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A silent self-stabilizing asynchronous distributed algorithm, SSLE, is given for the leader
election problem in a connected unoriented (bidirectional) network with unique IDs. SSLE
also constructs a BFS tree on the network rooted at that leader. SSLE usesO(log n) space per
process and stabilizes in O(n) rounds, against the unfair daemon, where n is the number of
processes in the network.
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1. Introduction

In distributed computing, leader election is the process of determiningwhich individual process, in a network of processes,
will be chosen by all processes to be the leader . Such an election could be a starting point for an algorithm which requires a
single process to coordinate a task which requires cooperation among all processes.

In order for a leader to be elected in a general graph, symmetrymust be broken; a standardmethod for breaking symmetry
is to assume that each process has a unique ID. In this paper, we present a self-stabilizing and silent asynchronous leader
election algorithm which elects the process of minimum ID to be the leader in any connected network, providing those
processes have unique IDs, using the composite atomicity model of computation.

1.1. Related work

Arora and Gouda [2] give a silent leader election algorithm in the shared memory model. Their algorithm requires O(N)
rounds and O(logN) space, where N is a given upper bound on n, the size of the network. Dolev and Herman [7] give a
non-silent leader election algorithm in the shared memory model. This algorithm takes O(diam) rounds, where diam is the
diameter of the network, and uses O(N logN) space. Awerbuch et al. [3] solve the leader election problem in the message
passing model. Their algorithm takes O(diam) rounds and uses O(logD logN) space, where D is a given upper bound on the
diameter.

Afek and Bremler [1] give an algorithm for the leader election problem in the message passing model. Their algorithm
takesO(n) rounds andusesO(log n)bits per process,wheren is the size of the network. They donot claim that their algorithm
works under the unfair daemon. Our algorithm SSLE is partially inspired by Afek and Bremler’s algorithm.

1.2. Contributions

We give a uniform self-stabilizing distributed algorithm, SSLE, for the leader election problem in a connected network
with unique IDs, using the composite atomicitymodel of computation. The proposed algorithmworks under an arbitrary, i.e.,
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unfair, scheduler (daemon). SSLE elects the process of least ID, which we call L, to be the leader, and in addition, constructs
a breadth first search (BFS) tree rooted at L.

The space complexity of SSLE is O(log n) bits per process, where n is the size of the network, under the usual assumption
that an ID is stored using O(log n) bits. This is asymptotically the minimum possible space, since a process needs to store its
own ID. From an arbitrary initial configuration, SSLE elects the leader and builds the BFS tree rooted at the leaderwithinO(n)
rounds, and is silent within O(diam) additional rounds, where diam is the diameter of the network. SSLE does not require
knowledge of any upper bound on either n or diam.

1.3. Outline of the paper

We define our model of computation in Section 2. In Section 3, we introduce simplified algorithms, which solve the
problem under relaxed specifications, or which take more time than necessary.

In Section 4, we informally discuss the problems that need to be solved to obtain a silent self-stabilizing algorithm with
time complexity O(n) rounds which works under the unfair daemon. In Section 5, we give a formal definition of SSLE.

In Section 6, we give an informal proof that SSLE is correct, satisfies the time complexity we have claimed, and is self-
stabilizing and silent. The reader will fully understand SSLE by simply reading up to this section.

In Section 7, we give detailed formal proofs of the properties of SSLE. We conclude with Section 8.

2. Preliminaries

We assume that we are given a network of processes, each of which has a unique ID, which cannot be changed by our
algorithm. Each process P has a set of neighbors N P . The neighbor relation is symmetric, i.e., P ∈ NQ if and only if Q ∈ NP .
We also assume that the network is a connected graph; given any two processes P and Q , there is a path from P to Q , i.e., a
sequence of processes P = P0, P1, . . . , Pm = Q such that Pi−1 ∈ NPi for all 0 < i ≤ m. We will write ||P,Q || for the length
of the shortest path between P and Q . Then diam = minP,Q ||P,Q ||.

A self-stabilizing [5,6] system is guaranteed to converge to the intended behavior in finite time, regardless of the initial
state of the system. In particular, a self-stabilizing algorithm distributed algorithm will eventually reach a legitimate state
within finite time, regardless of its initial configuration, and will remain in a legitimate state forever. An algorithm is called
silent if eventually all execution halts.

In the composite atomicitymodel of computation, each process has variables. Each process can read the values of its own
and its neighbors’ variables, but can write only to its own variables. We assume that each transition from a configuration to
another, called a step of the algorithm, is driven by a scheduler , also called a daemon.

The program of each process consists of a finite set of actions of the following form: < label >:: < guard > −→ <
statement >. The guard of an action in the program of a process P is a Boolean expression involving the registers of P and its
neighbors. The statement of an action of P updates one or more variables of P . An action can be executed only if it is enabled,
i.e., its guard evaluates to true. A process is said to be enabled if at least one of its actions is enabled. A step γi → γi+1
consists of one or more enabled processes executing an action. Evaluation of all guards and execution of all statements of
an action are presumed to take place in one atomic step. A distributed algorithm is called uniform if every process has the
same program.

When a process P executes the statement of an action, there could be neighbors of P that are executing statements during
the same step. We specify that P uses the current values of its own variables (which could have just been changed during
the current step), but old values of its neighbors’ variables, i.e., values before the current step.

We use the distributed daemon. If one or more processes are enabled, the daemon selects at least one of these enabled
processes to execute an action. We also assume that daemon is unfair , i.e., that it need never select a given enabled process
unless it becomes the only enabled process.

We define a computation to be a sequence of configurations γp → γp+1 · · · → γq such that each γi → γi+1 is a step.
Wemeasure the time complexity of SSLE in rounds [6]. The notion of round [6], captures the speed of the slowest process

in an execution. We say that a finite computation ϱ = γp → γp+1 → · · · → γq is a round if the following two conditions
hold:

1. Every process P that is enabled at γp either executes or becomes neutralized during some step of ϱ. We say that a process
P is neutralized at a step γ → γ ′ if P is enabled at γ and not enabled at γ ′, but P does not execute during that step.

2. The computation γp → · · · → γq−1 does not satisfy condition 1.

We call a computation of positive length which fails to satisfy condition 1 an incomplete round.
We define the round complexity of a computation to be the number of disjoint rounds in the computation. More formally,

we say that a computation γp → · · · → γq has round complexitym if there exist indices p = i0 < i1 < · · · < im−1 < q such
that

1. γij−1 → · · · → γij is a round for all 1 ≤ j < m,
2. γim−1 → · · · → γq is either a round or an incomplete round.
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Table 3.1
Algorithm I.
Label Name Guard Statement

A1 Join(Q ) Q ∈ NP −→ P.key← Succ_Key(Q )

Q .key = Best_Nbr_Key(P)

Succ_Key(Q ) < P.key

We remark that an incomplete round could have infinite length, since the unfair daemon might never select an enabled
process. But this cannot happen for the algorithm SSLE given in this paper. In Section 7.2, we show that every computation
of SSLE is finite, i.e., SSLE ‘‘works’’ under the unfair daemon.

3. Simple algorithms for leader election

Our leader election algorithm, SSLE, given in Section 5, may seem unnecessarily complex at first glance. In this section,
we show how the leader election problem can be solved more simply, provided we relax the specification of the problem.

3.1. Algorithm I

We first present Algorithm I, which converges in O(diam) rounds, but is not self-stabilizing. In Algorithm I, each process
P has variables

• P.id, the ID of P , an unchangeable value of some ordered ID type. We will assume that an ID is a non-negative integer.
• P.leader , the leader of P , also of ID type. If P.leader = Q .id, then P has (perhaps only temporarily) selected Q to be the

leader. As the algorithm progresses, P.leader could change, but eventually P.leader must equal L.id for all P .
• P.level, a positive integer. Eventually, P.levelmust equal ||P,L||, the distance from P to L.

Let P.key = (P.leader, P.level), the key of P . We order keys lexically, i.e., P.key < Q .key if P.leader < Q .leader , or
P.leader = Q .leader and P.level < Q .level. We also define functions:

• Best_Nbr_Key(P) = min {Q .key : Q ∈ NP}, the least (in the lexical ordering) key of any neighbor of P .
• Succ_Key(P) = (P.leader, P.level+ 1), the successor of the key of P .

Throughout, we will let Self _Key(P) = (P.id, 0), and Final_Key(P) = (L.id, ||P,L||) for any process P . Final_Key(P) is the
desired final value of P.key.

