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Transient Anomalous Subdiffusion. I. Qualitative Model

In a recent article (1), Michael J. Saxton proposes to interpret

as anomalous diffusion the occurrence of apparent transient

subdiffusive regimes in mean-squared displacement (MSD)

plots, calculated from trajectories of molecules diffusing in

living cells and acquired by single particle (or molecule)

tracking techniques (SPT or SMT). The demonstration relies

on the analysis of both three-dimensional diffusion by Platani

et al. (2) and two-dimensional diffusion by Murase et al. (3).

In particular, the data reported by Murase et al. cover ex-

tremely large timescales and experimental conditions: video

rate but also high-speed SPT and single fluorescence mole-

cule imaging. This is an exciting opportunity to address the

question of anomalous diffusion because the experiments

cover timescales ranging from 33 ms up to 5 s, i.e., a range of
more than five orders of magnitude(Fig. 1 b).
As pointed out by M. J. Saxton, anomalous diffusion (4)

arises from an infinite hierarchy of space or energy scales hin-

dering normal diffusion. The normal diffusion lawMSD(t)¼
4Dmt, where Dm is the microscopic diffusion coefficient,

becomesMSD(t)�Vta, whereV is some coefficient and a is

the anomalous diffusion exponent. In the case of subdiffusive

behavior, a, 1. However, in cellular processes the hierarchy

is always finite since there is a short distance cutoff that is

larger than themolecular scale, and a large distance one that is

typically cell size. Therefore, one can expect an anomalous

diffusion regime on a transient time interval only and cross-

overs to normal diffusion at short and long timescales. It is

precisely what Platani et al. (2) andMurase et al. (3) observed.

In Fig. 1, the experimental apparent subdiffusive regimes can

cover up to three orders of magnitude.

Anomalous diffusion is frequently invoked to interpret

complex experimental data. However, the elucidation of

the physical mechanisms at its origin remains a difficult and

still open issue (5). In this context, the systematic research of

the simplest mechanisms accounting for experimental ob-

servations should be preferred to avoid an over-interpretation

of data. Without questioning the existence of subdiffusive

behaviors, which certainly play a key role in numbers of

mechanisms in living systems, we would like to point out

that the data used by J. M. Saxton can be fitted as well by a

simple law, resulting from confined diffusion at short

times, with a slower free diffusion superimposed at larger

times:

MSDðtÞ ¼ L
2ð12 expð2t=tÞÞ=31 4DM t; (1)

where there is now only one length-scale, L, the typical size
of the confining domains. The timescale t ¼ L2/(12 Dm) is

the equilibration time in the domains (8).DM is the long-term

diffusion coefficient, ensuing, for example, from the fact that

the confining domains are semi-permeable (6). This law is a

very good approximation of a more complex form (7) be-

cause it takes into account only the slowest relaxation mode

of confined diffusion at short times (8). By contrast, the

contribution of the free long-term diffusion is mathemati-

cally exact. It can be proven (calculations not shown) that

this contribution is equal to L2/3 1 4 DM t, consistent with
Eq. 1. In addition, the short-term expansion of Eq. 1 gives

MSD(t) ¼ 4(Dm 1 DM)t when t � t, where one would

expect MSD(t) ¼ 4Dmt. This is because the calculation we

referred to above does not take into account the correct time

distribution of domain-to-domain jumps when t # t. It

overestimates the probability of jumps at very short times.

This problem, that will be addressed elsewhere, is beyond

the scope of this Comment. Indeed, we work in the regime

Dm � DM, where this issue is negligible, as confirmed in the

simulations below. Fig. 1 illustrates that this law accounts

quite well for the observed transient regimes without ap-

pealing for anomalous diffusion. Within this approximation

(Fig. 1 b), the fit of experimental data by Eq. 1 gives Dm ¼
0.36 mm2/s ¼ 10DM. The numerical values that we get are

consistently close to those of Murase et al. (3). In Fig. 1 a, the
MSD is calculated from three-dimensional positions (2), and

Eq. 1 must be multiplied by 3/2 to be adapted to three di-

mensions. In both sets of data (Fig. 1, a and b), the apparent
anomalous exponents measured by M. J. Saxton are the

slopes of the MSD/t profiles at their inflection points, in log-

log coordinates.

