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Introduction

Starting from the famous papers by Nijenhuis, [15,16], geometrical objects and in-
variant operations with geometrical objects have been studied by using the concepts of
natural bundles and natural differential operators.

In physics another sort of invariance plays an important role, the so called “gauge-
invariance”. Its geometrical description is the following, [2]. Let # : P — B be a G-
principal bundle over a space-time manifold B and E — B be a bundle associated with
P. An automorphism of P, over B, induces a fibred automorphism of E, over B, which
is said to be a change of gauge. A physical theory is said to be gauge-invariant if it is
invariant with respect to changes of gauge. Gauge-invariant theories can be described
geometrically by using the concepts of gauge-natural bundle functors and natural or
gauge-natural operators between gauge-natural bundles, Eck [1]. The aim of this paper

Correspondence to: Josef Janyska, Department of Mathematics, Masaryk University, Jani¢kovo
ndm. 2a, 662 95 Brno, Czechoslovakia

0926-2245/92/$05.00 ©1992 — Elsevier Science Publishers B.V. All rights reserved


https://core.ac.uk/display/82176921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

100 J. Janyska, M. Modugno

is to express naturality and gauge-naturality at infinitesimal level by using the concept
of “systems” introduced by the second author, {14]. The main idea is to replace the
action of a Lie group on the standard fibre by the action of a Lie algebra on the space
of vector fields on the standard fibre of the bundle. We consider a system of projectable
vector fields on a fibred manifold which induces the structure of an infinitesimal natural
lift on the fibred manifold. A similar result is obtained for gauge-natural lifts.

In the classical theory, if a differential operator is natural or gauge-natural, then it
commutes with the Lie derivatives associated with any vector field. We use this fact for
our definition of (infinitesimally) natural and gauge-natural operators and we express
the naturality of differential operators by using the distinguished vector fields of the
given “systems”.

Throughout the paper we use the following notation from jet theory. If M, N are
two differentiable manifolds then the space of k-jets from M to N with source z € M
and target y € N will be denoted by J5(M, N),. If E — B is a fibred manifold then the
space of k-jets of local sections of E is J¥FE and 7r,k :JFE — J'E, k > 1, is the canonical
projection. The k-jet prolongation of a fibred manifold morphism ¢ : E — E (covering
a diffeomorphism f : B — B of base spaces) is J*¢ : JFE - JFE.f 0 : B — E is a
section then j¥o : B — J*E is its k-jet prolongation. If £ : E — TE is a projectable
vector field of E, then its k-jet prolongation is the vector field j*Z : J*E — TJFE
of JEE defined by j*Z = r* o J¥Z, where 7% : J*TE — TJ*E is the canonical fibred
morphism, [13]. The sheaf of local sections of E will be denoted by C*FE.

All manifolds and mappings are assumed to be in the category C>.

1. Natural lift functors

We recall here definitions and basic properties from the theory of natural lift functors,
[10,16,19].

Let M be the category of smooth manifolds and smooth manifold mappings and
M., be the category of C* n-dimensional manifolds and smooth embeddings. Let F M
be the category of smooth fibred manifolds and smooth fibred manifold mappings and
F M, be the category of smooth fibred manifolds over n-dimensional base spaces and
smooth fibred manifold morphisms over embeddings of base spaces.

Definition 1.1. A natural lift functor is a covariant functor F from M, to FM,
satisfying
i) for each manifold B € Ob M,

pg: FB— B

is a fibred manifold over B,
ii) for each embedding f € Mor M, Ff is a fibred manifold morphism over f, which
maps fibres diffeomorphically onto fibres.

A natural bundle is then a triplet (F'B,pg, B).
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In the definition of natural lift functors further continuity condition is sometimes
added, requiring that a smoothly parametrized family of diffeomorphisms is prolonged
into a smoothly parametrized family of diffeomorphisms. But this condition turns out
to be a consequence of i) and ii), [3].

The concept of natural lift functor was generalized, [4, 8, 10], to the concept of natural
bundle functor.

Definition 1.2. A natural bundle functor (in literature it is currently denoted simply
as “prolongation functor”) on a subcategory C of M is a covariant functor F from C to
the category FM satisfying

i’) for each manifold B € Ob(, pg : FB — B is a fibred manifold! over B,

ii’) for each f € MorC, Ff is a fibred manifold map covering f such that Fu(U) =
((FU) for any open subset ¢ : U — B.

A natural bundle functor on the subcategory M, of M, for a certain n, is a natural
lift functor.

We say that a natural lift functor F is of order r if, for any f € Mor M,,, the map
Ff depends only on the 7-jet of f.

Let F be an r-order natural lift functor and let Fp = (FR")o be the standard fibre
of F. On Fy we have the canonical action of the Lie group

Gl = invJG(R",R")g
of invertible r-jets (with source and target 0) of diffeomorphisms of R™ which preserve
0. It is well known that any natural lift functor has finite order, [10,17], and that there
is, up to equivalence, a one-to-one correspondence between r-order natural lift functors
and left smooth G7,-manifolds, [11,19].

The continuity condition allows us to prolong a vector field £ of B to the vector field
F¢ of FB by the rule

exp(tFE) = F(exp(i€)). (1.1)

This flow prolongation defines for an r-order natural lift functor F' the associated
smooth fibred mapping

p:JTBxg FB—TFB (1.2)
which is linear over F B, [8]. So, we obtain
F:C®TB — C®(TFB — FB); £ Fé(u)=po(j7€,u), uc FB,

where we used the letter F' again (by abuse of language). Later (Section 3) we shall
meet a different abstract approach to formula (1.2) in terms of “systems”.

Local coordinate charts on B and Fp induce a fibred coordinate chart on F'B, which
is said to be natural.