3.1.1. Action table syntax
Algorithm I is formally defined by its action table, Table 3.1, which consists of only one action, Join. If P executes Join(Q ),

then P ‘‘joins’’ the set of processes which have decided that Q .leader is the leader.
Table 3.1 (as well as the other action tables in this paper) consists of four columns. The first column contains a formal

label of each action, while the second column contains a descriptive name of the action. The third column, consisting of one
or more clauses, contains the guard of the action. The guard of an action the conjunction of all its clauses. The fourth column
contains the statement of the action. Each line is an instruction to change a variable of a process P; if there aremultiple lines,
they are to be executed in sequence.

If the initial configuration of the network is ‘‘clean,’’ meaning that P.key = Self _Key(P) = (P.id, 0) for all P , then P
will converge within diam rounds. Fig. 3.1 shows the last few steps of a computation of Algorithm I. Eventually, P.key =
Final_Key(P) for all P .

Algorithm I is not self-stabilizing. If, in the initial configuration, P.key ≥ Final_Key(P) for all P , and if L.key = (L.id, 0),
then Algorithm I will converge to the correct configuration; otherwise, it will not, because P.key can never increase.

3.2. Resetting and Algorithm II

If P.key < Final_Key(P) for some P , then at least one of those processes will be able to detect that the network is not in a
legitimate state. In Algorithm II, a process executes an action we call Reset in that case. Algorithm II has the same variables
as Algorithm I, but has two more functions and one more action. The new functions are:

• Has_Super_Key(P) ≡ P.key > Self _Key(P), that is, P has a super key, a key which is larger than Self _Key(P). In this case,
P knows that it must lower its key, since Final_Key(P) ≤ Self _Key(P).
• False_Loc_Min(P) ≡ (P.key ≠ Self _Key(P))∧(∀Q ∈ NP : P.key ≤ Q .key), P is a false local minimum. In this case, P cannot

execute Join, and also knows its key is not correct.

Table 3.2 is the action table of Algorithm II.
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Fig. 3.1. An example of convergence of Algorithm I, where L.id = 10. The ID of each process is shown as a larger numeral, while the key is shown as a pair
of numerals below the ID. Each set of processes which acknowledge a given process to be the leader is shown within a dashed polygon. As an example of
execution of Join, Best_Nbr_Key(21) = (10, 2) in configuration (a). In (b), after 21 executes, its key changes to (10, 3). Eventually, 10 is acknowledged to
be the leader by all processes.

Table 3.2
Algorithm II.
Label Name Guard Statement

B1 Join(Q ) Q ∈ NP −→ P.key← Succ_Key(Q )

Q .key = Best_Nbr_Key(P)

Succ_Key(Q ) < P.key
B2 Reset Has_Super_Key(P) ∨ False_Loc_Min(P) −→ P.key← Self _Key(P)

a b c

d e f

Fig. 3.2. The set of processes whose leader is the fictitious ID 5 is shown enclosed in a dashed polygon. Although each process in that set will eventually
reset (i.e., execute B2) additional processes can be recruited. The cycle of resetting and recruitment might never end, unless the value of P.level exceeds a
pre-set limit.

3.3. The problem of fictitious leaders and Algorithm III

Algorithm II is not self-stabilizing, since P.leader could be initialized to a value of ID type which is not the ID of any
process in the network, in which case we say that P has a fictitious leader . A fictitious leader that is greater than L.id is not
a problem, but if a fictitious leader is less than L.id, the network might never get rid of that fictitious ID. We illustrate this
possibility in Fig. 3.2. Initially, in (a), the processes 33, 41, and 21 have leader = 5. In each step shown, the false root executes
Action B2, but another process chooses its leader to be 5. If the values of level are allowed to increase without bound, the
fictitious ID 5might never be eliminated.

Using a known upper bound on the diameter. The problem of fictitious leaders can be solved if an upper bound, D, on the
diameter of the network is given. We do not allow P.level to exceed D. Algorithm III, which includes this restriction as a
clause of the Join action, then takes O(D) rounds to converge.
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Table 3.3
Algorithm III.
Label Name Guard Statement

C1 Join(Q ) Q ∈ NP −→ P.key← Succ_Key(Q )

Q .key = Best_Nbr_Key(P)

Succ_Key(Q ) < P.key
Q .level < D

C2 Reset Has_Super_Key(P) ∨ False_Loc_Min(P) −→ P.key← Self _Key(P)

a b c

d e f

Fig. 3.3. Computation of Algorithm III, starting from Fig. 3.2(a). The set of processes whose leader is the fictitious ID 5 is shown enclosed in a dashed
polygon. In this example, D = 4, and thus 75 is unable to execute Join(21). In (d), no processes have fictitious leader values. Within two rounds, Algorithm
III converges to its final and correct configuration, shown in (f).

One problemwith this approach is that wemust, in advance, give a reasonable value ofD. IfD is less than diam, Algorithm
III will not be correct, but if D is very much larger than diam, the algorithm takes unnecessarily long to converge (Table 3.3).

In Algorithm III, the growth of the set of processes following a fictitious leader must eventually halt, after which those
nodes must eventually all reset, as we show in Fig. 3.3.

4. Informal overview of SSLE

In this section, we discuss the main ideas of SSLE, our algorithm for the leader election problem.
In SSLE, a process P has all the variables that are given for Algorithm III, plus P.parent , of ID type, P.color ∈ {1, 2}, and

P.done, Boolean. We explain the purposes of each of these variables below.

4.1. Recruitment

As in Algorithms I, II, and III, a process P can choose a new key by joining with a neighbor Q ; we say that P attaches to Q .
When a process P attaches to a neighbor Q , it sets P.parent to Q .id and P.key to Succ_Key(Q ).

If the successor key of P.parent is equal to P.key, then we say there is a true parental link from P to P.parent . The
true parental links define a rooted spanning forest on the network, and the rooted trees of that spanning forest are called
components.

4.2. False trees

If P.parent = P and P.key = Self _Key(P), we call P a true root . If P.parent = Q and P.key = Succ_Key(P), we say that
P is a true child of Q . If P is neither a true root nor a true child, we call P a false root . All other processes are true children.
Recall that a component is a maximal set of processes which is connected by true child pointers. Each component is rooted
tree whose root is either a true root or a false root, and whose other members are true children. We refer to a component as
a true tree or a false tree, respectively. All processes of a component have the same value of leader , which we call the leader
ID of that component. We write Component_Tree(P) for the component which contains a given process P .

If a false tree consist of processes whose leader is greater than L.id, that false tree will disappear naturally as a result of
recruitment by processes whose leader values are smaller. A much more serious problem arises in the case that the leader
ID of a component is less than L.id. The processes of such a component cannot be recruited by Component_Tree(L), and that
component could even recruit L.

Our solution to this problem is for false roots to reset , in the same manner as in Algorithms II and III. If P detects that it
is a false root, and it is unable to join a different component, it will change itself to a true root, by setting P.parent to P and
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Fig. 4.1. Reset–recruitment cycle. The false tree shrinks at the root, but grows at the leaves.

P.key to Self _Key(P). When this happens, P ’s erstwhile children will become false roots, and are enabled to reset, making
their children false roots, and so forth. However, it is not clear that the false tree will ever disappear this way, since it could
continually recruit processes at the leaves.

Fig. 4.1 shows a worst-case situation. In (a), there is a tree whose leader ID is the fictitious 5. The root, 33 knows it is
in error, and resets. At the next step, 41 realizes it is in error, and resets, and at the following step, 21 resets. However,
meanwhile, the false tree is recruiting at the leaf end, and eventually recruits 33.

This cycle can be stopped by choosing an upper bound on P.level, say D, as we did for Algorithm III. But picking a good
value of D requires prior knowledge of the network. If D is large, the algorithm could take a long time to converge, while if
D is less than the diameter of the network, the algorithm will not converge.

4.3. Color waves

We solve the problem of reset–recruitment cycles by introducing colors. Each process P will have a color , P.color ∈ {1, 2}.
Using colors, we will introduce rules that prevent the indefinite growth of false trees:

1. Only a process of color 2 can recruit, and the recruited process must change its color to 1. That is, P.parent can be set to
Q only if Q .color = 2, and if P makes that choice, then P.color ← 1.

2. If P.color = 2 and there are processes neighboring P that P believes it could recruit later, then P.color may not change
to 1.

3. P.color can change only if P is a true root or a true child, P.parent.color = P.color , and all true children of P have the
opposite color. (Note that, by vacuous implication, all children of a leaf have the opposite color.)

Colors change in convergecasting color waves initiated by the leaves and absorbed by a true root. False roots cannot absorb
color waves, and color waves cannot pass each other. Thus, the color waves of a false tree must eventually stop moving. The
rules that only processes of color 2 can recruit forces the creation of two color waves for each new layer added to a tree.
Thus, a false tree eventually runs out of room to store new color waves.

