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Introduction 

Starting from the famous papers by Nijenhuis, [15,16], geometrical objects and in- 

variant operations with geometrical objects have been studied by using the concepts of 

natural bundles and natural differential operators. 

In physics another sort of invariance plays an important role, the so called “gauge- 

invariance”. Its geometrical description is the following, [2]. Let r : P -+ B be a G- 

principal bundle over a space-time manifold B and E -+ B be a bundle associated with 

P. An automorphism of P, over B, induces a fibred automorphism of E, over B, which 

is said to be a change of gauge. A physical theory is said to be gauge-invariant if it is 

invariant with respect to changes of gauge. Gauge-invariant theories can be described 

geometrically by using the concepts of gauge-natural bundle functors and natural or 

gauge-natural operators between gauge-natural bundles, Eck [l]. The aim of this paper 
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is to express naturality and gauge-naturality at infinitesimal level by using the concept 

of “systems” introduced by the second author, [14]. The main idea is to replace the 
action of a Lie group on the standard fibre by the action of a Lie algebra on the space 

of vector fields on the standard fibre of the bundle. We consider a system of projectable 

vector fields on a fibred manifold which induces the structure of an infinitesimal natural 

lift on the fibred manifold. A similar result is obtained for gauge-natural lifts. 

In the classical theory, if a differential operator is natural or gauge-natural, then it 

commutes with the Lie derivatives associated with any vector field. We use this fact for 

our definition of (infinitesimally) natural and gauge-natural operators and we express 

the naturality of differential operators by using the distinguished vector fields of the 

given “systems” . 

Throughout the paper we use the following notation from jet theory. If M, N are 

two differentiable manifolds then the space of k-jets from M to N with source z E M 

and target y E N will be denoted by Jt(M, N)y. If E -+ B is a fibred manifold then the 

space of k-jets of local sections of E is J”E and n! : J”E -+ J’E, k 2 1, is the canonical 

projection. The k-jet prolongation of a fibred manifold morphism cp : E + ,f? (covering 

a diffeomorphism f : B -+ B of base spaces) is J”v : JkE -+ J”E. If u : B -+ E is a 
section then jkcr : B 4 Jk E is its k-jet prolongation. If S : E -+ TE is a projectable 

vector field of E, then its k-jet prolongation is the vector field jkS : J”E -+ TJkE 

of J”E defined by jkE E ~~ o JkE, where ~~ : J”TE -+ TJ”E is the canonical fibred 

morphism, [13]. The sheaf of local sections of E will be denoted by C”E. 

All manifolds and mappings are assumed to be in the category C”. 

1. Natural lift functors 

We recall here definitions and basic properties from the theory of natural lift functors, 

[lo, 16,191. 

Let M be the category of smooth manifolds and smooth manifold mappings and 

M, be the category of C” n-dimensional manifolds and smooth embeddings. Let 3M 
be the category of smooth fibred manifolds and smooth fibred manifold mappings and 

FM, be the category of smooth fibred manifolds over n-dimensional base spaces and 
smooth fibred manifold morphisms over embeddings of base spaces. 

Definition 1.1. A natural lift junctor is a covariant functor F from M, to 3M, 

satisfying 

i) for each manifold B E Ob M,, 

is a fibred manifold over B, 

ii) for each embedding f E Mor Mn, Ff is a fibred manifold morphism over f, which 
maps fibres diffeomorphically onto fibres. 

A natural bundle is then a triplet (FB,~B, B). 
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In the definition of natural lift functors further continuity condition is sometimes 

added, requiring that a smoothly parametrized family of diffeomorphisms is prolonged 

into a smoothly parametrized family of diffeomorphisms. But this condition turns out 

to be a consequence of i) and ii), [3]. 

The concept of natural lift functor was generalized, [4,8, lo], to the concept of natural 

bundle functor. 

Definition 1.2. A natzlral bundle fun&r (in literature it is currently denoted simply 

as “prolongation functor”) on a subcategory C of M is a covariant functor F from C to 

the category 3M satisfying 

i’) for each manifold B E Ob C, PB : FB -+ B is a fibred manifold’ over B, 
ii’) for each f E Mor C, Ff is a fibred manifold map covering f such that FL(U) = 

L(FU) for any open subset L : U - B. 

A natural bundle functor on the subcategory M, of M, for a certain n, is a natural 

lift functor. 

