarz inequality we get

(Lv‖, v⊥) � −β̃2
∥∥v(t)

∥∥3

H
1
2

per

, (6.9)

where β̃ j > 0, for j = 3,4. Now, using (6.7), (6.8), (6.9) and the specific form for L we arrive at

(Lv, v) � β0
∥∥v(t)

∥∥2

H
1
2

per

− β1
∥∥v(t)

∥∥3

H
1
2

per

− β2
∥∥v(t)

∥∥4

H
1
2

per

, (6.10)

where β j > 0, for j = 0,1,2. Hence, from (6.3), (6.6) and (6.10) it follows that for all t ∈ [0, T ]

�B(t) � g
(∥∥v(t)

∥∥ 1
2 ,c

)
, (6.11)

where ‖ f ‖2
1
2 ,c

:= ‖D
1
2 f ‖2

L2
per

+ c−1
c ‖ f ‖2

L2
per

and g(s) = ηs2 −∑4
k=3 dk(c)sk, with η,dk > 0. The essen-

tial properties of g are g(0) = 0 and g(s) > 0 for all s small. The stability result is an immediately
consequence of (6.11). In fact, let ε > 0 small enough such that g(ε) > 0. Then using the proper-

ties that B is uniformly continuous on S := {u ∈ H
1
2
per: F (u) = F (φc)}, �B(t) is constant in time

and t �→ ‖v(t)‖2
1
2 ,c

is a continuous function, we have that there is δ(ε) > 0 such that if v ∈ S and

‖v − φc‖ 1
2 ,c < δ then for t ∈ [0, T ],

g
(∥∥v(t)

∥∥ 1 ,c

)
� �B(0) �

∣∣�B(0)
∣∣< g(ε) ⇒ ∥∥v(t)

∥∥ 1 ,c < ε. (6.12)

2 2
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Thus, it shows that Oφc is orbitally stable in H
1
2
per([−L, L]) relative to small perturbations which pre-

serve the H
1
2
per norm. The inequality (6.12) is still true for all t > 0, this is an immediately consequence

of the fact that the mapping t �→ infr∈R Ωt(r) is continuous (see Bona [16]).
To prove stability to general perturbations, we use that the mapping c ∈ ( L

L−π ,+∞) �→ φc ∈
H

1
2
per([−L, L]) is continuous, the mapping c ∈ ( L

L−π ,+∞) �→ F (φc) is strictly increasing, the above
theory and the triangle inequality (see [16,41,6]). Then, Theorem 6.2 is proved. �
7. Stability criterium for BBM-type equations

In this section we extend the theory developed for the rBO equation to the family of Eq. (1.9), with
H defined as

Ĥu(n) = α(n)̂u(n), ∀n ∈ Z.

The symbol α is assumed to be a real, mensurable, locally bounded, even function on R and satisfying
the conditions in (5.3). The traveling wave solutions φc of (1.9) satisfy

cHφc + (c − 1)φc − 1

p + 1
φ

p+1
c = 0. (7.1)

As it is well-known Eq. (1.9) has the following two conservation laws

E(u) = 1

2

L∫
−L

uHu − 2

(p + 1)(p + 2)
up+2 dx and F (u) = 1

2

L∫
−L

uHu + u2 dx,

and so using them we have from Eq. (7.1) that the periodic solution φc satisfies E ′(φc) + (c − 1)×
F ′(φc) = 0. Now, define

L := E ′′(φc) + (c − 1)F ′′(φc) = cH + (c − 1) − φ
p
c . (7.2)

Then the operator L : D(L) → L2
per([−L, L]) is linear, closed, not bounded and self-adjoint defined on

a dense subset of L2
per([−L, L]). Also it is easy to see that Lφ′

c = 0. Following the proof of stability
for the rBO equation we obtain the following main conditions (see also Grillakis, Shatah and Strauss
[23]):

(C0) there is a nontrivial smooth curve of periodic solutions for (7.1)

of the form c ∈ I ⊂ R → φc ∈ Hm2
per
([−L, L]);

(C1) L has an unique negative eigenvalue and it is simple;
(C2) the eigenvalue zero is simple;

(C3)
d

dc

L∫
−L

[
φc Hφc + φ2

c

]
dx > 0. (7.3)

Next, we give sufficient conditions to obtain conditions (C1) and (C2) for the operator L associated
to the problem (1.9). The principal stability criterium is the following.