Example 1.1. The tangent functor T is a natural bundle functor of order 1 on the
category M. In dimension n the corresponding standard fibre is R* on which G} =
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Gl(n,R) acts in the standard way. The tangent prolongation of a vector field £ = £*9)
of B is
4]
a9’

where (z*,3*) is the natural coordinate chart on T B.

T¢ = EA(T% + &40,

Example 1.2. The cotangent functor 7* is a natural lift functor of order 1 with the
standard fibre R™ and the standard action of GL. The cotangent prolongation of a
vector field £ = €28, of B is

0 0
—_ £A _ i
TE=¢ 817)‘ x,ﬁ,\f az/\ )
where (z*,z)) is the natural coordinate chart on 7*B.

Example 1.3. The functor T("*) of (r,s) tensors is a natural lift functor of order 1.
The standard fibre is (Q" R™) @ (Q°R™) on which G} acts in the standard tensor
way. The tensor prolongation of a vector field £ of B is

s 0 Ar A
T(rs)g = @5; F (AN -1 e

_ 4AL-LAr P o_ ... fAAr p 9
tpp,g...p,,.aﬂlg tui...us_lpauaé. ) at)‘l"')"' 3
H1ee-fhs

where (2*,¢)1:37) is the natural coordinate chart on T("% B,
Example 1.4. The functor of metrics Met is a natural lift functor of order 1. Its
standard fibre (Met)o is the subspace in () R™* of non-degenerate symmetric matrices
with the coordinate chart (g,,) and the tensor action of G}.

Example 1.5. The functor of k"-velocities T} is a natural bundle functor of order
r on the category M. For any B € Ob M, we define T} B = JS(]R’“,B) and, for any
f € MorM, f: B — B, we define T] f(Jja) = JI(f o a), where Jia € T B. The
standard fibre of T7 in dimension n is J3(R¥,R™)o and the action of G7, on the standard
fibre is given by the composition of jets.

Example 1.6. The functor of r-order frames F" is a natural lift functor of order r.
For any B € Ob M, we define F"B = invJ}(R", B) and, for any f € MorM,, F" f is
defined as in Example 1.5. The values of the functor FT are in the category PB,(G%)
of smooth principal bundles with n-dimensional base spaces, the structure group G7,
and smooth principal bundle mappings.

Example 1.7. The bundle of linear connections C on a given manifold is a natural
lift functor of order 2. Its standard fibre is R™ @ (®*R™) on which G2 acts via the
well known transformation relations of the Christoffel symbols. The flow prolongation
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of a vector field £ = €20), of B is

Ot = 00 4 (T0,8,6" ~ 1,048 ~T2,0,67 + 9,6") =2,
8(8 81‘\‘“/

where (z*,T},) is the natural coordinate chart on C'B.

Remark 1.1. Let F be a natural lift functor of order r. For any f € MorM,,, f: B —
B, by using the standard jet prolongation, we get the commutative diagram

JSFf _
J°FB —— J°FB

" [#s

B —— B
f

which implies that J*F = J” o F is a natural lift functor of order (r + s). If Fp is the
standard fibre of F' then the standard fibre of J°F is J*Fy = T2 Fp and the action of
G7ts on J*Fy is obtained by the jet prolongation of the action of G7, on Fp.

Remark 1.2. In the theory of natural lift functors, the functor of r-order frames
defined in Example 1.6 plays a fundamental role. Namely, any natural lift functor F
of order r, with standard fibre Fp, is canonically represented by

FB =[F'B,F)|, Ff=[Ff,id], (1.3)

where B € Ob My, f € Mor M, and [F" B, Fy] = (F"B, Fy)/G7, is the bundle associ-
ated with F7 B, [10,11,19].

Example 1.8. With respect to the adjoint action of G7, on its Lie algebra G, we can
define the r-order natural lift functor

Gn(B) = [FTB’g;]’ g;(f) = [Frf’id]' (1'4)

So G can be viewed as a natural r-order lift functor and we shall call it the adjoint
r-order natural lift functor.

Let F be a natural lift functor, f : B — B be a mapping in Mor My, and ¢ : B — FB
be a section. Then we define the section f*0 : B — FB by f*o = Ffooo f~1.

Definition 1.3. A natural differential operator D from a natural lift functor F} to a
natural lift functor F3 is a family of differential operators

{D(B) : COOFIB — Coopr}BGOan



104 J. Janyska, M. Modugno

such that D(B)(f*o) = f*D(B)(o) for all sections 0 : B — FjB and all f: B— B in
Mor M,,.

A natural differential operator is of a finite order k if all D(B), B € Ob M, depend
on k-order jets of sections. Thus, a k-order natural differential operator D from Fj
to F; is characterized by the associated fibred manifold morphisms D(B) : J*F; B —
F,B, over B, according to the formula D(B)(j%0) = D(B)(o)(z). The family D =
{P(B)}Bcobm, defines a natural transformation of the functors J*F; and F».

Let D be a natural operator of order & from Fy to F3 and D be its associated
natural transformation. Then we can define the tangent prolongation 7’D of D as
the k-order operator T'D from TFy to TF; defined by the associated transformation
TD : J)TF, — TF,, where TD = TD or* and r* : J*TF, — TJ*F, is the natural
transformation defined in [13]. It is easy to see that 7D is a natural transformation
of covariant functors and it implies that 7D defined by TD(B)(Z) = TD(B) o (%),
for any section ¥ : B — TFyB, is the natural operator such that gp,g(TD(X)) =
D(gr, (%)), where gg : TE — E is the canonical projection.