We say that a natural lift functor F is of order T if, for any f E MorMn, the map 

Ff depends only on the r-jet of f. 
Let F be an r-order natural lift functor and let Fo z (FRn)o be the standard fibre 

of F. On F. we have the canonical action of the Lie group 

of invertible r-jets (with source and target 0) of diffeomorphisms of IWn which preserve 

0. It is well known that any natural lift functor has finite order, [lo, 171, and that there 

is, up to equivalence, a one-to-one correspondence between r-order natural lift functors 

and left smooth GL-manifolds, [ll, 191. 

The continuity condition allows us to prolong a vector field t of B to the vector field 

Ft of FB by the rule 

exp(tFI) = F(exp(Q. (1.1) 

This flow prolongation defines for an r-order natural lift functor F the associated 

smooth fibred mapping 

/.L : J’TB XB FB - TFB 

which is linear over FB, [8]. So, we obtain 

(l-2) 

F : C”TB - C”(TFB -+ FB); [ H F[(u) E p o (jr&u), u E FB, 

where we used the letter F again (by abuse of language). Later (Section 3) we shall 
meet a different abstract approach to formula (1.2) in terms of “systems”. 

Local coordinate charts on B and Fo induce a fibred coordinate chart on FB, which 
is said to be natural. 

Example 1.1. The tangent functor T is a natural bundle functor of order 1 on the 
category M. In dimension n the corresponding standard fibre is Rn on which GA = 
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Gl(n,lR) acts in the standard way. The tangent prolongation of a vector field { = EXax 

of B is 

where (xA,Sx) is the natural coordinate chart on TB. 

Example 1.2. The cotangent functor T* is a natural lift functor of order 1 with the 

standard fibre IRn* and the standard action of Gk. The cotangent prolongation of a 
vector field [ = tAdA of B is 

where (xx, XX) is the natural coordinate chart on T* B. 

Example 1.3. The functor T( T+) of (r,s) tensors is a natural lift functor of order 1. 

The standard fibre is (8’ Rn) 8 (8” IP*) on which Gi acts in the standard tensor 

way. The tensor prolongation of a vector field E of B is 

- t;:,:X;..%,tp - . . . - t;;:::~_lpa, I‘“) 
a 

I &Al . ..A. ’ 
Pl . ..Ps 

where (xx, tit:::k) is t h e natural coordinate chart on T(T+)B. 

Example 1.4. The functor of metrics Met is a natural lift functor of order 1. Its 

standard fibre (Met)0 is the subspace in 0” iP* of non-degenerate symmetric matrices 

with the coordinate chart (g+) and the tensor action of GA. 

Example 1.5. The functor of P-velocities Ti is a natural bundle functor of order 

T on the category M. For any B E Ob M, we define Tk B = J,‘(IR”, B) and, for any 

f E MorM, f : B -+ B, we define T,‘f(J,‘a) = JA(f O(Y), where J&a E TLB. The 

standard fibre of TL in dimension n is Ji(IRk, IP), and the action of G’, on the standard 
fibre is given by the composition of jets. 

Example 1.6. The functor of r-order frames FT is a natural lift functor of order r. 

For any B E ObM,, we define F’B = invJ,T(Rn, B) and, for any f E MorMn, F’f is 
defined as in Example 1.5. The values of the functor F’ are in the category P&(GL) 

of smooth principal bundles with n-dimensional base spaces, the structure group G& 

and smooth principal bundle mappings. 

Example 1.7. The bundle of linear connections C on a given manifold is a natural 
lift functor of order 2. Its standard fibre is IRn 8 (@” R,*) on which Gi acts via the 
well known transformation relations of the Christoffel symbols. The flow prolongation 
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of a vector field e = tXdx of B is 

where (&,I’;,) is the natural coordinate chart on CB. 

Remark 1.1. Let F be a natural lift functor of order T. For any f E MorM,, f : B + 

B, by using the standard jet prolongation, we get the commutative diagram 

J”FB = JsFB 

e 
1 I 

?7; 

FB Ff FB 

PI3 
1 I 

PE? 

B- B 
J 

which implies that J”F E J’ o F is a natural lift functor of order (r + s). If Fo is the 

standard fibre of F then the standard fibre of J”F is JsFo = T,SFo and the action of 

Gz++” on J”Fo is obtained by the jet prolongation of the action of GL on Fo. 

Remark 1.2. In the theory of natural lift functors, the functor of r-order frames 
defined in Example 1.6 plays a fundamental role. Namely, any natural lift functor F 

of order T, with standard fibre Fo, is canonically represented by 

FB = [F’B, Fo], Ff = [F’f,id], (1.3) 

where B E Ob M,, f E MorMn, and [F’B, Fo] = (F’B, Fo)/GL is the bundle associ- 

ated with F’B, [lo, 11,191. 