Using the color rules listed above, we define a component to be color locked if no process in the component is enabled
to change color, and no process is enabled join that component. For example, a false tree C is color locked if the following
conditions hold:

• The colors of the processes of C alternate, i.e., P.parent.color ≠ P.color if P ∈ C is a true child.
• No process can join C, i.e., if Q ∈ NP for some P ∈ C, then either P.color = 1 or Q .level ≤ Succ_Key(P).

Fig. 4.2 shows how color locking limits the lifetime of a component with a fictitious leader .

4.4. Silence

After the final BFS tree is constructed, color waves could continue forever.We block this by introducing a Boolean variable
P.done for every process P .
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Fig. 4.2. A computation showing color locking, where L = 10. In this and all subsequent figures in this paper, processes where color = 2 are shown in
color, while processes where color = 1 are shown as colorless. The false tree whose leader is 5, a fictitious ID, is shown enclosed by a dashed polygon at
each step. At first, the false tree continues to recruit processes, even as resets from the root end. In the configuration shown at (e), the colors in the false
tree prevent further recruitment. Eventually, the false tree disappears, permitting correct growth of the BFS tree, which is completed in (k). Not every step
shown is a complete round; the round that starts at (b) takes four steps, since 10 and 33 are enabled at (b), but 10 is not selected until (d) and 33 is not
selected until (e).

The following rules for setting the done variable are only informal. We give the exact formal rule in Section 5.

1. If a leaf P believes that the final BFS tree is finished, then P.done is set to true.
2. If a process P with true children believes that the final BFS tree is finished, and Q .done holds for all children of P , then

P.done is set to true.
3. If P.done holds and P is a true root, then P cannot change its color.

We say that P is color frozen if P.done and P is a true root.
If the root of a true tree C is color frozen, the colors of C alternate, and C is not able to recruit new members, then C is

color locked.
Fig. 4.3 shows the sequence of configurations of a network after the final BFS tree has been constructed. A process P is

shown as a double rounded rectangle if P.done holds.
In (a), the leaves, 21, 15, and 88 set their done fields to true. In the remaining figures up to (f), the donewave convergecasts

to the root, 10.
Starting from (f), 10 is color frozen, and hence unable to change color. Note that the done variable does not effect a

process’s ability to change color if it is not the root.
In (i), the colors of the tree alternate, and there are no other processes to recruit. The tree is color locked, and thus silence

is achieved.

5. Formal description of SSLE

We now give the formal definition of SSLE. We first list the variables and the locally computable functions of SSLE, and
then give the action table in Table 5.1. As before, we let L be the process of least ID in the network.
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Fig. 4.3. Done wave convergecasts. If P.done, the diagram shows P enclosed in a double rounded rectangle. Starting at (f), 10 is color frozen, and thus can
no longer change color. Other processes continue to change color until the tree is color locked at (k).

5.1. Variables, functions and actions of SSLE

Variables. Each process P has the following variables.

• P.id, the unique ID of P , of some ordered ID type, and cannot be altered by the algorithm.
Without loss of generality, ID type is unsigned integer .

• P.leader , of ID type, P ’s current estimate of the leader. P.leader = L eventually.
• P.level, a non-negative integer, P ’s current estimate of its distance to the leader. Eventually, P.level = ||P,L||.
• P.key = (P.leader, P.level), the key of P . It is convenient to consider P.key as a variable of P , even though it is simply a

combination of two variables and thus requires no extra space. Keys are ordered lexically; we say that P.key < Q .key if
P.leader < Q .leader , or P.leader = Q .leader and P.level < Q .level.
• P.parent , of ID type. Except perhaps before P executes for the first time, P.parent will be the ID of either P or some

neighbor of P , which we call the parent of P . When SSLE converges, the parent pointers will define a BFS tree rooted at L.
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Table 5.1
Actions of SSLE.
Label Name Guard Statement

D1 Join(Q ) Is_False_Root(P) ∨ (Succ_Key(Q ) < P.key) −→ P.key← Succ_Key(Q )

priority 1 Q .key = Best_Nbr_Key(P) P.parent ← Q
False_Chldrn(P) = ∅ P.color ← 1
Q .color = 2 P.done← false

D2 Reset Is_False_Root(P) −→ P.key← Self _Key(P)

priority 2 P.parent ← P
P.color ← 2
P.done← false

D3 Color 1 P.color = 2 −→ P.color ← 1
priority 3 P.parent.color = 2 P.done← Done(P)

∀Q ∈ True_Chldrn(P) : Q .color = 1
¬Color_Frozen(P)

Recruits(P) = ∅

D4 Color 2 P.color = 1 −→ P.color ← 2
priority 3 P.parent.color = 1 P.done← Done(P)

∀Q ∈ True_Chldrn(P) : Q .color = 2
¬Color_Frozen(P)

D5 Update P.done ≢ Done(P) −→ P.done← Done(P)

priority 4 Done

By an abuse of notation, we will identify the parent process of P with its ID whenever convenient. Thus, for example,
if P.parent = Q .id, we will write P.parent.key to denote Q .key.
• P.color ∈ {1, 2}, the color of P .
• P.done, Boolean. This predicate will be used to force SSLE to finish and become silent under the unfair daemon. When

SSLE converges, P.donewill be true for all P .

Functions. The definition of SSLE makes use of a number of functions that can be computed by a process P .

• Self _Key(P) = (P.id, 0).
• Is_True_Root(P) ≡ P.key = Self _Key(P), P is a true root .
• Succ_Key(P) = (P.leader, P.level+ 1), the successor key of P .
• Is_True_Chld(P) ≡ (P.key = Succ_Key(P.parent))∧(P.leader < P.id), P is a true child.When SSLE converges, all processes

except Lwill be true children.
• Is_False_Root(P) ≡ ¬Is_True_Root(P)∧¬Is_True_Chld(P), P is a false root . Every process is either a true root, a true child,

or a false root. When SSLE converges, there will be no false roots.
• Best_Nbr_Key(P) = min {Q .key : (Q ∈ NP) ∧ (Succ_Key(Q ) < Self _Key(P)) ∧ (Q .color = 2)}, the least key of any

neighbor P is allowed to choose as its parent.
• True_Chldrn(P) = {Q ∈ NP : (Q .parent = P) ∧ (Q .key = Succ_Key(P))}, the true children of P .
• False_Chldrn(P) = {Q ∈ NP : (Q .parent = P) ∧ (Q .key ≠ Succ_Key(P))}, the false children of P . Note that all false

children are false roots.
• Recruits(P) = {Q ∈ NP : Q .key > Succ_Key(P)}, the possible recruits of P . These are neighbors of P which could eventually

attach to P .
• Done(P) ≡ (Recruits(P) = ∅) ∧ (∀Q ∈ True_Chldrn(P) : Q .done). The value of P.done is set equal to the computed

function Done(P).
• Color_Frozen(P) ≡ Is_True_Root(P) ∧ P.done, P is color frozen. This predicate will eventually hold only at L, and will

ensure that SSLE is silent.

Actions of SSLE.Table 5.1 lists the actions of SSLE. The syntax of that table is the same as that given in Section 3.1.1. The label
of each action is listed in the first column, along with its priority number, and the second column contains an descriptive
name of the action. The guard of each action is the conjunction of the clauses listed in the third column together with a
priority rule. In order for an action to be enabled, all clauses of its guard must be true.

Officially, the guard of an action is the conjunction of its clauses, together with the clause that no action whose priority
number if smaller is enabled. That is, if Action D1 is enabled, then no other action is enabled; if Action D2 is enabled, then
the color actions and Action D5 are not enabled; and if a color action is enabled, Action D5 is not enabled.

The statement of each action is the list of commands given in the fourth column,which are executed in sequence, although
that execution is presumed to take zero time.

5.2. Informal explanation of the actions

We refer to Actions D1 and D2 as structure actions, since they change the spanning forest. We refer to Actions D3 and D4 as
color actions.
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Action D1 causes a process P to join the component containing a neighbor Q . P can only execute this action if it will
cause P.key to decrease, and also only if Q .color = 2. The purpose of the color condition on Q is to slow the growth of its
component; this is necessary to prevent false trees from recruiting new processes forever.

In order for P to execute D1, it may not have any false children. The purpose of this condition is to ensure that when a
process joins a component, it does not cause additional processes to join as a side effect.

Action D2 causes a false root to reset , meaning that it changes to a true root. Its priority of 2 guarantees that P will not
reset if it can join.

Action D3 and D4 cause P to advance a color wave or, in the case P is a leaf, to start a new color wave. If P is a true root
when it changes color, the oldest color wave of its component is absorbed, i.e., deleted. A false root cannot change color.
Thus, a false root cannot absorb color waves, eventually causing a condition we call color locking , which bounds the growth
of false trees.

If P is a true root and P.done, then P is not allowed to change color. This rule guarantees that SSLE is correct under the
unfair daemon, and also that SSLE is silent.