Definition 1.4. Let F be a natural lift functor, £ be a vector field of B and exp(t¢)
its flow. Then the Lie derivative of a section ¢ : B — FB with respect to the vector
field £ is defined by

o= {exp(~t€)°0). (1.5)

In [5,9,18] it was proved that the Lie derivative can be expressed geometrically as
the mapping

Leo=Tool—-Foo. (1.6)
Hence L¢o turns out to be a section L0 : B — V F'B projectable onto the section o.

Lemma 1.1. If a k-order differential operator D from a natural lift functor Fy to a
natural lift functor Fy is natural, then

L¢D(B)(0) = TD(B)(L¢0), (1.7)
for B € Ob M,,, any section o : B — F1 B and any vector field £ of B.

Proof. From the infinitesimal expression (1.5) for L0 we get

TD(B)(L¢o) = TD(B)orFo jk%‘o{exp(—tg)*a} =

d

= T2(B)o | 1] tit(exp(-167 )| = | B (Hexn(-16y0) =

= 2| (o0t (@(B) o (1*0)) = £D(B)(0).

which proves our Lemma 1.1. O
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For the case of linear operators on natural vector bundles Lemma 1.1 was used in [6].

Remark 1.3. Since the values of the Lie derivative are in V F'B it is sufficient to con-
sider in (1.7) only the vertical prolongation V D of the operator D instead of the tangent
prolongation T'D. The vertical prolongation V D can be defined as the restriction of
TD on V Fy or equivalently by

d d
V D(B) (EE’OQ) - E’OD(B)(U,),
where oy : B — F1 B is a smoothly parametrized family of sections.

Definition 1.5. A differential operator D from a natural lift functor F to a natural lift
functor F; is said to be infinitesimally natural if (1.7) holds for any section o0 : B — F1 B
and any vector field £ of B.

Many geometrical constructions are in fact natural differential operators between
natural lift functors. The study of natural differential operators is based on relations
between natural differential operators and equivariant mappings. The basic tool is the
following theorem, (10,12,19].

Theorem 1.1. There is a bijective correspondence between the set of k-order natural
differential operators from a natural lift functor Fy to a natural lift functor F, and
equivariant mappings from the standard fibre of J*F, to the standard fibre of F;.

Example 1.9. The exterior derivative d is a first order natural operator from A?T*,
p > 1, to AP*' T*. The corresponding G2-equivariant mapping from JY(A? T*)e =
TYAPR™) to (A**'T*)e = AP*'R™ is given in the canonical coordinate chart
(Wiy..ip) 1 <01 <--- <dp < mon (APR™) by

w od

’il...ip+1 = w[il...ip,‘ip+1]’

where [ ... | denotes the antisymmetrization. It can be proved that the naturality
determines d up to a constant.

Example 1.10. The Levi-Civita connection is a first order natural differential operator
from Met to C. The corresponding GZ-equivariant mapping from J'(Met)g to Cp is
given by

F;/)V = %g’\"(gpu,,, + Govu = Gurp),s

where (g*#) is the inverse matrix of (g,,,).

Example 1.11. The curvature tensor is a first order natural differential operator from
C to T ® (®°T*). The corresponding G3-equivariant mapping from J1Cp to (T ®
(®°T*))o = R* @ (®°>R™) is given by

A N P A A A
tp.un - F;w,n - F;m,u + Fpanu - FquZN'
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Example 1.12. The Nijenhuis tensor is a first order natural differential operator from
T®T* to T®(A?T*). The corresponding G2-equivariant mapping from J1(T(11)), to
(T ® (A\*T*))o is given by

B = Dt — Dt 00~ 1,12,

2. Gauge-natural bundle functors

In this section we recall some basic definitions and properties of gauge-natural bundle
functors, [1,7].

Let PB,(G) be the category of smooth principal G-bundles, whose base manifolds
are n-dimensional, and smooth G-bundle morphisms (¢, f), where f € Mor M.

Definition 2.1. A gauge-natural bundle functor is a covariant functor F from the
category PB,(G) to the category F M, satisfying

i) for each 7 : P — B in PB,(G), 7p : FP — B is a fibred manifold over B,

il) for each embedding (¢, f) in PB,(G), Fo = F(y, f) is a fibred manifold mor-
phism covering f,

iii) for any open subset U C B, the immersion ¢ : 7=}(U) < P is transformed into
the immersion Fu: 7' (U) — FP.

A gauge-natural bundle is then a quadruple (FP,7p,B,7: P — B).

In the original definition, [1], there is one more continuity condition which says that a
smoothly parametrized family of diffeomorphisms of P is “prolonged” into a smoothly
parametrized family of isomorphisms of F' P. But this condition is a consequence of i),
i) and iii), [10].

Example 2.1. Let (x : P — B) € ObPB,(G), let W™P be the space of all r-jets
J(To,e)% where ¢ : R* x G — P is in MorPB,(G), 0€ R™ and e is the unity in G. The
space WT P is a principal fibre bundle over B with structure group WG = J(To’e)(lR” X
G,R" x G) of all r-jets of principal fibre bundle isomorphisms ¥ : R" x G — R" x G
covering the diffeomorphisms 1 : R®™ — R™ such that (0) = 0. The group WG is
the semidirect product of G, and T7G with respect to the action of G}, on T7G given
by jet composition. Let (¢ : P — P) € MorPB,(G), then we can define the principal
bundle morphism W”¢ : WTP — W P by jet composition. The rule transforming any
P € ObPB,.(G) into WP € ObPB,(W;G) and any ¢ € MorPB,(G) into W' €
Mor PB,, (W} G) is a gauge-natural bundle functor, [7].

The gauge-natural bundle functor described in Example 2.1 plays a fundamental
role in the theory of gauge-natural bundle functors. We have, [1,7],

Theorem 2.1. Every gauge-natural bundle FP is a fibred bundle associated with the
gauge-natural bundle W' P for a certain order r.
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The number 7 from Theorem 2.1 is called the order of the gauge-natural bundle
functor F'. So if F is an r-order gauge-natural bundle functor then

P=[W"P,F), Fo¢=[Wp,idg], (2.1)

where Fg is a W] G-manifold called the standard fibre of F.