Example 1.8. With respect to the adjoint action of Gk on its Lie algebra G;, we can 

define the r-order natural lift functor 

G;(B) = [F’B,GL], G:(f) = [F’f,id]. (1.4) 
So G; can be viewed as a natural r-order lift functor and we shall call it the adjoint 

r-order natural lift functor. 

Let F be a natural lift functor, f : B -+ B be a mapping in MorMn and u : B + FB 
be a section. Then we define the section f*a : B + FB by f*a = Ff o cr o f-l. 

Definition 1.3. A natural differential operator D from a natural lift functor FI to a 

natural lift functor F2 is a family of differential operators 



104 J. Janydka, M. Modugno 

such that D(B)(f*o) = f*D(B)(o) for all sections c : B 4 FIB and all f : B --) B in 

Mor M,. 

A natural differential operator is of a finite order k if all D(B), B E Ob M,, depend 

on k-order jets of sections. Thus, a k-order natural differential operator D from Fi 

to Fz is characterized by the associated fibred manifold morphisms V(B) : J” FI B ---f 

FzB, over B, according to the formula V(B)(j,ka) = D(B)(a)(z). The family 2) = 

{V(B)) BcObM,, defines a natural transformation of the functors J”Fl and F2. 

Let D be a natural operator of order k from Fi to Fz and V be its associated 

natural transformation. Then we can define the tangent prolongation TD of D as 

the k-order operator TD from TFl to TF2 defined by the associated transformation 

IV : JkTFl ---) TF2, where IV = TV o rk and rk : J”TFl + TJ”Fl is the natural 

transformation defined in [13]. It is easy to see that 727 is a natural transformation 

of covariant functors and it implies that TD defined by TD(B)(C) = IV(B) o (jkC), 

for any section C : B --$ TFlB, is the natural operator such that QF~B(TD(C)) = 

~(c&iB(~)), where QE : TE -+ E is the canonical projection. 

Definition 1.4. Let F be a natural lift functor, < be a vector field of B and exp(Y) 

its flow. Then the Lie derivative of a section Q : B --$ FB with respect to the vector 

field 5 is defined by 

Ctu = $lo{exp(-t<)*u}. (1.5) 

In [5,9,18] it was proved that the Lie derivative can be expressed geometrically as 
the mapping 

Lp = Tao[- F.$oo. (1.6) 

Hence Cta turns out to be a section Ltu : B 4 VFB projectable onto the section 0. 

Lemma 1.1. If a k-order differential operator D from a natural lift fun&or Fl to a 

natural lift functor Fz is natural, then 

L<D(B)W = TD(B)(Q% (1.7) 

for B E Ob M,, any section u : B + FIB and any vector field [ of B. 

Proof. From the infinitesimal expression (1.5) for C(a we get 

TD(B)(Cta) = TV(B) o rk o jkilo{exp(-tt)*o} = 

= TV(B)0 [~(ocjk(exp(-t~)*a)}] = ~l~{V(B)o(~k(exp(-tl)‘o))} = 

= $l,,Iexp(-tt)*(V(B) 0 (jku))l = +D(B)(a). 

which proves our Lemma 1 .l. 0 
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For the case of linear operators on natural vector bundles Lemma 1.1 was used in [6]. 

Remark 1.3. Since the values of the Lie derivative are in VFB it is sufficient to con- 
sider in (1.7) only the vertical prolongation VD of the operator D instead of the tangent 

prolongation TD. The vertical prolongation VD can be defined as the restriction of 

TD on VFl or equivalently by 

where ct : B + Fl B is a smoothly parametrized family of sections. 

Definition 1.5. A differential operator D from a natural lift functor Fr to a natural lift 
functor Fz is said to be infinitesimaZZy natural if (1.7) holds for any section cr : B -+ Fl B 

and any vector field 5 of B. 

Many geometrical constructions are in fact natural differential operators between 
natural lift functors. The study of natural differential operators is based on relations 

between natural differential operators and equivariant mappings. The basic tool is the 

following theorem, [lo, 12,191. 

Theorem 1.1. There is a bijective correspondence between the set of k-order natural 
differential operators from a natural lift functor Fl to a natural lift functor Fz and 

equivariant mappings from the standard fibre of J”Fl to the standard fibre of F2. 

Example 1.9. The exterior derivative d is a first order natural operator from APT*, 

p 3 1, to /jp+‘T*. The corresponding Gt-equivariant mapping from J1 (A” T*)o = 

TA(APRn*) to (//p+‘T*)o = l\p+‘W* is given in the canonical coordinate chart 

(Q,...+) 1 < il < . . . < i, < n on (A* R,*) by 

4, . ..++I od=w. 
bl . ..Zp.Zp+l 1, 

where [ . . . ] denotes the antisymmetrization. It can be proved that the naturality 

determines d up to a constant. 