The value of P.done is corrected, i.e., set to the function Done(P), whenever P executes a color action. If P is unable to
execute any structure action or color action, but P.done is incorrect, it is enabled to correct the value of P.done by executing
Action D5.

6. Informal proof of SSLE

In this section, we give a complete, albeit informal, proof of the correctness and time complexity of SSLE. In Section 7, we
give the proof in detail. The casual reader will be able to understand SSLE without reading Section 7.

We use the convergence stair method [8] to prove correctness and round complexity of SSLE.We first define a sequence of
benchmarks, and we then prove that each benchmark is closed, and that once a given benchmark holds, the next benchmark
will eventually hold.

6.1. Benchmarks

The motivation for some of our benchmarks is clear, but for others it may be a bit obscure. We will give an informal
justification for each as we go. Recall that L denotes the process of least ID, and that the goal of SSLE is to elect L to be the
leader.

Final processes. Eventually, P.keymust equal Final_Key(P). If P.key = Final_Key(P) and P ∈ Component_Tree(L), we say that
P is final. SSLE is in a legitimate state if and only if all processes are final. Let Final be the set of all final processes.

Subfinal processes and pseudo-final processes. We define a process P to be subfinal if P.key < Final_Key(P). We define a
process P to be pseudo-final if P.key = Final_Key(P), but P /∈ Component_Tree(L).

Active processes. We define a process P to be active if it is final, and if there is some descendant of P in Component_Tree(L)
which has a neighborwhich is not in Final. More formally, we define Active, the set of active processes, recursively as follows:

• If P ∈ Final and NP ∩ Final ≠ ∅, then P ∈ Active.
• If P ∈ Active then P.parent ∈ Active.

Fig. 6.1 illustrates these sets in a simple example. Informally stated, a final process is active if it has a descendant which
might still play a recruitment role.

Benchmark BM1: P.key ≤ Self _Key(P) for all P .
Benchmark BM2: BM1 holds, and P.key ≥ Final_Key(P) for all P . That is, there are no subfinal processes.
Benchmark BM3: BM2 holds, and P.key = Final_Key(P) =⇒ P ∈ Final, that is, there are no pseudo-final processes.
Benchmark BM4: Benchmark BM3 holds, and ¬P.done for all P ∈ Active. This condition ensures that color waves will

continue to be absorbed by L as long as SSLE has not reached a legitimate state.
Benchmark BM5: Benchmark BM4 holds and all processes are final. When BM5 holds, the configuration is legitimate, but

color and done waves can still be convergecast.
Benchmark BM6: Benchmark BM5 holds, and P.done for all P . When BM6 holds,L is color frozen, and can no longer absorb

color waves. Color deadlock will eventually result, as the color waves (which cannot pass each other) ‘‘pile up’’ like vehicles
at an unmanned checkpoint.

Benchmark BM7: Benchmark BM6 holds, and, for all P ≠ L, P.color ≠ P.parent.color . When BM7 holds, the network is
in a legitimate state and is color deadlocked. L is color frozen, and for every P ≠ L, P.parent.color ≠ P.color; thus no process
can execute a color action. P.done = Done(P) for all P , and thus no process can execute Action D5. Since all processes are in
Final, no process can execute a structure action. Thus, SSLE is silent.

We now give informal proofs for each of the benchmarks.
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a b

Fig. 6.1. Sets Final and Active. L.id = 10. In (a), 28 is in Component_Tree(L) but is not final since its level is 3 and its distance to L is only 2. Similarly, 22 is
not final. Of the final processes, only 12 and 34 are not active, since all other processes have descendants which are adjacent to possible future recruits. In
(b), a number of steps later, 28 has corrected its level, and is now final. Both 17 and 22 have 91 as a possible future recruit, and thus are active, along with
their ancestors, 28, 64, and 10. All other final processes are not active.

6.1.1. Benchmark BM1
It is obvious to every process P , even though it does not know the identity of L, that L.id ≤ P.id. If, because of arbitrary

initialization, P.key > Self _Key(P), then P knows that the key is too large, and will reset the very first time it executes an
action, which means it will reset during the first round. There is no action that can cause P.key to exceed Self _Key(P), and
thus this first benchmark will hold if at least one round has been completed.

6.1.2. Benchmark BM2
SSLE uses color locking in two ways: first, to guarantee the elimination of false trees, and second, to guarantee silence.
For any given ℓ and any component C, we refer to {P ∈ C : P.level = ℓ} as a layer of C. We can formally prove the color

locking of a false tree by using the energy of a component, which roughly measures the ability of a component to grow. If P
is a leaf of a component C, let Path(P) be the set of all processes on the path (following parent pointers) from P to the root
of C, let ℓ be the number of layers of Path(P) and w the number of color waves of Path(P). The energy of Path(P) is 2ℓ−w if
P.color = 1, and 2ℓ−w+ 1 if P.color = 2; the energy of C is defined to be the maximum of the energies of the paths from
its leaves to its root. Note that the energy decreases every time the root of the false tree resets, and that the energy cannot
be less than the number of layers of the false tree. Thus, energy of any false tree is bounded and must decrease every round.
When the energy of a false component is equal to its number of layers, the component cannot add a new layer. Eventually,
every false tree disappears.

We remark here on the connection with Afek and Bremler’s algorithm [1]. In that algorithm, the concept of power is
introduced. Essentially, the root of a true tree continually radiates power , permitting its tree to grow, while a false tree must
run out of power and stop growing. We refer the reader to that paper for details.

In Fig. 6.2, we show a sequence of configurations chosen by an adversary who is trying to prolong the life of a false tree as
much as possible. The false component shown in (a), rooted at the false root 33, contains eight layers and five color waves. In
(b), one layer has been lost, since 33 reset, making 41 the new false root, and one new layer was added by the recruitment of
75. Each additional layer beyond that will require adding two more color waves, but the loss of a layer, caused by resetting
of a false root, causes the loss of at most one color wave. The energy inexorably decreases, although not during every round.
For example, a new color wave is added in (d), and another in (e), while the false tree acquires one new layer by recruiting
10. Since a layer was lost by the resetting of 41, the tree now has six color waves. Eventually, in (k), the false tree has nine
layers and nine color waves. No new layers can be added, and the false tree will delete itself over the next nine rounds.

In (a), the energy of the false tree is 12. Energy cannot increase. In (b), the false tree has energy 11, in (c) and (d) the
energy is still 11. In (e), (f), and (g), the energy is 10. In (h), (i), (j), and (k), it is 9, while in (l) it is 8.

We give the complete formal proof that Benchmark BM2 will hold in O(n) rounds in Section 7.1.2, where we give a
recursive definition of energy.

6.1.3. Benchmark BM3
Suppose there are no subfinal processes. At each round, all pseudo-final processes of smallest levelwill reset, i.e., execute

Action D2, and thus the smallest level of any pseudo-final process will increase every round. Within at most diam additional
rounds, there will be no pseudo-final processes, i.e., Benchmark BM3 will hold.

6.1.4. Benchmark BM4
Suppose Benchmark BM3 holds. Since there are no subfinal processes, a final process P cannot execute D1, since there

is no subfinal process for it to attach to, and it cannot execute D2, because either P = L or P is a true child. Thus, once P is
final, it will remain final.
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(a) E5 = 12. (b) E5 = 11.

(c) E5 = 11. (d) E5 = 11.

(e) E5 = 10. (f) E5 = 10.

(g) E5 = 10. (h) E5 = 9.

(i) E5 = 9. (j) E5 = 9.

Fig. 6.2. Color locking bounds the growth of a false tree. In the computation shown, some rounds take more than one step. (a)–(b) is one round, (b)–(e) is
one round, (e)–(h) is one round, and (h)–(l) is one round. The energy E of the false tree is shown in each figure, and decreases during every round. Once a
false tree is color locked, as shown in (k), it remains color locked and can recruit no new processes, and shrinks every round. After O(n) rounds, there are
no false trees.

If P is an active leaf, then Done(P) is false, which means that P.done will be false within one round. If P is any active
process, then, by induction Done(P) will become false, followed by P.done. The number of rounds required for P.done to
become false does not exceed the distance from P to the nearest process which is not final, and that distance cannot exceed
diam. Thus, Benchmark BM4 will hold within diam rounds.
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(k) E5 = 9. (l) E5 = 8.
Fig. 6.2. (continued.)

Fig. 6.3. Values of α are shown outside the processes. All processes are members of Component_Tree(L). The set Final is enclosed in a dashed polygon.