To confirm further our statements, we have performed

numerical experiments of Brownian particles diffusing in a

mesh-grid of semipermeable linear obstacles. The complete

simulation procedure was detailed in Meilhac et al. (6). Our

results are summarized in Fig. 2 where numerical MSD(t)/t
plots are fitted by Eq. 1. Two conclusions can be drawn: 1),

as anticipated, Eq. 1 is a very good approximation of the real

diffusive properties of the system considered; and 2),

between the short- and long-term regions where MSD is

proportional to t, there is an intermediate region, the duration

of which is comparable to the ratio Dm/DM (in logarithmic

scale). In this region, the MSD/t plots resemble anomalous

diffusion plots, with slope tending to 21 when the previous

ratio is large. Indeed, when Dm � DM, the log-log plot of
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MSD(t) is as follows. When t � t, MSD(t) ¼ 4 Dmt and
MSD/t is constant. When t� L2/(12DM)¼ tesc, MSD(t)¼ 4

DMt and MSD/t is also constant. The time tesc ¼ t Dm/DM

corresponds to the typical time needed to escape boxes

(6). In the intermediate region, MSD(t) ¼ L2/3 is constant.

There are two crossovers near t and tesc. For the MSD/t
representation, the constant transient regime becomes affine

with slope 21. When the ratio Dm/DM is large but finite,

the slope of this intermediate region is still negative, but it

is larger than 21. The graph resembles an anomalous

diffusion graph on the time interval [t,tesc] (see also Fig. 1).

Note that, up to translations, the shapes of the MSD and

MSD/t curves in log-log coordinates only depend on the ratio
tesc/t ¼ Dm/DM.

When visualizing MSD plots, the transition from short-

term diffusion that is confined in domains of size L to slower,

longer-term free diffusion can be confused with anomalous

diffusion over several orders of magnitude of time. With the

goal of researching the simplest mechanisms accounting for

experimental observations, it seems reasonable to explore

first the former possibility. In principle, elucidating the

nature of domains with a single typical size L is a much

easier task than identifying a hierarchy of space (or energy)

scales ranging over several orders of magnitude. In the work

of Murase et al. (3), domains of size L� 30 nm are attributed

to the cortical cytoskeleton meshwork. In the case of Cajal

bodies (2), the fitted values L � 1 mm will have to be

interpreted in future work: the confining roles of chromatin-

associated states and of possible division of the nucleus in

functionally distinct compartments (2) will have to be

investigated.
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FIGURE 2 Numerically simulated (symbols; L ¼ 400 nm, t ¼ 0.22 s,

Dm ¼ 0.06 mm2/s) MSD(t) (lower plots on the left-hand-side) and

MSD(t)/t (upper plots), for Dm/DM ¼ 102 (black) and 103 (blue), on which

are superimposed the MSD(t) and MSD(t)/t calculated from Eq. 1 (lines).

MSD(t)/t for Dm/DM ¼ 10 was given in Fig. 1 b. The agreement is

excellent except around t where Eq. 1 is only an approximation (see text).

The dashed line has slope 21.

FIGURE 1 Log-log plots of experimental mean-square displacements

divided by time (MSD/t) versus time t, where normal diffusive regimes are

characterized by a constant value whereas apparent subdiffusivity is

revealed by quasi-linear regimes with negative slopes: (a) For Cajal bodies

(adapted from Platani et al. (2)); experimental data (symbols) are suitably

fitted by Eq. 1 (lines). The fit parameters L (in mm) and DM (in mm2/s) are

given in the inset. The microscopic diffusion regime (i.e., t (in s) or

equivalently Dm) is accessible only for the lowest set of data (squares),

because t is too small for the two remaining sets. (b) For dioleoylPE (solid
circles, with error bars, adapted from Murase et al. (3)), power law fits in

both the normal and anormal apparent diffusive regimes (blue, (1)). In red,

our best fitting curve for time, 1 s, with L¼ 35 nm, t ¼ 0.28 ms, andDM¼
0.036 mm2/s (see Eq. 1).
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