Example 1.10. The Levi-Civita connection is a first order natural differential operator 

from Met to C. The corresponding Gi-equivariant mapping from Jl(Met)u to Co is 
given by 

r;l, = &lXP(%P,Y + gPV,P - %W,P), 

where (gx”) is the inverse matrix of (SAP). 

Example 1.11. The curvature tensor is a first order natural differential operator from 

C to T 8 (a3 T*). Th e corresponding Gz-equivariant mapping from JICo to (T CZQ 

(8” T”))o = Rn 8 (B3 IR,*) is given by 
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Example 1.12. The Nijenhuis tensor is a first order natural differential operator from 

T@T* to T@(/j2T*). Th e corresponding Gz-equivariant mapping from J’(T(lll))o to 

(T @ (A” T*))o is given by 

tiv = tXtP p /L,” - t;t:,p t tl\,pt; - t;+& 

2. Gauge-natural bundle functors 

In this section we recall some basic definitions and properties of gauge-natural bundle 

functors, [l, 71. 

Let P&(G) be th e category of smooth principal G-bundles, whose base manifolds 
are n-dimensional, and smooth G-bundle morphisms (q, f), where f E MorMn. 

Definition 2.1. A gauge-natural bundle functor is a covariant functor F from the 

category P&(G) to the category FMn satisfying 

i) for each a : P ---f B in P&(G), TIT~ : FP + B is a fibred manifold over B, 
ii) for each embedding (v,f) in P&(G), Fv = F(cp,f) is a fibred manifold mor- 

phism covering f, 

iii) for any open subset U c II, the immersion L : T-‘(U) 4 P is transformed into 

the immersion FL : n;‘(U) L, FP. 

A gauge-natural bundle is then a quadruple (FP,np, B,r : P ---) B). 

In the original definition, [l], there is one more continuity condition which says that a 
smoothly parametrized family of diffeomorphisms of P is “prolonged” into a smoothly 

parametrized family of isomorphisms of FP. But this condition is a consequence of i), 

ii) and iii), [lo]. 

Example 2.1. Let (K : P --f B) E ObP&(G), let W’P be the space of all r-jets 

J{O,,jcp, where cp : IF?? x G + P is in MorPB,(G), OE Rn and e is the unity in G. The 

space W’P is a principal fibre bundle over B with structure group W,‘G = Ji,,e,(Rn x 

G,lRn x G) of all r-jets of principal fibre bundle isomorphisms Q : IRn x G + lRn x G 

covering the diffeomorphisms II, : Rn + 0%” such that $(O) = 0. The group IVLG is 
the semidirect product of G’, and T;G with respect to the action of GL on T,‘G given 

by jet composition. Let (‘p : P --f P) E MorP&(G), then we can define the principal 

bundle morphism W’+Q : W’P -+ WrP by jet composition. The rule transforming any 

P E ObP&(G) into W’P E ObPB,(W;G) and any v E MorP&(G) into Wrap E 

MorP&(W,‘G) is a gauge-natural bundle functor, [7]. 

The gauge-natural bundle functor described in Example 2.1 plays a fundamental 

role in the theory of gauge-natural bundle functors. We have, [1,7], 

Theorem 2.1. Every gauge-natural bundle FP is a fibred bundle associated with the 

gauge-natural bundle WtP for a certain order r. 
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The number r from Theorem 2.1 is called the order of the gauge-natural bundle 

functor F. So if F is an r-order gauge-natural bundle functor then 

FP = [WP,Fo], Fv = WWdd, (2.1) 

where Fo is a WAG-manifold called the standard fibre of F. 
A local fibred coordinate chart on P and a coordinate chart on Fo induce a fibred 

coordinate chart on FP, which is said to be gauge-natural. 
Let s 6 T be the minimum number such that the action of W,‘G = G; xs T,‘G on 

Fo can be factorized through the canonical projection n,’ : T,‘G + T,“G, r 2 s, via the 

commutative diagram 

(G; xs TAG) x FO - 

1 AFO 

(G; xs T;G) x F. 

Then s is called the gauge-order of F and we say that F is of order (r, 8). 
The regularity condition allows us to “prolong” any G-invariant vector field E of P 

to the vector field FE of FP. Namely, exp(tFZ) = F(exp(t2)). The vector fields E and 

FS are projected on the same vector field of B. The flow prolongation of a G-invariant 

vector field of P defines the linear mapping 

Jr(TP/G) XB FP - TFP (2.2) 

over FP, where TP/G is the space of G-invariant vector fields of P. Later (Section 3) 

we shall meet a different abstract approach to formula (2.2) in terms of “systems”. 