A local fibred coordinate chart on P and a coordinate chart on Fy induce a fibred
coordinate chart on F'P, which is said to be gauge-natural.

Let s £ r be the minimum number such that the action of W:G = G, xs TG on
Fy can be factorized through the canonical projection 77 : T7G — TG, r > s, via the
commutative diagram

(G:L X8 T,:G) x Fg _— F()

l

(Gr, x5 TSG) x Fo

Then s is called the gauge-order of F' and we say that F" is of order (r,s).

The regularity condition allows us to “prolong” any G-invariant vector field = of P
to the vector field F'= of FP. Namely, exp(¢tF'Z) = F(exp(tZ)). The vector fields = and
FZ are projected on the same vector field of B. The flow prolongation of a G-invariant
vector field of P defines the linear mapping

J(TP/G)xg FP — TFP (2.2)

over FP, where TP/G is the space of G-invariant vector fields of P. Later (Section 3)
we shall meet a different abstract approach to formula (2.2) in terms of “systems”.

Example 2.2. Any r-order natural lift functor in the sense of Definition 1.1 is the
(r,0)-order gauge-natural bundle functor with the trivial gauge action, i.e. the action

(G;XG)XF()—#FO

does not depend on G.

Example 2.3. Let (7 : P — B) € ObPB,((G) and let us denote by CP — B the
bundle of principal connections on P. Then C is a (1,1)-order gauge-natural bundle
functor with the standard fibre ¢ ® R™*. In particular, let G = G7,, then CP can be
viewed as the bundle of linear connections on an associated vector bundle with m-
dimensional fibres. The standard fibre of C is Cy = R™ ® R™* @ R™ with coordinates
(I";.)\), Li=1,...,m A=1,..,n, and the action of W = G’1 xs TAG}, on Cy is given,
in the canonical coordinates (aj,da},a,) on G}, x5 ThG},,

— P ~q=p ata
I‘;/\—aI‘paa,\-{—a' /\,

where the tilde denotes the inverse element.
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Example 2.4. With respect to the adjoint action of WG on its Lie algebra WG we
can define the r-order gauge-natural bundle functor

WrG(P) = [W"P,WiG],  WipG(p) = [We,id). (23)

So WrG can be viewed as a gauge-natural bundle functor which will be called the
adjoint r-order gauge-natural bundle functor. In particular, G is the adjoint 0-order
gauge-natural bundle functor.

Example 2.5. If F is a gauge-natural bundle functor of order (r,s) then J*F is a
gauge-natural bundle functor of order at most (r + k,s + k). The number (r + k) is
exact, but (s + k) may be too big, for instance if F is an r-order natural lift functor,
i.e. an (r,0)-order gauge-natural bundle functor, then J*F is an (r + k)-order natural
lift functor, i.e. an (r + &,0)-order gauge-natural bundle functor.

Example 2.6. G® (A?T*)is a (1,0)-order gauge-natural bundle functor.

Let (¢, f) € MorPB,(G), ¢ : P — P, f : B — B, F be a gauge-natural bundle
functor and o : B — FP be a section. Then we define the section ¢*o : B — FP by
p*c = Fpoaoo f~1.

Definition 2.4. A natural differential operator D from a gauge-natural bundle functor
Fj to a gauge-natural bundle functor F; is a family of differential operators

{D(P)|C*F1P — C*F,PYpe obp,(q)

such that D(P)(¢*0) = ¢*D(P)(o) for all sections o : B — F{ P and all (g, f) €
MorPB,(G), ¢: P — P over f: B— B.

Definition 2.5. A differential operator D from a gauge-natural bundle functor Fj to
a gauge-natural bundle functor F; is said to be gauge-natural if

D(P)(Fi¢00) = Fapo D(P)(0)
for any ¢ € MorPB,(G), over the identity, and any section o : B — Fy P.

A natural differential operator D from Fy to Fj is of a finite order & if all D(P),
(x : P — B) € ObPB,(G), depend on k-order jets of sections of FyP. Thus, a &-
order natural operator from Fj to F3 is characterized by the associated fibred manifold
morphism D(P) : J¥F} P — F2 P, over B, such that the family D = {D(P)}pcop PBA(C)
is a natural transformation of J*F} to F,. The following fundamental theorem is due
to Eck, [1].

Theorem 2.2. Let Fy and F, be gauge-natural bundle functors of order < r. Then
we have a one-to-one correspondence between natural differential operators of order k
from Fy to Fy and WItkG-equivariant mappings from (J*F)o to (F2)o.
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For the case of gauge-natural operators of order & we obtain that the corresponding
equivariant mappings are equivariant with respect to the actions of the group TG ~
{J5*Fid} x TG,

Example 2.7. The curvature operator is a 1-order natural operator from C to G ®
(N*T).

Definition 2.6. Let = be a G-invariant vector field of P over a vector field £ of B
and o : B — F'P be a section. The Lie derivative of o with respect to Z is defined by

d =
Lzo = 7 0{exp(—t._) o}. (2.4)

This derivation can be expressed by
Lzo=Toco&— FZoo.
Thus L=o : B — VFP is a section projectable onto the section o.

Analogously to the case of natural lift functors, we can define the tangent prolonga-
tion T D of a k-order natural operator D from a gauge-natural bundle functor Fj to a
gauge-natural bundle functor F, and the following lemma can be proved in the same
way as Lemma 1.1.

Lemma 2.1. If a k-order differential operator D from a gauge-natural bundle functor
Fi to a gauge-natural bundle functor F; is natural, then

L=zD(P)(c) =TD(P)(L=0o) (2.5)
for any section o : B — F1 P and any G-invariant vector field = of P.