4030 J. Angulo et al. / J. Differential Equations 250 (2011) 4011–4036
Theorem 7.1. Let φc be a positive even solution of (7.1). Assume that φ̂c > 0 and φ̂
p
c ∈ P F (2) discrete, then

(C1) and (C2) in (7.3) hold for the operator L in (7.2).

Proof. Note that the operator L can be written as Lu = (M + c)u − φ
p
c u, where M = cH − 1. The

symbol of M is ζ(n) = cα(n) − 1. So, it is easy to see that for all c �= 0 there exists N0 ∈ N such that

B1|n|m1 �
∣∣ζ(n)

∣∣� B2
(
1 + |n|)m2

, ∀n � N0,

where B1 = c A1
2 and B2 = c A2 + 1. Then we can apply Theorem 5.1 to obtain that (C1) and (C2) hold

for the operator L. �
7.1. Stability of cnoidal waves to the BBM equation in H1

per

Here, we apply Theorem 7.1 to obtain the orbital stability of the periodic traveling wave solutions
of cnoidal type associated to the BBM equation. Concerning the global well-posedness problem in
Hs

per, with s � 1, we refer to Benjamin, Bona and Mahoney [15] and Albert [1]. For a global well-

posedness theory in L2
per we refer to Chen [20]. Next, we present the definition of stability.

Definition 7.2. Let φc be a periodic traveling-wave solution with period 2L of (7.1). We define the set

Oφc ⊂ H
m2

2
per , called the orbit generated by φc , as

Oφc = { f : f = φc(· + r) for some r ∈ R
}
,

and, for any γ > 0, the set Uγ ⊂ H
m2

2
per by

Uγ =
{

f : inf
g∈Ωφc

‖ f − g‖
H

m2
2

per

< γ
}
.

With this terminology, we say that φc is (orbitally) stable in H
m2

2
per by the flow generated by (1.9) if

the following hold:

(i) There is s0 such that Hs0
per ⊂ H

m2
2

per and the initial value problem associated to (1.9) is globally
well-posed in Hs0

per .
(ii) For every ε > 0, there is δ > 0 such that, for all u0 ∈ Uδ ∩ Hs0

per , the solution u of (1.9) with

u(0, x) = u0(x) satisfies u(t) ∈ Uε for all t > 0. Otherwise, we say that φc is unstable in H
m2

2
per .

Remark 7.3. The choice of a second space Hs0
per in Definition 7.2 is because the local-well posedness

problem may not be easy to be obtained in the energy space H
m2

2
per . An example of this situation is the

case of the rBO equation.

The proof of the next general stability theorem follows the ideas used in the rBO stability theorem.

Theorem 7.4. Let φc be a periodic traveling-wave solution of (7.1), and suppose that part (i) of the definition
of stability holds. Suppose also that the operator L defined previously in (7.2) has properties (C1) and (C2)

in (7.3). Choose χ ∈ L2
per such that Lχ = φc + Hφc , and define I = (χ,φc + Hφ)L2

per
. If I < 0 then φc is stable.

Remark 7.5. In our cases the function χ in Theorem 7.4 is χ = − d
dc φc .
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Next, we apply Theorem 7.4 to the BBM equation. The periodic traveling wave solutions that we
will study are the cnoidal wave-profile given by the formula

φc(x) = β2 + (β3 − β2) cn2
(√

β3 − β1

12c
x;k

)
, (7.4)

which satisfy

cφ′′
c − (c − 1)φc + 1

2
φ2

c = 0. (7.5)

Since is not immediate to find the Fourier transform of the cnoidal profile φc , we will use the Poisson
Summation theorem. Indeed, the solitary-wave solution for (7.5) is

ϕw(x) = 3(w − 1) sech2
(√

w − 1

w

x

2

)
,

with w > 1, whose Fourier transform is given by ϕ̂ R
w (ξ) = 12πξ w csch(

√
w

w−1 πξ). Then we obtain

the L-periodic function

ψw(ξ) := 12w

L

√
w − 1

w
+ 24π w

L2

∞∑
n=1

n csch

(√
w

w − 1

πn

L

)
cos

(
2πnξ

L

)
, (7.6)

where w > 1 will be chosen in such way that ψw (may be with some scaling) becomes a periodic
traveling wave for the BBM equation in the form (7.4).