Example 2.2. Any r-order natural lift functor in the sense of Definition 1.1 is the 

(0)- or er au e na ural bundle functor with the trivial gauge action, i.e. the action d g g - t 

(G; x G) x F. - F. 

does not depend on G. 

Example 2.3. Let (r : P + B) E ObP&(G) and let us denote by CP + B the 

bundle of principal connections on P. Then C is a (1, l)-order gauge-natural bundle 
functor with the standard fibre G 8 lIP*. In particular, let G = Gk,, then CP can be 

viewed as the bundle of linear connections on an associated vector bundle with m- 
dimensional fibres. The standard fibre of C is Co = lRm @ BWm* @ Rn* with coordinates 
(rj,), i,j = 1, . ..) m, x = 1, . ..) n, and the action of W,l = GA xs T,1G& on CO is given, 

in the canonical coordinates (uh, ai, u;J on GA xs T,1G&, by 

where the tilde denotes the inverse element. 
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Example 2.4. With respect to the adjoint action of W,‘G on its Lie algebra WA6 we 

can define the r-order gauge-natural bundle functor 

)qg(P) = [W’P, w;q, wJ&qcp> = W'%idl- (2.3) 
So W;G can be viewed as a gauge-natural bundle functor which will be called the 
adjoint r-order gauge-natural bundle functor. In particular, 6 is the adjoint O-order 

gauge-natural bundle functor. 

Example 2.5. If F is a gauge-natural bundle functor of order (T,s) then JkF is a 

gauge-natural bundle functor of order at most (T + Ic,s + Ic). The number (r + b) is 

exact, but (s + Ic) may be too big, for instance if F is an r-order natural lift functor, 

i.e. an (r,O)-order gauge-natural bundle functor, then J”F is an (T + k)-order natural 

lift functor, i.e. an (r + Ic,O)-order gauge-natural bundle functor. 

Example 2.6. G @ (A” T*) is a (l,O)-order gauge-natural bundle functor. 

Let (v,f) E MorP&(G), p : P ---t P, f : B + B, F be a gauge-natural bundle 
functor and (T : B -+ FP be a section. Then we define the section @a : B + FP by 

‘p*a = Fvoao f-l. 

Definition 2.4. A natural differential operator D from a gauge-natural bundle functor 

Fl to a gauge-natural bundle functor Fz is a family of differential operators 

such that D(l”)(v*~) = cp*D(P)(a) for all sections u : B -+ FlP and ail (v,f) E 

MorP&(G), v : P + ?’ over f : B 4 i?. 

Definition 2.5. A differential operator D from a gauge-natural bundle functor Fl to 

a gauge-natural bundle functor F2 is said to be gauge-natural if 

D(P)(Fpa) = F2cpoW’)(4 

for any v E MorP&(G), over the identity, and any section u : B ---) FlP. 

A natural differential operator D from Fl to F2 is of a finite order Ic if all D(P), 

(r : P ---f B) E Ob?&(G), depend on k-order jets of sections of FlP. Thus, a k- 

order natural operator from FI to F2 is characterized by the associated fibred manifold 

morphism D(P) : J” Fl P ---$ F2P, over B, such that the family V = {z)(P)}pe obpB,(G) 

is a natural transformation of JkFl to F2. The following fundamental theorem is due 

to Eck, [l]. 

Theorem 2.2. Let Fl and F2 be gauge-natural bundle functors of order < T. Then 

we have a one-to-one correspondence between natural differential operators of order k 

from Fl to Fz and W, T+kG-equivariant mappings from (JkFl)o to (Fz)o. 
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For the case of gauge-natural operators of order k we obtain that the corresponding 

equivariant mappings are equivariant with respect to the actions of the group T,‘+“G x 

{ J,‘+“id} x T,‘+kG. 

Example 2.7. The curvature operator is a l-order natural operator from C to E 8 

(A”T*)* 

Definition 2.6. Let Z be a G-invariant vector field of P over a vector field 6 of B 

and o : B + FP be a section. The Lie derivative of CT with respect to Z is defined by 

Ly = &lo{exp(-E)*u}. 

This derivation can be expressed by 

&a = Tao[- FZooo. 

Thus ~Zz:a : B + VFP is a section projectable onto the section cr. 