The infinitesimal version of the naturality and gauge-naturality of a differential op-
erator is given by the following definition.

Definition 2.7. A differential operator D from a gauge-natural bundle functor Fj to
a gauge-natural bundle functor F; is said to be infinitesimally natural (resp. infinites-
imally gauge-natural) if (2.5) holds for any section ¢ : B — F; P and any G-invariant
vector field (resp. G-invariant vertical vector field) Z of P.

3. Systems of projectable vector fields and connections

In this section we shall recall basic properties of systems introduced by the second
author, [14], and add the new definition of Lie derivative in the context of systems and
a result on induced systems.

Let p: £ — B be a fibred manifold. A projectable, linear, regular system of vector
fields on a fibred manifold E is a pair (H,7), where

gu: H— B (3.1)
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is a vector bundle, called the space of the system, and
n: Hxg E—-TE (3.2)

is a linear fibred morphism over E, called the evaluation morphism of the system,
which is projectable over a linear fibred morphism over B, of maximum rank,

n:H-TB:h—h (3.3)

by means of the following commutative diagram

HxgpE —— TE

! l

n

Let us set g4: A = ker7 ¢ H — B. The dimension of the fibre of A is called the
rank of the system. Then we have the exact sequence of vector bundles, over B,

0 AL g " 7B 0 (3.4)

and the following diagram commutes

AxgE —2 ., VE

|

HxgE —— TE
n

Any (local) section h: B — H induces the vector field 7(h) on E by

i(h)(y) = n(A(p(y)),y), yEE. (3.5)

These (local) vector fields 7(h) are the distinguished vector fields of the system.

We say that the system is canonical if there exists a fibred atlas, constituted by
linear fibred charts (z*,2*,2%), with 1 < @ < r, of H and fibred charts (z*,y") of E,
such that the coordinate expression of 7 is

A 0 i a 0
=2 — 4+ 12" —,
7 oz e oy
where 7% € C*(E,R), with 8\7. = 0.
Moreover, we say that the system is monic if the construction of the distinguished
vector fields h — 7j(h) is injective. The monicity is expressed by the equivalence, for
any z € B,

M2 =0 < 2% =0, for any y € E,.

Let (H,n) be a projectable, linear, regular, canonical and monic system of vector
fields on E. We say that the system is involutive if, for any two local sections h,k: B —
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H, the vector field [7j(h), (k)] is associated with a section of H, which turns out to be
unique, and will be also denoted by [k, k]. Hence

[k, k) = [A(h), 7(k)].
So [-,] is a sheaf (bilinear) mapping (operator) from C®°H x C®H to C®H.
A projectable, linear, regular, canonical, monic and involutive system (H, ) is briefly
called strong. Let h = (h*(z),h%(z)), k = (k*(z),k*(z)) be the coordinate expressions
of the sections h, k. Then we obtain the following coordinate expression

[h, k] = (R*0,k* — k#O,h* R 0,k® — k*O,h® + CLAYKS),
where Ct € R. Hence, we have a unique associated (bilinear) fibred morphism over B
[-,]: J'H xg J*H — H, (3.6)
such that, for any sections h,k: B — H,
[h, k] = [, ] o (5, 57K).
Moreover, it restricts to a bilinear fibred morphism over B
B: AxgA— A,

which endows the bundle g4: A — B with a Lie algebra bundle structure. Furthermore,
in the canonical fibred chart on A we obtain

/BgC:CgCER'

In conclusion, a strong system (H,7) determines a subalgebra of the Lie algebra of
infinitesimal generators of local fibred automorphisms of p: £ — B. The assumption of
a strong system is essentially a generalized version of the hypothesis that F is locally
associated with a principal bundle.

Example 3.1. Let p: F — B be aright principal bundle with structure group . Then
we have the quotient vector bundles gy : H = TE/G - B and ¢4 : A=VE/G— B
and the exact sequence

0-VE/G—TE/G—TB—0.

Moreover, we have a canonical linear fibred isomorphism n: TE/G xg E — TE, over
E, which restricts to n4 : VE/G xg E — VE. Then the system (H,n) of G-invariant
vector fields on E is strong.

Remark 3.1. If n: H xg E — TFE is a linear, projectable and regular system such
that n4 = 0, then 5 factorizes through a fibred morphism over F

vy:TBxgp F —-TFE

which turns out to be linear and projectable over id : TB — T'B. Thus, v is a general
connection on £ — B. Additionally, in this case, canonicity of 7 and integrability of v
are equivalent.



112 J. Janyska, M. Modugno

Remark 3.2. A projectable, linear, regular and canonical system (H,7n) of vector
fields of E induces the projectable, linear, regular and canonical system (H®,7®) of
tangent valued forms on E, where

¢:H = \T*Be H - B, (3.7)

and the linear fibred morphism

n: H" xBE—>/\T*B®TE:(a®z,y)r—>a®n(z,y) (3.8)

is projectable over the linear fibred morphism over B

.
’ﬂr:H’——»/\T*B@TB:&@ZHa@ﬁ(z). (3.9)

If the system (H,7) is involutive (with respect to the Lie bracket), then the system
(H®,1®) turns out to be involutive with respect to the Frolicher-Nijenhuis bracket of
tangent valued forms on F, [14].