6.1.5. Benchmark BM5
Assume Benchmark BM4 holds. We can show that Benchmark BM5 will hold within O(n) rounds.
We define an integral function α on all processes in Component_Tree(L). Let γ0 be the first configuration at which

Benchmark BM4 holds. We now define

• α(L) =


4 (the number of times L has executed D3 since γ0) if L.color = 1
4 (the number of times L has executed D3 since γ0)+ 2 if L.color = 2

• α(P) =


α(P.parent)− 1 if P.color = P.parent.color
α(P.parent)+ 1 if P.color ≠ P.parent.color

if P ∈ Component_Tree(L), P ≠ L.
• αmin

= min {α(P) : P ∈ Component_Tree(L)}.

We show an example of the function α in Fig. 6.3. In this figure, we assume that L = 10 has not executed a color action since
γ0. In the example, Component_Tree(L) contains all processes, and the members of Final are enclosed in a dashed polygon.

Initially,−n+ 1 ≤ α(P) ≤ n− 1. If α(P) = αmin, then P is enabled to execute an action, and αmin will increase during the
next round. More specifically, if α(P) = αmin, then P will not be enabled to execute Action D1, since if it were, the process it
would attach to would have a smaller value of α. P will be enabled to execute a color action, which will increase α(P) by 2.
We can show that αmin must increase during every round as long as Benchmark BM5 does not hold. We can also show that,
once αmin

≥ 3 diam+ 2, Benchmark BM5 must hold. Thus, we reach the benchmark within O(n) rounds.
We now construct an example that demonstrates that the number of rounds required to reach Benchmark BM5 is Ω(n)

in the worst case. Consider the following network and initial configuration:

• There are n processes and 2n − 3 edges in the network. All other processes are neighbors of L, and if L is removed, the
remaining network is a chain. Thus, diam = 2.
• Component_Tree(L) is a chain consisting of all processes.
• P.color = 1 for all P . Thus, α(P) = −||P,L|| for all P , and αmin

= −n+ 1.

If every enabled process is selected at each round (so that each round consists of a single step) then increases by 1 every
round. BM5 will be achieved within n+ 1 rounds, and αmin

= 3 at that configuration.
Fig. 6.4 illustrates a computation of SSLE on that network, where n = 7, where the initial configuration is shown in (a).

The values of α are shown adjacent to every process. We assume that at each step, every enabled process is selected, so each
round consists of exactly one step. Benchmark BM5 holds for configuration shown in (i), which is reached after eight steps.

6.1.6. Benchmark BM6
Assume Benchmark BM5 holds. No further structure actions will be executed, and thus every time a process P executes

an action, P.done is set to Done(P). Starting at the leaves of Component_Tree(L), the done wave convergecasts to L, after
which P.donewill be true for all P . Thus, within diam+ 1 rounds, Benchmark BM6 holds.
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(a) αmin
= −6. (b) αmin

= −5. (c) αmin
= −4.

(d) αmin
= −3. (e) αmin

= −2. (f) αmin
= −1.

(g) αmin
= 0. (h) αmin

= 1. (i) αmin
= 2.

Fig. 6.4. If Benchmark BM4 holds, the value of αmin increases every round until Benchmark BM5 holds. In the worst case, Benchmark BM5 is reached in
Θ(n) rounds.

6.1.7. Benchmark BM7
Assume Benchmark BM6 holds. The energy of L cannot exceed 2n, and cannot increase, because L is color frozen, and

thus cannot execute a color action. The color waves will continue to be generated at the leaves andmove toward L, but they
cannot pass each other. After O(diam) rounds, the network will be color locked, and no further color actions can be enabled.
Since P.done = Done(P) for all P , Action D5 cannot execute, either. Thus, no process can execute any action, and silence has
been achieved.

6.2. The unfair daemon

Even if all benchmarks are achieved in finitely many rounds, there is no guarantee that the computation will ever end. If
a process P is enabled, the unfair daemon is never required to select P , unless P is the only enabled process. If there is always
some other enabled process, then P could be enabled forever, and the last round would continue forever.

This cannot happen for SSLE. Given an initial configuration γ0, there are only finitely many configurations that are
reachable from γ0. Any infinite computation must repeat a configuration, and thus contains a cycle, i.e., a computation that
begins and ends at the same configuration.

Suppose Z :: γ0 → · · · → γm = γ0 is a cycle, for m > 0. We show that Z cannot contain any action, and hence cannot
exist.

Let K be the set of all processes that execute a structure action during Z . We make a choice of P ∈ K and γi which
minimizes P.key, i.e., we pick P ∈ K and 0 < i ≤ m such that the value of P.key at γi is less than or equal to the value
of Q .key at γj for any Q ∈ K and any 0 < j ≤ m. We also insist that P executes a structure action at the step γi−1 → γi.
By minimality, P.key decreases during the step, which means that the structure action must be Attach(Q ) for some Q . If
Q ∈ K , that contradicts the minimality of P , while if Q /∈ K , P.key will be unable to increase its value during the cycle,
contradiction. We conclude that K = ∅, and thus Z contains no structure action.

Let F be the set of all processes that execute a color action during Z . We can also show that F = ∅. We will only sketch
the proof here. During Z , components cannot change since no process executes a structure action. Each P ∈ F must execute
at least one of each of the two color actions during Z , and thus P.parent ∈ F and True_Chldrn(P) ⊆ F . It follows thatF is the
exact union of components. None of these can be a false tree, since a false root cannot execute a color action. Pick one of those
components, C. If Recruits(P) ≠ ∅ for some P ∈ C, then P can never execute Action D3, contradiction. If Recruits(P) = ∅
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for all P ∈ C, then eventually P.done will be true for all P ∈ C, and the root of C will be color frozen, contradiction. Thus,
F = ∅.

The only remaining possible action during Z is D5. Let D be the set of all processes that Action D5 during Z . Each P ∈ D
must change P.done at least twice during the cycle, which means that Done(P) must be sometimes true and sometimes
false. Pick P ∈ D such that P.level ≥ Q .level for all Q ∈ D . Then, the value of Done(P) cannot change during the cycle,
contradiction.

We conclude that no cyclic computation can exist, and thus there is no infinite computation of SSLE. When the
computation ends, SSLE is silent.

7. Formal proofs

7.1. Proofs of benchmarks

7.1.1. Benchmark BM1
Lemma 7.1. Benchmark BM1 is closed, and holds within one round of initialization.

Proof. BM1 is closed since there is no action of a process P that can cause P.key to exceed Self _Key(P).

If P.key > Self _Key(P), then P will be enabled to execute Action D2. That action cannot become neutralized by any action
of any other process, and hence P will reset (i.e., execute Action D2) within one round. �

7.1.2. Benchmark BM2
Recall that a process P is subfinal if P.key < Final_Key(P). Thus, Benchmark BM2 simply states that no process is subfinal.

Lemma 7.2. Benchmark BM2 is closed.

Proof. The only way that a process which is not subfinal can become subfinal is to attach to a process which is already
subfinal. Thus, once BM2 holds, it must continue to hold. �

We now give a formal recursive definition of energy, which agrees with the informal definition given in Section 6.1.21

and prove several lemmas.
We say that P is a leaf if True_Chldrn(P) = ∅. Recursively define E(P), the energy of any process P , and EI for any ID I , as

follows.

• For processes P and Q , let ∆(P,Q ) =


1 if P.color ≠ Q .color
2 if P.color = Q .color.

• E(P) =

1 if P.color = 1 and P is a leaf
2 if P.color = 2 and P is a leaf
max {E(Q )+∆(P,Q ) : Q ∈ True_Chldrn(P)} otherwise.

• For any I of ID type (not necessarily the ID of any process in the network) let
– EI = max {E(P) : P.leader = I},
– NI = |{E(P) : P.leader = I}|, the number of processes whose leader variable is I .

By the definition of energy, and since there are n processes altogether, we have:

Remark 7.3. Suppose Benchmark BM1 holds.
(a) For any process P , E(P) ≥ 1, and if P.color = 2, then E(P) ≥ 2.
(b) For any I , EI ≤ 2NI ≤ 2n.
(c) For any I < L.id, EI ≤ 2n− 2.

‘‘Prime’’ notation. In Lemma 7.4 below, and inmany subsequent lemmas in this section, we consider a specific step γ → γ ′,
and we will use ‘‘prime’’ notation to indicate the values of variables and functions at γ ′, while notation without the ‘‘prime’’
will refer to the values at γ . For example, the values of P.color at γ and at γ ′, will be written as P.color and P.color ′,
respectively.

Lemma 7.4. Suppose Benchmark BM1 holds. Let γ → γ ′ be one step, and suppose that P does not execute Action D2 during that
step. Then

(a) E ′(P) ≤ E(P)+ 1,
(b) if P does not execute a color action during the step, then E ′(P) ≤ E(P).

Proof. We prove both statements simultaneously by backwards induction on P.level′.