Analogously to the case of natural lift functors, we can define the tangent prolonga- 
tion TD of a k-order natural operator D from a gauge-natural bundle functor Fl to a 

gauge-natural bundle functor F2 and the following lemma can be proved in the same 

way as Lemma 1.1. 

Lemma 2.1. If a k-order differential operator D from a gauge-natural bundle functor 

F1 to a gauge-natural bundle functor F2 is natural, then 

&D(P)(a) = TD(P)(&o) (2.5) 

for any section u : B -+ FlP and any G-invariant vector field E of P. 

The infinitesimal version of the naturality and gauge-naturality of a differential op- 

erator is given by the following definition. 

Definition 2.7. A differential operator D from a gauge-natural bundle functor Fl to 

a gauge-natural bundle functor F2 is said to be infinitesimally natural (resp. infinite+ 

imally gauge-natural) if (2.5) holds for any section u : B --) FIP and any G-invariant 

vector field (resp. G-invariant vertical vector field) 2 of P. 

3. Systems of projectable vector fields and connections 

In this section we shall recall basic properties of systems introduced by the second 

author, [14], and add the new definition of Lie derivative in the context of systems and 
a result on induced systems. 

Let p: E ---) B be a fibred manifold. A projectable, linear, regular system of vector 

fields on a fibred manifold E is a pair (H, v), where 
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is a vector bundle, called the space of the system, and 

q:HxBE-+TE (3.2) 

is a linear fibred morphism over E, called the evaluation morphism of the system, 
which is projectable over a linear fibred morphism over B, of maximum rank, 

7~: H+TB: hwil (3.3) 

by means of the following commutative diagram 

11 

HxgE - TE 

H - TB 
ri 

Let us set qA: A s ker7 c H 4 B. The dimension of the fibre of A is called the 

runlc of the system. Then we have the exact sequence of vector bundles, over B, 

o- A-L 
ri 

H-TB-0 

and the following diagram commutes 

(3.4) 

VA 
AXBE - VE 

jxid 
1 1 

HxgE - TE 
B 

Any (local) section h: B 4 H induces the vector field q(h) on E by 

%4Y) = c@(P(Y)h), Y E E* (3.5) 

These (local) vector fields Q(h) are the distinguished vector fields of the system. 

We say that the system is canonical if there exists a fibred atlas, constituted by 

Linear fibred charts (x~,z?,P), with 1 < a < T, of H and fibred charts (z’, yi) of E, 
such that the coordinate expression of 7 is 

where 7: E C”(E,R), with 8,~: = 0. 
Moreover, we say that the system is manic if the construction of the distinguished 

vector fields h H Q(h) is injective. The monicity is expressed by the equivalence, for 

any x E B, 

qkza = 0 -++ za = 0, for any y E E,. 

Let (H,q) be a projectable, linear, regular, canonical and manic system of vector 

fields on E. We say that the system is involutive if, for any two local sections h, k : B -_) 
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H, the vector field [Q(h), Q(k)] is associated with a section of H, which turns out to be 

unique, and will be also denoted by [h,k], Hence 

So [. , .] is a sheaf (bilinear) mapping (operator) from C”H x C”H to C”H. 
A projectable, linear, regular, canonical, manic and involutive system (H, 7) is briefly 

called strong. Let h = (hx(x), h”(z)), k = (k?(z), k”(z)) be the coordinate expressions 

of the sections h, k. Then we obtain the following coordinate expression 

[h, k] = (hc”dGkA - k%‘,hx, h43,k” - k%&ha + C;chbkc), 

where Ccc E R. Hence, we have a unique associated (bilinear) fibred morphism over B 

[.,.I: JIH xB JIH + H, (3.6) 

such that, for any sections h, k : B -+ H, 

[h, k] = [. , .] o (jlh,j’k). 

Moreover, it restricts to a bilinear fibred morphism over B 

~:AxBA*A, 

which endows the bundle qA : A + B with a Lie algebra bundle structure. Furthermore, 

in the canonical fibred chart on A we obtain 

In conclusion, a strong system (H,q) determines a subalgebra of the Lie algebra of 

infinitesimal generators of local fibred automorphisms of p : E + B. The assumption of 

a strong system is essentially a generalized version of the hypothesis that E is locally 
associated with a principal bundle. 

Example 3.1. Let p : E -+ B be a right principal bundle with structure group G. Then 

we have the quotient vector bundles qH : H = TE/G -+ B and qA : A = VE/G + B 
and the exact sequence 

O-,VE/G-TEIG-TB4. 

Moreover, we have a canonical linear fibred isomorphism 71 : TE/G xg E -_$ TE, over 

E, which restricts to VA : VE/G xg E -+ VE. Then the system (H,q) of G-invariant 
vector fields on E is strong. 