First, we consider the Fourier expansion of the dnoidal Jacobi elliptic function (see Oberhettinger
[35]) of period L, namely,

K 2
[

dn2
(

2Kξ

L
;k

)
− E

K

]
= 2π

∞∑
n=1

nqn

1 − q2n
cos

(
2πnξ

L

)
,

where K = K (k) and E = E(k) denote the complete elliptic integrals of the first and second type,

respectively, q = e−( π K ′
K ), K ′(k) = K (

√
1 − k2) and

qn

1 − q2n
= 1

2
csch

(
nπ K ′

K

)
.

Therefore

K 2
[

dn2
(

2Kξ

L
;k

)
− E

K

]
= π

∞∑
n=1

n csch

(
nπ K ′

K

)
cos

(
2πnξ

L

)
. (7.7)

Then, motivated by the form of the series that determines ψw , we consider φc(x) = a +
b[dn2(dξ ;k) − E

K ] a periodic traveling wave solution for (7.5) with period L. Thus, the following non-
linear system is obtained:



4032 J. Angulo et al. / J. Differential Equations 250 (2011) 4011–4036
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b2

2
− 6cbd2 = 0,

4bd2c
(
1 + k′2)+ ab − b2 E

K
− (c − 1)b = 0,

a2

2
− ab

E

K
+ b2

2

(
E

K

)2

− (c − 1)a + (c − 1)b
E

K
− 2cbd2k′2 = 0.

Since φc is periodic of period L it follows that d = 2K
L . Then, the first equation of the system above

implies b = 48cK 2

L2 . Substituting those values at the second equation we get

aL2 = 48cK E − 16K 2c
(
2 − k2)+ cL2 − L2.

Plugging the values of aL2, d and b in the third equation we arrived at the following quadratic equa-
tion

[
256K 4(1 − k2 + k4)− L4]c2 + 2cL4 − L4 = 0. (7.8)

From the last identity we get that L2 = 16c
√

1−k2+k4 K 2(k)
c−1 . Since c > 1, we have that L satisfies L > 2π.

Solving Eq. (7.8) for c, we obtain the solutions

c = L2

L2 + 16K 2
√

1 − k2 + k4
and c = L2

L2 − 16K 2
√

1 − k2 + k4
.

Using again that c > 1, we choose c as

c = L2

L2 − 16K 2
√

1 − k2 + k4
. (7.9)

Note that c > 1 implies that exists kL ∈ (0,1) such that L2 − 16K 2
√

1 − k2 + k4 > 0 for all k ∈ (0,kL).

Now, from (7.9) we have that for L > 2π fixed, the function k �→ c(k) is an increasing function on
(0,kL) (see Fig. 1), therefore c ∈ (c∗,+∞), for all k ∈ (0,kL), where c∗ = L2

L2−4π2 .
From above analysis we can write φc in terms of the Jacobi elliptic function cnoidal in the form

(7.4), where

β2 = 16cK 2(2k′2 − 1)

L2
+ c − 1, β3 = 16cK 2

L2

(
1 + k2)+ c − 1

and β1 is such that β3 − β1 = 48cK 2

L2 . Then, by making a similar analysis as in Angulo [7] (i.e., using
the Implicit Function Theorem), we obtain a smooth curve of positive cnoidal waves with the same
period L in the form

c ∈ (c∗,+∞) �−→ φc ∈ Hn
per

([0, L]),
for all n ∈ N, and such that k := k(c) is a strictly increasing smooth function of c.