1 The definition of energy has been changed from the conference paper.
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Case I: P is a leaf at γ ′. If P executes Action D4 during the step, then E ′(P) = 2 ≤ E(P)+ 1, by Remark 7.3. Otherwise, either
P.color ′ = 1 or P.color ′ = P.color , and thus E ′(P) ≤ E(P).

Case II: P is not a leaf at γ ′. Then P cannot have executed Action D1 during the step. Pick Q ∈ True_Chldrn′(P) such that
E ′(P) = ∆′(P,Q ) + E ′(Q ). Since Q is a true child at γ ′, it cannot have executed Action D2 during the step. We break this
case into four subcases:

Case II(a): Q executes Action D1 during the step, attaching to P . By the guards of Action D1 and the color actions, P.color =
P.color ′ = 2. By the definition of energy, E ′(Q ) = 1 and thus E ′(P) = 2 ≤ E(P).

Case II(b):Q executes a color action during the step. By the guards of the color actions, P cannot have executed a color action
during the step. ∆(P,Q ) = 2, ∆′(P,Q ) = 1, and by the inductive hypothesis, E ′(Q ) ≤ E(Q )+ 1. Thus E ′(P) = E ′(Q )+ 1 ≤
E(Q )+ 2 ≤ E(P).

Case II(c): P executes a color action during the step. By the guards of the color actions,Q cannot have executed a color action
during the step. ∆(P,Q ) = 1, ∆′(P,Q ) = 2, and by the inductive hypothesis, E ′(Q ) ≤ E(Q ). Thus E ′(P) = E ′(Q ) + 2 ≤
E(Q )+ 2 ≤ E(P)+ 1.

Case II(d): Neither P nor Q executes a color action during the step, and Q does not execute Action D1 during the step. Then
∆(P,Q ) = ∆′(P,Q ), and by the inductive hypothesis, E ′(Q ) ≤ E(Q ). Thus E ′(P) = E ′(Q )+∆′(P,Q ) ≤ E(Q )+∆(P,Q ) ≤
E(P). �

Lemma 7.5. Suppose Benchmark BM1 holds. If I < L.id, then EI cannot increase.

Proof. Consider one step, γ → γ ′, and suppose that E ′I > EI . If EI = 0, then NI = 0, i.e., there are no processes whose leader
is I . Since there is also no process whose ID is I , there is no way that there can ever again be a process whose leader is I; thus
E ′I = 0, contradiction.

Thus, E ′I ≥ 2. Pick a process P such that P.leader ′ = I and E ′(P) = E ′I . If P executes Action D2 during the step, then P is
not subfinal at γ ′, contradiction. If P executes Action D1 during the step, then E ′(P) = 1, contradiction.

In all other cases, P.leader = I . If P does not execute a color action, then, by Lemma 7.4(b), E ′I = E ′(P) ≤ E(P) ≤ EI ,
contradiction. If P executes a color action, then P must be a true child at γ , since P cannot be a true root and false roots
cannot execute color actions. Let Q = P.parent; then Q .leader = I . By the definition of energy and by Lemma 7.4(a),
E ′I = E ′(P) ≤ E(P)+ 1 and EI ≥ E(Q ) ≥ E(P)+ 1, contradiction. �

We need a rather non-intuitive technical lemma.

Lemma 7.6. Suppose Benchmark BM1 holds. Let γ → γ ′ be a step. Suppose P.leader ′ = I < L.id, and either P.leader ≠ I or
E(P) < EI . Then E ′(P) < EI .

Proof. P cannot execute Action D2 during the step, since then P.leader ′ ≥ L.id. If P executes Action D1 during the step,
attaching to some process Q , then Q .leader = I and Q .color = 2. Thus, E ′(P) = 1 < 2 ≤ E(Q ) ≤ EI .

If P executes a color action during the step, then P.leader = I and P.parent.leader = I . Thus EI ≥ E(P.parent) ≥
E(P)+ 2 ≥ E ′(P)+ 1, where the last inequality is from Lemma 7.4(a).

If P does not execute any structure or color action during the step, then P.leader = I , and by Lemma 7.4(b). E ′(P) ≤
E(P) < EI . �

Lemma 7.7. Suppose Benchmark BM1 holds. If I < L.id and EI > 0, then EI decreases within one round.

Proof. Suppose that γ0 → · · · → γm is a round EI > 0 at γ0, and EI does not decrease during that round. By Lemma 7.5,
EI must be constant throughout that round. We use the notation that a subscript i on a quantity indicates the value of that
quantity at γi.

Pick P such that P.leaderm = I and Em(P) = EI . Applying Lemma 7.6 m times in succession, we have that P.leader i = I
and Ei(P) = E(I) for i = m− 1, . . . , 0. Thus, P does not execute any structure action at any step in the round.

P must be a false root for all γi, since if P were a true child of a process Q , then Q .leader i = I and Ei(Q ) > EI . Thus, P is
enabled to execute a structure action at every configuration in the round, which contradicts the definition of round. �

Lemma 7.8. If Benchmark BM1 holds, Benchmark BM2 will hold within 2n− 2 rounds.

Proof. For any I < L.id, EI cannot exceed 2n − 2, and by Lemma 7.7, EI = 0 within 2n − 2 rounds. Thus, there are no
remaining subfinal processes. �
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7.1.3. Benchmark BM3
Recall that a process is pseudo-final if P.key = Final_Key(P), and P ∉ Final.

Lemma 7.9. Benchmark BM3 is closed.

Proof. Given that Benchmark BM2 holds, The only way that a process that is not pseudo-final can become pseudo-final is
to attach to another process that is already pseudo-final. Thus, once Benchmark BM3 holds, it will hold forever. �

Define Π =


∞ if Benchmark BM3 holds
min {P.level : P is pseudo-final} otherwise.

Lemma 7.10. Suppose Benchmark BM3 holds. If Π <∞, then Π increases during the next round.

Proof. If P is not pseudo-final and ||P,L|| ≤ Π , then P cannot become pseudo-final, because it could only do so by attaching
to a pseudo-final process that is closer to L. On the other hand, if P is pseudo-final and ||P,L|| = Π , then P is a false root,
and is thus enabled to execute Action D1 or D2, and will do so within one round. Thus, by the end of that round, Π must
increase. �

Lemma 7.11. If Benchmark BM2 holds, then Benchmark BM3 holds within diam rounds.

Proof. Initially, Π ≥ 1. By Lemma 7.10, after diam rounds, Π ≥ diam + 1. Since the maximum finite value of Π is diam,
there can then be no pseudo-final processes. �

7.1.4. Evolution of Component_Tree(L) and Benchmark BM4
In this section, we discuss the evolution of the final BFS tree itself. As soon as Benchmark BM2 holds, L is the root of a

component which eventually grows into the final BFS tree.

Lemma 7.12. If Benchmark BM3 holds and P ∈ Final, then P will never again execute a structure action.

Proof. If Q ∈ NP and Q .key = Best_Nbr_Key(P) then Q is subfinal, contradiction; thus P cannot execute D1. Since P is not
a false root, it cannot execute D2. �

Corollary 7.13. If Benchmark BM3 holds, and if a process is final, it will remain final.

Lemma 7.14. If Benchmark BM3 holds, P ∈ Final, and P ∉ Active, then P will never again become active.

Proof. Since Benchmark BM3 holds, if Q is final, then Recruits(Q ) consists exactly of the non-final neighbors of Q . Thus,
since P is not active, every neighbor of every descendant of P is final. By Corollary 7.13, those neighbors remain final, and
the descendants of P can acquire no new children. �

We prove Benchmark BM4 by backwards induction on the distance of a process to L.

Lemma 7.15. If at least t rounds have elapsed since Benchmark BM3 first held, and if P is active and P.level + t > diam, then
P.done is false.

Proof. By induction on t . If t = 0, we are done trivially, since P.level = ||P,L|| ≤ diam.
We prove the inductive step by contradiction. Suppose t > 0, and P.done holds. Let γp be the first configuration at which

both P is final and (t − 1) rounds have elapsed since Benchmark BM3 first held. and let γq be the current configuration.
By Corollary 7.13 and Lemma 7.14, P is active at every configuration between γp and γq, inclusive. Thus, by the recursive
definition of Active, for each p ≤ i ≤ q, there is some Q ∈ NP such that either Q is not final at γi, or ||Q ,L|| = ||P,L|| + 1
and Q is active at γi. In the latter case, by the inductive hypothesis, Q .done is false at γi.