Remark 3.1. If 17 : H xg E + TE is a linear, projectable and regular system such 
that 17.4 = 0, then q factorizes through a fibred morphism over E 

which turns out to be linear and projectable over id : TB + TB. Thus, y is a general 
connection on E * B. Additionally, in this case, canonicity of 77 and integrability of y 
are equivalent. 
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Remark 3.2. A projectable, linear, regular and canonical system (H,q) of vector 
fields of E induces the projectable, linear, regular and canonical system (He,@) of 
tangent valued forms on E, where 

Qr: 11+9@H4, (3.7) 

and the linear fibred morphism 

T 
qr:HTxBE+ 

A T*B@TE: (~~cw,y)~~m&z,y) (3.8) 

is projectable over the linear fibred morphism over B 

T 
7’: H’+ A T*B@TB: a~z+-m~&z). (3.9) 

If the system (H, 7) is involutive (with respect to the Lie bracket), then the system 
(H@,q@) turns out to be involutive with respect to the Frolicher-Nijenhuis bracket of 

tangent valued forms on E, [14]. 

Remark 3.3. A projectable, linear, regular and canonical system (H,q) of vector 
fields of E yields also a “system” (C,t) f o connections on E. Namely, we have the 
bundle 

pc: C-B, (3.10) 

which is defined as the subbundle in T*B 8 H, which projects onto 1~ c T*B @ TB. 
Hence, pc : C --) B is an affine bundle whose vector bundle is T*B @A --t B. Moreover, 
t is the restriction of q* on C and we obtain the affine fibred morphism over E 

[:CX~E+J~ECT*B@~TE. (3.11) 

A coordinate chart (z x, z~, P) on H induces the coordinate chart (z’, vi) on C and 

the coordinate expression of [ is 

(3.12) 

Any (local) section c : B + C induces the connection g(c) on E by 

%9(~) = WP(Y)),Y), Y E E. 

These (local) connections are the distinguished connections of the system. 
If (H, 7) is strong, then we say that (C,[) is strong. 
The bracket on H@ given by the involutivity of the system (He, q@) with respect to 

the Frolicher-Nijenhuis bracket of tangent valued forms on E allows us to define the 
differential calculus connected with a given connection c: B -+ C, [14]. Namely, the 
strong covariant differential d,: C”H’ --) C”H’+’ is defined by 

d,@ = [c,@]. (3.13) 
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Moreover, the strong curvature form of a given connection c is 

w = d,c = [c, c]. (3.14) 

The values of the strong curvature form are in C”A2, where A2 = A @ A2 T’B, and 

the coordinate expression is 

d,c = @$v; + ;Cb”,v;v;)dxX A dxp @ & (3.15) 

Definition 3.1. Let (H,q) b e a projectable, linear and regular system of vector fields 

of E. Let h be a section of H -+ B and cr be a section of E 4 B. By using the 

geometrical interpretation of Lie derivative we can define the Lie derivative of cr with 

respect to infinitesimal fibred transformation h of E -+ B by 

Thus 

&a = Ta o T(h) - Q(h) o u. 

&a: B + VE 

(3.16) 

and is projectable on the section ~7. For studying infinitesimal gauge-natural lifts we 

shall need the following result. 

Theorem 3.1. Let (H,q) b e a strong system on a fibred manifold E -+ B. Then we 

obtain in a natural way a linear, projectable, regular and canonical system 

<A:Hx~A-+TA. (3.17) 

Its coordinate expression is 

Proof. The fibred morphism (3.6) over B restricts to 

[. , .] : H xg JIA ---) A, 

and can be viewed as a fibred morphism over A 

H xB J*A -+ VA 

with coordinate expression 

On the other hand, we have the canonical fibred morphism over A 

L[:TBxBJ~A+TA 

which extends to the fibred morphism over A 

(3.18) 
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with coordinate expression 

Then the fibred difference of above fibred morphisms yields our map CA. 0 

We remark that if a system (H, 7) is non-manic then it does not make sense to check 

involutivity, unless we have an extra bracket on the sections of H. Later we shall use 

the following 

Definition 3.2. Let (H,q) b e a linear, regular, projectable and canonical system of 

E ---) B. Suppose we have an additional bracket [. , .] which makes C”H into a sheaf 
of Lie algebras. Then we say that the system is almost inwolutive if 

@(P? kl) = F?(h), ij@)l, 

where the left bracket is the additional one and the right is the Lie bracket. 