Remark 3.3. A projectable, linear, regular and canonical system (H,n) of vector
fields of E yields also a “system” (C,&) of connections on E. Namely, we have the
bundle

pc: C— B, (3.10)

which is defined as the subbundle in 7*B @ H, which projects onto 15 ¢ T*B ® T'B.
Hence, pc: C — B is an affine bundle whose vector bundle is T*B® A — B. Moreover,
€ is the restriction of ! on C and we obtain the affine fibred morphism over E

£€:CxpE—J'EcT*BegTE. (3.11)

A coordinate chart (z*,2*,2%) on H induces the coordinate chart (ac’\,'ui) on C and
the coordinate expression of £ is

0 ; 0

_ A 200 d A

E=d*'® 5:;\ + nav/\dm ® -((E{ (3.12)
Any (local) section ¢ : B — C induces the connection (c) on E by

E(c)(y) = E(e(p(y)),y), yeE.

These (local) connections are the distinguished connections of the system.

If (H,7) is strong, then we say that (C,£) is strong.

The bracket on H® given by the involutivity of the system (H®,7®) with respect to
the Frolicher-Nijenhuis bracket of tangent valued forms on F allows us to define the
differential calculus connected with a given connection ¢: B — C, [14]. Namely, the
strong covariant differential d.: C°H™ — C>®° H"™t! is defined by

d.® = (¢, ®]. (3.13)
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Moreover, the strong curvature form of a given connection ¢ is

w = d.c = [e,c]. (3.14)

The values of the strong curvature form are in C*°A?, where A2 = A ® /\2 T*B, and
the coordinate expression is

dec = (8,05 + LCE.0405)do* A dat © 2 (3.15)

02°

Definition 3.1. Let (H,7) be a projectable, linear and regular system of vector fields
of E. Let h be a section of H — B and o be a section of E — B. By using the
geometrical interpretation of Lie derivative we can define the Lie derivative of o with
respect to infinitesimal fibred transformation h of E — B by

Lro=TooT(h)—iq(h)oo. (3.16)

Thus
Lyo:B—-VE

and is projectable on the section ¢. For studying infinitesimal gauge-natural lifts we
shall need the following result.

Theorem 3.1. Let (H,n) be a strong system on a fibred manifold E — B. Then we
obtain in a natural way a linear, projectable, reqular and canonical system

(a:HxgA—TA. (3.17)
Its coordinate expression is

/\6 abc6
PR P

Proof. The fibred morphism (3.6) over B restricts to

Ca= (3.18)

[,]):HxpgJ'A— A,
and can be viewed as a fibred morphism over A
H XB JIA — VA

with coordinate expression

_ 0 a . 0
[.,-]-_:z/\z Oz a+Cbc bz D2%"

On the other hand, we have the canonical fibred morphism over A

O:TBxgJ'A—TA

which extends to the fibred morphism over A

I:HxgJ'A-TA
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with coordinate expression

Then the fibred difference of above fibred morphisms yields our map (4. O

We remark that if a system (H,7) is non-monic then it does not make sense to check
involutivity, unless we have an extra bracket on the sections of H. Later we shall use
the following

Definition 3.2. Let (H,n) be a linear, regular, projectable and canonical system of
E — B. Suppose we have an additional bracket [-,.] which makes C*°H into a sheaf
of Lie algebras. Then we say that the system is almost involutive if

([, KY) = [0(R), (K)], (3.19)
where the left bracket is the additional one and the right is the Lie bracket.

Sometimes the additional bracket is not given on the whole C*®H but on a certain
subsheaf; in such a case we shall say that the system is almost involutive with respect
to this subsheaf.

4. Infinitesimal natural lifts

In this section we shall define infinitesimal natural lifts by using the concept of
systems of vector fields. Our approach will be motivated by the following remark and
lemma.

Remark 4.1. Let J"TB be the sheaf of local integrable sections jh : B — J'TB,
where h : B — T B is a local section. Then J"T' B becomes a sheaf of Lie algebras by
means of the bracket given by

[77h, 5"k] = 5" [, k]. (4.1)

In general the bracket on J"T B will involve the (r +1)-jet prolongation of vector fields
of B. Namely, we obtain a well defined fibred morphism

[-,]:J7HTB xg J7*'TB — J'TB. (4.2)

The restriction of (4.2) to the subbundle J™+'T By = Ker njt! factorizes through the
canonical projection J™t!T By — J™T By and defines a structure of Lie algebra bundle
on J”T By. This Lie algebra bundle is isomorphic to the r-order adjoint natural bundle
Gr(B) defined in Example 1.8.

Lemma 4.1. Let F be an r-order natural lift functor. The construction of the flow
prolongation of vector fields defines a projectable, linear, regular and canonical system
of FB, B € M,

pw:J'TB xg FB —TFB,
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with n = p, H = J'TB,E = FB. This system is almost involutive with respect to the
subsheaf of integrable sections of J'TB.

Proof. The evaluation morphism u of the system is given by the mapping (1.2). It is
easy to see that this system is projectable, linear, regular and canonical, [8]. From the
property of natural bundles, [18],

([5"h, j"k]) = F[h, k] = [Fh, Fk] = [i(h), (k)] (4.3)

for any local sections h, k of T B, we get that it is involutive with respect to the subsheaf
of integrable sections of J”TB. 0O

By generalization of Lemma 4.1 we introduce the following new notion.

Definition 4.1. An infinitesimal natural lift of order r is a fibred manifold p: £ —
B together with a system (J"TB,pu) of vector fields of E which is linear, regular,
canonical, projectable over 7] : J"T B — T'B and almost involutive with respect to the
subsheaf of integrable sections of J”TB — T'B.

We shall say that a structure of r-order infinitesimal natural lift is given on E. The
system (J™T B, u) will be said to be a natural r-order system.

We remark that in this definition we do not need that the fibred manifold p: £ — B
be a bundle.

Remark 4.2. The system (H,n) = (J"T B, u) in the above Definition 4.1 is not as-
sumed to be monic. For this reason we refer to the extra bracket in the subsheaf
J™TB c C°(J™T B) defined in Remark 4.1.