Thus, at every configuration in the interval between γp and γq, Done(P) is false. It follows that P.done cannot become
false. If that interval includes a complete round, then, since P is enabled to execute either a color action or Action D5 during
that entire round, it must execute, changing P.done to false, contradiction. Otherwise, γp is the first configuration at which
P is final, which implies that P executes a structure action at that step, changing P.done to false. In either case, P.donemust
be false at γq. �

Corollary 7.16. If Benchmark BM3 holds, then Benchmark BM4 holds within diam+ 1 rounds.
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7.1.5. Benchmark BM5
We remind the reader that, if Benchmark BM2 holds, then by Corollary 7.13, once P ∈ Final, it can never leave Final. We

will use this fact repeatedly in subsequent lemmas without specifically referring to that corollary. Let T be the number of
steps of the computation until Benchmark BM5 holds; if BM5 never holds,2 we let T = ∞. For any integer 0 ≤ t ≤ T , let γt

be the configuration t steps after γ0. We use a subscript of t to denote the value of any quantity at configuration γt .
Recall the function α on Component_Tree(L), which we defined in Section 6.1.5.

Remark 7.17. If P ∈ Component_Tree(L), then (α(P)+ P.level) mod 4 =

0 if P.color = 1
2 if P.color = 2.

Note that α(P) could be positive, negative or zero. In fact:

Remark 7.18. −n+ 1 ≤ α(P) ≤ n+ 1.

Lemma 7.19. Let 0 < t ≤ T . Suppose P ∈ Component_Treet(L) and P does not execute a structure action during the step
γt−1 → γt . Then

(a) P ∈ Component_Treet−1(L).

(b) αt(P) =


αt−1(P)+ 2 if P executes a color action during the step
αt−1(P) otherwise.

Proof. We prove (a) by induction on P.level. If P.levelt = 0, then P = L, and we are done.
Suppose P.levelt > 0. Let Q = P.parent t . Since P did not execute a structure action during the step, P.parent t−1 = Q .

If Q = L, we are done. Assume Q ≠ L, Q could not have executed Action D2 during the step, since it would then not
be in Component_Treet(L). Q could also not have executed Action D1 during the step, since that action would change
Q .key, which would imply that P ∈ False_Chldrnt−1(Q ), thus disabling Action D1.3 By the inductive hypothesis, Q ∈
Component_Treet−1(L), and thus P ∈ Component_Treet−1(L).

We now prove (b), also by induction on P.level. If P.levelt = 0, then P = L, and we are done by the definition of α(L).
Otherwise, let Q = P.parent t = P.parent t−1. By (a), P,Q are both in Componentt−1. We break the proof into three cases and
use the inductive hypothesis and the definition of α(P) in terms of α(Q ) in each case.
Case I:Neither P norQ executes a color action during the step γt−1 → γt . Thenαt(Q ) = αt−1(Q ) by the inductive hypothesis,
and αt(P)− αt(Q ) = αt−1(P)− αt−1(Q ) by the definition of α(P).
Case II: P executes a color action during the step, and Q does not. By the inductive hypothesis, αt(Q ) = αt−1(Q ), while
αt(P) = αt(Q ) + 1 and αt−1(P) = αt−1(Q ) − 1 by the definition of α(P) and the second clause of the guard of the color
action.
Case III: Q executes a color action during the step, and P does not. By the inductive hypothesis, αt(Q ) = αt−1(Q ), while
αt(P) = αt(Q ) − 1 and αt−1(P) = αt−1(Q ) + 1 by the definition of α(P) and the third clause of the guard of the color
action. �

Lemma 7.20. αmin does not decrease.

Proof. By Lemma 7.19, the only way that α(P) can decrease is for P to execute Action D1. Suppose that αmin
= α(P), and

that αmin decreased during the last round. If P just executed D1 , attaching to a process Q ∈ Component_Tree(L), then
α(Q ) = α(P) − 1, hence α(P) > αmin. Otherwise, by Lemma 7.19, α(P) did not decrease during the round, and therefore
αmin did not decrease. Either way, we have a contradiction. �

Lemma 7.21. Starting with any configuration γp for 0 ≤ p < T , either αmin increases, or γT is reached, within two rounds.

Proof. Suppose that, within two rounds, αmin does not increase and γT is not reached. Let M = {P ∈ Component_Tree(L)
: α(P) = αmin

}.
We claim that, during the two rounds, no process may join M. Suppose P ∈Mt for some t > p. P cannot have executed

D2 during the step γt−1 → γt , since it would then not be in Component_Treet . If P executed D1 during the step, attaching to
some process Q , then αt(P) = αt−1(Q )+ 1 ≥ αmin

+ 1, contradiction. Otherwise, by Lemma 7.19, P ∈Mt−1.
If P ∈ Mp and P.colorp = 1, then P is enabled to execute D1 or D4. During the first round, P will execute one of these

actions, leaving M.
If P ∈ Mp and p.colorp = 2, then every member of Recruits(P) will execute D1 during the first round. Thus, if P is still in

M, it will be enabled to execute either D1 or D3 during the next round, and will therefore leave M within two rounds of γp.
Since M = ∅ after two rounds have been completed, αmin must have increased, contradiction. �

For any process P , define the set of predecessors of P to be Preds(P) = {Q ∈ NP : ||Q ,L|| + 1 = ||P,L||}. For any P ≠ L,
Preds(P) is the set of all processes which might be chosen to be P.parent in the BFS tree rooted at L.

2 As we shall see, that is impossible.
3 This is the only place were we need the third clause in the guard of D1.
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Lemma 7.22. Let P be a process, and let h = ||P,L||.
(a) If Q ∈ Preds(P), Q ∈ Finali, and P /∈ Finali for some 0 ≤ i < T , then αi(Q ) ≤ 3h− 1.
(b) For some 0 ≤ j ≤ T , P ∈ Finalj and αj(P) ≤ 3h+ 2.

Proof. By induction on h. If h = 0, then P = L, and (a) is vacuously true. For (b), pick j = 0;we are done sinceα0(L) ∈ {0, 2}.
Suppose h > 0. We first prove (a). By the inductive hypothesis, part (b), there exists j such that Q ∈ Finalj and

αj(Q ) ≤ 3h − 1. If αi > 3h − 1, then, by Lemma 7.19 and Remark 7.17, there exists k, where j ≤ k < i, αk = 3h − 1,
and Q .colork = 2. By picking the largest such k, we can insist that αk+1(Q ) = 3h+ 1, which implies that Q executes Action
D3 during the step γk → γk+1. However, the guard of D3 implies that P.keyk ≤ Succ_Key(Q ) = (L.id, h). Since Benchmark
BM2 holds, P.keyk = (L.id, h), i.e., P ∈ Finalk ⊆ Finali, contradiction.

We now prove (b). If P ∈ Final0, then let j = 0. The chain of processes, following the parent pointers from P to L, has
length h, and all processes in that chain are in Final0. Thus α0(P) ≤ h+ 2 by the definition of α, and we are done.

Consider now the case P /∈ Final0. By the inductive hypothesis, Preds(P) ⊆ Final eventually. Pick the smallest t such that
Preds(P) ∩ Finalt . Also by the inductive hypothesis, αt(Q ) ≤ 3h − 1 for all Q ∈ Preds(P) ∩ Finalt . By Lemma 7.19, α(Q )
cannot decrease if Q ∈ Final. Pick the smallest j such that αj(Q ) > 3h − 1 for some Q ∈ Preds(P) ∩ Finalj. By Lemma 7.19,
αj(Q ) ≤ 3h + 1 for all Q ∈ Preds(P) ∩ Finalj, and is equal to 3h + 1 for at least one such Q . By (a), P ∈ Finalj. Then
αj(P) ≤ 3h+ 2 by the definition of α, since P.parent j ∈ Preds(P) ∩ Finalj; and we are done. �

Lemma 7.23. If Benchmark BM4 holds, then Benchmark BM5 holds within 2n+ 6 diam+ 4 rounds.

Proof. Let P be any process, and let h = ||P,L|| ≤ diam. By Lemma 7.22, there is some j ≤ T such that P ∈ Finalj and
αj(P) ≤ 3 diam + 2. By Remark 7.18, αmin

0 ≥ −n + 1. By Lemma 7.21, if there were 2n + 6 diam + 4 complete rounds
between γ0 and γj, αmin

j would exceed 3 diam+ 2, contradiction. Thus, P ∈ Finalwithin 2n+ 6 diam+ 4 rounds. �

7.1.6. Benchmarks BM6 and BM7
Lemma 7.24. Benchmark BM6 is closed, and if Benchmark BM5 holds, Benchmark BM6 will hold within diam+ 1 rounds.

Proof. If Benchmark BM6 holds, then Done(P) for all P , so P.donemust remain true for every P . Thus, BM6 is closed.

Suppose Benchmark BM5 holds. Let ℓ = max {P.level : ¬P.done}. If P.level = ℓ and ¬P.done, then Done(P), and P is thus
enabled to execute either a color action or Action D5, and will do so in the next round, changing P.done to true. Thus, within
diam+ 1 rounds, P.done for all P . �

Lemma 7.25. Benchmark BM7 is closed, and if Benchmark BM6 holds, Benchmark BM7 will hold within 2 diam− 1 rounds.