Next, we choose the speed w of the solitary-wave solution ϕw in such way that this will become
ψw in (7.6) in a periodic traveling wave solution for the BBM equation. In fact, define for c ∈ (c∗,+∞),
w = w(c) as
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Fig. 1. Graphic of c(k) with L = 8.

w(c) := 16c
√

k4 − k2 + 1K ′2(k)

16c
√

k4 − k2 + 1K ′2(k) − c + 1
,

where k = k(c) ∈ (0,kL). Using the definition of w and (7.9) we obtain
√

w
w−1 = LK ′

K . Then, from (7.6)

and (7.7) we arrive at the cnoidal profile

ψw(c)(ξ) = 12w

L

√
w − 1

w
+ 24K 2 w

L2

[
dn2
(

2Kξ

L
;k

)
− E

K

]
. (7.10)

Since K (k)
K ′(k)

∈ (0, L), for all k ∈ (0,kL), then for c ∈ (c∗,+∞) we obtain w(c) ∈ (1,+∞). Therefore, we
get that the map

c ∈ (c∗,+∞) �−→ ψw(c) ∈ Hn
per

([0, L])
is a smooth curve for all n ∈ N.

The stability result for the BBM equation reads.

Theorem 7.6. Assume L > 2π fixed. If c > L2

L2−4π2 , then the periodic traveling wave solution φc in (7.4) is
stable by the flow of the BBM equation.

Proof. From (7.10), we get that φc = a(k(c)) − 24c
L

√
w−1

w + 2c
w ψw(k(c)) , where

a(k) = 16cK

L2

[
3E − (1 + k′2)K ]+ c − 1.

Thus, φc(x) = s(k(c)) + 2c
w ψw(k(c))(x), with s(k(c)) := a(k(c)) − 24c

L

√
w−1

w . Then we obtain easily that
the Fourier coefficients of φc are for n ∈ Z,
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Fig. 2. Graphic of ã(k) with L = 8.

φ̂c(n) =
{

a(k), n = 0,

12cπ
L2 n csch(

√
w

w−1
πn
L ), n �= 0.

Now, by using that c−1
c = 16K 2

√
1−k2+k4

L2 we obtain

s(k) = c

[
16K 2

L2

(√
1 − k2 + k4 − 2 + k2 + 3

E

K

)
− 24

L2

K (k)

K (k′)

]
=: c̃s(k)

and

a(k) = 16K 2c

L2

[
3

E

K
− 2 + k2 +

√
1 − k2 + k4

]
=: c̃a(k).

Since the function s̃ is a positive function in (0,1) and a(k) is a positive strictly increasing function in
(0,kL) (because ã is strictly increasing, see Fig. 2), we conclude that φ̂c ∈ P F (2) discrete (see Angulo
and Natali [11]).

Next, we prove (C3) in (7.3). In fact, it is easy to see that χ = − d
dc φc satisfies Lχ = φc − φ′′

c . Then

by Parseval theorem, it follows that I = − L
2

d
dc ‖(1 + | · |2) 1

2 φ̂c‖2
l2

. But,

d

dc

∥∥(1 + | · |2) 1
2 φ̂c
∥∥2

l2

= 2a(k)
da

dk

dk

dc
+ c1

∑
n∈Z
n �=0

(
1 + |n|2)n2 csch2

(√
w

w − 1

πn

L

)

+ c2
(
(w − 1)3 w

)−1/2 dw

dk

dk

dc

∑
n∈Z
n �=0

(
1 + |n|2)n3 csch2

(√
w

w − 1

πn

L

)
coth

(√
w

w − 1

πn

L

)
,
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where c1 = c1(L, c) > 0 and c2 = c2(L, c) > 0. To prove that I < 0 we only need to show that dw
dk > 0,

because bn = (1 + |n|2)n3 csch2(
√

w
w−1

πn
L ) coth(

√
w

w−1
πn
L ) is a positive sequence and k = k(c) is a

strictly increasing function. So, from the equality

dw

dk
= 2L2 K ′K [k′ dK

dk − K dK ′
dk ]

(L2 K ′2 − K 2)2
, ∀k ∈ (0,k0),

we have that dw
dk > 0 since dK

dk > 0 and dK ′
dk < 0. Therefore, the positive cnoidal waves φc are stable in

H1
per([0, L]) by the periodic flow of the BBM equation. �
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