Example 4.1. If F is a natural lift functor of order r in the sense of Definition 1.1,
then from Lemma 4.1 it follows that a structure of infinitesimal r-order lift bundle is
induced on every F'B, B € Ob M,,.

Lemma 4.2. If a natural system (J"T B, ) ts given on a fibred manifold E, then the
natural system (J"**TB,j°p) is induced on J°E.

Proof. This lemma follows from the properties of the jet prolongation and from the
commutative diagram

J*
JJTTB xg J°E —L. JsTE

ir+~‘xidT lr"

J™t*TB xg J°E —— TJ*E
1°n
where r° is the fibred manifold mapping from J*TE to TJ*E defined in [13] and "+
is the canonical immersion of J*™t*T B into JSJ'TB. O
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Definition 4.2. Let E,, E; be two fibred manifolds over B and assume that a structure
of infinitesimal r-order natural lift is given on E; by a natural system (J7T B, y1) and
a structure of infinitesimal s-order natural lift is given on E; by a natural system
(J*T B, u2). A k-order operator D from C*®E; to C®E, is said to be (infinitesimally)
natural if
TD(erhO’) = ,CjahD(U),
for any section ¢ : B — E and any section h: B — T B (see Definition 3.1).
Lemma 4.3. A k-order operator D from C® E; to C® E, is natural if and only if the

distinguished vector fields ?‘ﬁl(j”kh) of J7YRE; and ji;(j°h) of Eq are related by the
associated fibred morphism D : J*E; — E,, i.e. if the following diagram

TI*E, —2 . TE,

o S S
JYEy, —— E,
D

commutes for any section h: B — TB.

Proof. From Lemma 4.2 we get that the distinguished vector field ﬁl (j7t*h) of
JTt*E; is given by r¥ o J¥ji(j7h). Then our Lemma 4.3 follows from the definition of
the Lie derivative (3.16) and from the fact that TD((T'0) o (h)) = T(Do)o (h) for any
section h: B — T B. Indeed, we have
TD(erhO') = TD(TO’ oh— ﬂl (]Th) o (0’))

= T(DoYo (k) = TD(in(™h) o (o))

=T(Da)o (h) = TD o (J*(ju(5"h) o (0)))

= T(Da) o (h) = TD o (FFum(i"+h) o (5*0))
and

LjsnD(0) = T(Do)o(h) - jia(5°h) o (Do)

= T(Da)o (k) - fa(5°k) o (Do (j*0)). O

5. Infinitesimal gauge-natural lifts

Analogously to the case of infinitesimal natural lift we shall define infinitesimal gauge-
natural lift by using the concept of systems. Qur definition will be motivated by the
following remark and lemma.

Remark 5.1. Let (H,7n) be a strong system of vector fields on a fibred manifold
E — B. In Section 3 we have defined the bracket [-,-] in C°°H which makes C®H to
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be a sheaf of Lie algebras. This bracket can be prolonged to a bracket in the subsheaf
J"H c C*>®J™H of integrable sections of J"H — B by

[57h,5"k] = 5" [R, K], (5.1)

where h, k are local sections of H. From (3.6) we obtain the associated fibred morphism
[,]:J" P H xJ7HYH - JH. (5.2)

The restriction of (5.2) to the subbundle J™+! Hy = Ker(n;* 0 J77) factorizes through
the canonical projection J™t!Hy — J™ Hy and defines a structure of Lie algebra bundle
on J"Hg. This Lie algebra bundle is locally a semidirect product of the Lie algebra
bundles J"T' By and J" A.

Lemma 5.1. Let F be an r-order gauge-natural bundle functor in the sense of Defi-
nition 2.1 defined on the category PBn(G). The construction of the flow prolongation
of G-invariant vector fields defines a projectable, linear, reqular and canonical system

u:J(TP/G)xg FP—-TFP

of FP,(m: P — B) € ObPB,(G). This system is almost involutive with respect to the
subsheaf of integrable sections of J'(TP/G) — B.

Proof. The evaluation morphism of the system (J7(T'P/G), u1) is given by the mapping
(2.2). This system is projectable (over the mapping T'r o 1), linear, regular, canonical
and almost involutive, [10]. O

The above results suggest the following new notion.

Definition 5.1. Let (H,n) be a strong system on p : E — B. An infinitesimal gauge-
natural lift of order r is a fibred manifold p : £ — B together with a system (J"H,u)
which is linear, regular, canonical, projectable over (750 J77): J"H — T B and almost
involutive with respect to the subsheaf of integrable sections of J"H — B.

We shall say that the system (J” H, u) defines a structure of an infinitesimal gauge-
natural lift of order r on E. The system (J"H,u) will be called the gauge-natural
system.

Let s < r be the minimum number such that g, can be factorized through the
canonical projection 7} : J*A — J*A. Then we say that the infinitesimal gauge-natural
lift is of order (r,s), and s is called the gauge order of the infinitesimal gauge-natural lift
on E.

For any section h : B — H the distinguished vector field i(j7h) : E — TE is
induced and similarly for a section h : B — A the distinguished vertical vector field
fa(j7h) : E — VE is induced. A structure of infinitesimal gauge-natural lift on FE is
said to be gauge trivial if its gauge order is 0 and fi4(h) is the zero vector field for all
sections h: B — A.
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Example 5.1. Let F be an r-order gauge-natural bundle functor in the sense of Def-
inition 2.1 defined on the category PB,(G), i.e. F' can be represented by its standard
fibre Fp with the action of the group W;G = G, xs TfG on Fy. Then a structure of
infinitesimal gauge-natural r-order lift is given on any FP, P € ObPB,(G), by means
of the system (J™(TP/G), ) defined by Lemma 5.1. The adjoint bundle W;,G(B) — B
is then isomorphic to J"(T'P/G)y — B.