Proof. Define an integral function η on processes as follows:

• η(L) = 0

• If P ≠ L then η(P) =


η(P.parent)− 1 if P.color = P.parent.color
η(P.parent)+ 1 if P.color ≠ P.parent.color.

LetH = {P ≠ L : (P.parent.color = P.color) ∧ (∀Q ∈ Chldrn(P) : Q .color ≠ P.color)}, the set of local minima of η other
than L. Then H = ∅ if and only if Benchmark BM7 holds.

Since Benchmark BM6 holds, a process P is enabled to execute a color action if and only if P ∈ H . Thus, if P ∈ H , P is enabled
to execute a color action, and will do so within one round.

Let h = min {η(P) : P ∈ H}. By the definition of η, either H = ∅ or−diam ≤ h ≤ diam− 2. The value of hwill increase
every round until H is empty, and thus H = ∅within 2 diam− 1 rounds. �

7.2. The unfair daemon

In this section, we show that SSLE works under the unfair daemon, meaning that every round must eventually end.
Our method is by contradiction. If SSLE does not work under the unfair daemon, there must exist an execution of

SSLE of infinite length. Since there are only finitely many configurations reachable from any given start configuration, that
implies that there must exist a cyclic execution, meaning, an execution of positive length that begins and ends at the same
configuration. We will then prove that a cyclic execution cannot contain any action, and therefore cannot exist.

We first need some new notation.

• For any process P , define E_plus_L(P) = E(P)+ P.level, the energy plus level of P .
• E_plus_Lupp_bnd = max {2n,maxP {E_plus_L(P)}}, an upper bound on E_plus_L(P) for all P .

Lemma 7.26. The value of E_plus_Lupp_bnd cannot increase.
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Proof. Let γ → γ ′ be any step of SSLE. We will prove that E_plus_L′upp_bnd ≤ E_plus_L′upp_bnd. Suppose that E_plus_Lupp_bnd
> E_plus_Lupp_bnd. Then, there is some process P such that E_plus_L′(P) > E_plus_Lupp_bnd.

If P executed action D1 during the step, attaching to a process Q , then E_plus_L′(P) < E_plus_L(Q ) ≤ E_plus_Lupp_bnd,
contradiction. If P executed action D2 during the step, then E_plus_L′(P) = 2 < E_plus_Lupp_bnd, contradiction. If P executed
a color action during the step, and P was a true root at γ , then E_plus_L′(P) ≤ 2n ≤ E_plus_Lupp_bnd, contradiction. If P
executed a color action during the step, and P was a true child at γ , let Q = P.parent . Then E_plus_L′(P) < E_plus_L(Q ) ≤
E_plus_Lupp_bnd, contradiction. �

Reachable configurations. We say that a configuration γ ′ is reachable from a given configuration γ if there is some execution
of SSLE that begins with γ and contains γ ′.

Lemma 7.27. Given a configuration γ of a network, there are at most finitely many configurations of the network that are
reachable from γ .

Proof. We need to show that each of the variables of every process has a finite range.

1. For any reachable configuration, the value of P.parent must equal either the initial value of P.parent or Q .id for some
process Q , and the value of P.leader must equal either Q .id, or the initial value of Q .leader for some process Q . Since
there are only n processes, there at most n+ 1 possible values for P.parent and at most 2n possible values for P.leader .

2. By Lemma 7.26, no value of P.level in any configuration reachable from γ can exceed the value of E_plus_Lupp_bnd at γ ;
hence there are only finitely many values of P.level.

3. The number of possible values of P.color is two.
4. The number of possible values of P.done is two.

Thus, the number of possible states of P , over all configurations reachable from γ is finite. Since the network is finite, the
number of configurations reachable from γ is finite. �

We define a cyclic computation (or simply cycle) to be an computation of positive length which starts and ends at the
same configuration.

Lemma 7.28. Any infinite computation of SSLE contains a cycle.

Proof. By Lemma 7.27 and the pigeonhole principle. �

Henceforth in this section, let Z : γ0 → γ1 → · · · → γm = γ0, form > 0, be a cycle.

Lemma 7.29. Z contains no action which changes P.key for any process P.

Proof. Our proof is by contradiction; suppose the statement of the lemma is false. Let K be the set of all processes P such
that P.key changes during the cycle Z .

For P ∈ K , defineMin_Key(P) to be the minimum value of P.key over all configurations in the cycle Z . Since P.key is not
constant, P.key > Min_Key(P) at at least one configuration in Z .

Let k = min {Min_Key(P) : P ∈ K}. We first note that P.key ≤ Self _Key(P) for all P ∈ K at all configurations in the cycle,
since there is no action which can set P.key > Self _Key(P).

Case I: k = Self _Key(P) for some P ∈ K . Then P.key > Self _Key(P) at some configuration in the Z , contradiction.

Case II: k < Self _Key(P) for all P ∈ K . Pick P ∈ K such that Min_Key(P) = k. By hypothesis, Z must contain a step at
which P.key is set to k. At that step, P executes Action D1 (Q ), selecting some process Q to be its parent. Since Q .key < k,
Q ∉ K , and Q .key cannot change during the cycle. P is then never enabled to increase its key, since P.parent = Q forever,
contradiction. �

Lemma 7.30. During Z, P.done cannot change for any process P.

Proof. Our proof is by contradiction. Let P be the process of maximum key such that P.done changes during the cycle. No
process executes a structure action during the cycle, since otherwise its key would change, contradicting Lemma 7.29. Thus,
the sets Recruits(P) and Chldrn(P) do not change. Since Q .done does not change for any Q ∈ Chldrn(P), the value of Done(P)
does not change. Thus, P.done can change at most once during the cycle, contradiction. �

Lemma 7.31. During Z, P.color cannot change for any process P.

Proof. Our proof is by contradiction. Let F be the set of all processes P for which P.color changes during Z .
If P ∈ F , then P must change color at least twice during the cycle. Thus, P.parent must change color, and allQ ∈ Chldrn(P)

must also change color, during the cycle. It follows that Component_Tree(P) ⊆ F .
We claim that P.done holds for all P ∈ F . Suppose not. Let P be the member of F of maximum key such that

¬P.done. Recruits(P) = ∅, since otherwise P would not be enabled to execute Action D3. Q .done for all Q ∈ Chldrn(P),
by the maximality of P.key. Thus, Done(P) holds, which will cause P.done to be set to true when P executes a color action,
contradiction.
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Since F contains an entire component, it must contain a process Rwhich is the root of that component. If R is not a true
root, then R is not enabled to execute a color action. If R is a true root, then R.done holds, and thus R is color frozen, implying
that R cannot execute a color action. In either case, R ∉ F , contradiction. �

Lemma 7.32. Every computation of SSLE is finite.

Proof. Suppose there is an infinite computation of SSLE. By Lemma 7.28, every infinite computation of SSLE contains a cycle,
Z . Z must contain at least one action. But, by Lemmas 7.30 and 7.31, and 7.29, Z can contain no action, contradiction. �

7.3. Main result

Theorem 7.33. SSLE converges within O(n) rounds under the unfair daemon, and is silent with O(diam) additional rounds.

Proof. By Lemma 7.1, Benchmark BM1 holds within one round of an arbitrary initial configuration.
By Lemma 7.8, Benchmark BM2 holds within 2n− 2 additional rounds.
By Lemma 7.11, Benchmark BM3 holds within diam additional rounds.
By Corollary 7.16, Benchmark BM4 holds within diam+ 1 additional rounds.
By Lemma 7.23, Benchmark BM5 holds within 2n + 6 diam + 4 additional rounds. Thus, starting from an arbitrary

configuration, the network is in a legitimate configuration in at most 4n+ 8 diam+ 4 rounds.
By Lemma 7.24, Benchmark BM6 will hold within diam+ 1 additional rounds.
By Lemma 7.25, Benchmark BM7 will hold within 2 diam− 1 additional rounds.
When Benchmark BM7 holds, no process is enabled, and thus, starting from an arbitrary configuration, SSLE converges

and is silent within 4n+ 11 diam+ 4 rounds.
We now consider the problem of the unfair daemon. Even an algorithm which takes finitely many rounds could execute

forever if the unfair daemonnever selects an enabledprocess, causing a round to never end. But, by Lemma7.32, no execution
of SSLE can last forever. Thus, SSLE converges and is silent under the unfair daemon. �

8. Conclusion

We present a uniform silent self-stabilizing asynchronous distributed algorithm, SSLE, for election of a leader of a
network, in which processes have unique IDs. The algorithm stabilizes in O(n) rounds, using O(log n) space per process,
and becomes silent after an additional O(diam) rounds, under the unfair daemon.
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