Example 5.2. Any infinitesimal natural lift of order 7 is an infinitesimal gauge-natural
lift of the order (r,0) with the gauge trivial structure.

Example 5.3. Let a structure of (r, s)-order infinitesimal gauge-natural lift be given
on E, then a structure of infinitesimal gauge-natural lift of order at most (r + k, s+ k)
is induced on J¥E. The number (r + k) is exact but the gauge order (s + k) may be
too big. For example, if a structure of infinitesimal natural r-order lift is given on E,
i.e. a structure of infinitesimal gauge-natural lift of order (r,0) with the gauge trivial
structure, then a structure of (r 4 k)-order infinitesimal natural lift, i.e. a structure
of (r + k,0)-order infinitesimal gauge-natural lift with the gauge trivial structure, is
induced on JXE.

Example 5.4. Let (H,7) be a strong system on p: E — B. In Theorem 3.1 we have
defined the canonical system (H,(4) of vector fields on A. This system is linear, pro-
jectable, regular, canonical and almost involutive. So, we have the canonical structure
of infinitesimal 0-order gauge-natural lift on A. The coordinate expression of (4 is

(z)"za7w)\7‘éa) ° CA = (1'/\,7&,2/\,—0;:62!)70).

Example 5.5. Let (H,7) be a strong system on p: E — B. Let A" = Ag \"T*B.
On A" there is the (1,0)-order structure of infinitesimal gauge-natural lift induced from
the (0,0)-order infinitesimal gauge-natural lift on A and (1,0)-order infinitesimal gauge
trivial lift on A" 7* B. The coordinate expression of the evaluation morphism p" is

(z*, @2 e Yoy

Hy--.fr? Hyeeotr
— ((L"\ o2 2 _rd® 2 = zb@c ) (53)
- LIl R TR e I plp1epr—1%py] be Hopir )0

where (z*, @2, &, @ZI",M) is the induced fibred coordinate chart on T A",

Example 5.6. Let (H,7n) be a strong system on p : E — B. In Section 3 we have
defined the strong system of connections (C,£) induced from a strong system of vector
fields on a fibred manifold. In [14] a fibred morphism

CotJlH XBC—>TC (54)

is provided which turns out to be an infinitesimal gauge-natural lift on C. Let (2, v$)
be the induced fibred coordinate chart on C'. Then the coordiante expression of (¢ is

(a*,v%,8*,93) 0 (o = (2,0}, 2, 2% — v22f — C2b0g). (5.5)
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Definition 5.2. Let F;, F, be two fibred manifolds over B and let a structure of r-
order infinitesimal gauge-natural lift is given on E; by a gauge-natural system (J™H, y;)
and a structure of s-order infinitesimal gauge-natural lift is given on E; by a gauge-
natural system (J*H,pq). A k-order operator D from C®E; to C*®E, is said to be
natural (respectively gauge-natural) if

TD(ﬁjrhO’) = EjshDO', (56)
for any section ¢ : B — E; and any section h: B — H (respectively h: B — A).
By using the same methods as in Lemma 4.3 we can prove

Lemma 5.2. A k-order operator D from C®E, to C*E, is natural (resp. gauge-
natural) if and only if the distinguished vector fields j¥pu,(57+*h) (resp. 5%y 4(7H*R))
of JKE; and fia(§°h) (resp. fiaa(j*h)) of Eo are related by the associated fibred mor-
phism D : JFE, — E3, i.e. if the following diagrams

TD

TJ*Ey, —— TE,
Fnirn| [t
JFE, —— E,
D
resp.
VD
VJkEl —_ VE2
F:;lA(j'+kh)T Tﬁu(i‘h)
J*E, —— E,
D

commute for any section h: B — H (resp. h: B — A).

Lemma 5.3. The strong curvature form is a first order natural operator from C°C
to C® A2,

Proof. The (1,1)-order infinitesimal gauge-natural structure on C implies the (2,2)-
order infinitesimal gauge-natural structure on J!C which is given by the jet prolongation
of the evaluation morphism (5.4). In the induced coordinate chart

A 5 N .
($ ?vg’vg,u?x ,’Ug,’l)j\.’u)
on TJC this prolonged evaluation morphism is given by
A X e . -1
(.'17 ,’I)K,’U;,u,IE ,”f\‘,vf\l,u)OJ Cc
(A A p b
= (%, 05,05 ., 27, 25 — vp 2 — Cp.2"v5, (5.7)

a _ e P _ e P _ a P _ ova b.c a b.c
Zxu = Yoty — VN p%u = Vp2y, — CELZT0S |, — Cpzyv5).
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For any local section h of H we get from (5.7) the vector field FCo(5%h) of JIC
~ . 0 e a a a
7e(5?h) = hAg;x + (Ozh* — v30\h? — Cbchbvi)m

+ (6>‘“ha - ’Ug,”a)‘hp - vi,p(‘)ﬂh” - v;‘,’aAuhP
0
8v§’u

apb,.c a b,,.c
- bch vk,u—cbcaﬂ-h vA)

and from (5.3) we get the vector field i2(j1h) of A?

. a 0
s2(51pY — A _&®o P _Ha p_ (e pbype
H (.7 h) h 6:3’\ + ( Q)\pa#h’ qua/\h Cbch )\Mg)&@(}z‘l)\z .
Then the diagram
Tic 12 T4

Fcc(ﬁhﬂ Irﬁ(ﬂh)
JIWC —— A2
Q

commutes for all sections h : B — H, where Q : JIC — A? is the induced fibred
manifold morphism corresponding to the strong curvature operator. From (3.15) we
get its coordinate expression

(2, 85,) 0 Q= (2, 5(v5 , ~ vi » + Ciodop)). O
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