(3.19) 

Sometimes the additional bracket is not given on the whole C’“H but on a certain 

subsheaf; in such a case we shall say that the system is almost involutive with respect 

to this subsheaf. 

4. Infinitesimal natural lifts 

In this section we shall define infinitesimal natural lifts by using the concept of 

systems of vector fields. Our approach will be motivated by the following remark and 

lemma. 

Remark 4.1. Let J’TB be the sheaf of local integrable sections j’h : B + J’TB, 

where h : B + TB is a local section. Then J’TB becomes a sheaf of Lie algebras by 
means of the bracket given by 

[j’h,j’k] E jT[h, k]. (4.1) 

In general the bracket on J’TB will involve the (T + 1)-jet prolongation of vector fields 
of B. Namely, we obtain a well defined fibred morphism 

[. , .] : J’+lTB XB J’+lTB + J’TB. (4.2) 

The restriction of (4.2) to the subbundle J’+lTBo s Ker 7r2;+’ factorizes through the 

canonical projection J’+‘TBo ---) J’TBh and defines a structure of Lie algebra bundle 

on JTTBo. This Lie algebra bundle is isomorphic to the r-order adjoint natural bundle 
G:(B) defined in Example 1.8. 

Lemma 4.1. Let F be an r-order natural lift functor. The construction of the flow 

prolongation of vector fields defines a projectable, linear, regular and canonical system 

o_fFB, BEM~, 

/L : J’TB XB FB + TFB, 
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with q--,H = J’TB, E G FB. This system is almost involutive with respect to the 

subsheaf of integrable sections of J’TB. 

Proof. The evaluation morphism I_L of the system is given by the mapping (1.2). It is 
easy to see that this system is projectable, linear, regular and canonical, [a]. From the 

property of natural bundles, [la], 

j2([jrh,j’X]) f F[h,k] = [Fh, Fk] s [j2(h),,!‘@)] (4.3) 

for any local sections h, k of TB, we get that it is involutive with respect to the subsheaf 

of integrable sections of J’TB. 0 

By generalization of Lemma 4.1 we introduce the following new notion. 

Definition 4.1. An infinitesimal natural Eift of order r is a fibred manifold p : E + 

B together with a system (J’TB,p) f o vector fields of E which is linear, regular, 

canonical, projectable over n; : J’TB + TB and almost involutive with respect to the 

subsheaf of integrable sections of J’TB + TB. 

We shall say that a structure of r-order infinitesimal natural lift is given on E. The 

system ( JTTB, p) will be said to be a natural r-order system. 

We remark that in this definition we do not need that the fibred manifold p : E + B 

be a bundle. 

Remark 4.2. The system (H, 7) = (J’TB,p) in the above Definition 4.1 is not as- 
sumed to be manic. For this reason we refer to the extra bracket in the subsheaf 

,7’TB c C”(J’TB) defined in Remark 4.1. 

Example 4.1. If F is a natural lift functor of order r in the sense of Definition 1.1, 

then from Lemma 4.1 it follows that a structure of infinitesimal r-order lift bundle is 

induced on every FB, B E ObM,. 

Lemma 4.2. If a natural system (J’TB,p) * g as iven on a fibred manifold E, then the 
natural system (JT+“TB,jSp) is induced on J”E. 

Proof. This lemma follows from the properties of the jet prolongation and from the 

commutative diagram 

J”J’TB XB J”E F JSP JSTE 

i’t” xid T 1 T’ 

J’+TB XB J”E ___f TJ”E 
j*, 

where rS is the fibred manifold mapping from J”TE to TJ” E defined in [13] and iT+ 

is the canonical immersion of JTi”TB into J”J’TB. 0 
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Definition 4.2. Let El, E2 be two fibred manifolds over B and assume that a structure 

of infinitesimal r-order natural lift is given on El by a natural system (J’TB,pr) and 
a structure of infinitesimal s-order natural lift is given on Ez by a natural system 

(J”TB,p2). A L-order operator D from C”El to C”E2 is said to be (infinitesimally) 

natural if 

TD(Cjrjp) = ,CjShD(U), 

for any section d : B 4 E and any section h : B --$ TB (see Definition 3.1). 

Lemma 4.3. A k-order operator D from C”E1 to C”E2 is natural if and only if the 

distinguished vector fields J&, (j 7+kh) of Jr+kE1 and ji2(jsh) of Ea are related by the 

associated fibred morphism 2, : JkEl ---) Ez, i.e. if the following diagram 

TJkEl T’D, TE2 

XL (j r+kh) T T Bz (ishI 

JkEl - E2 
v 

commutes for any section h : B --) TB. 

Proof. From Lemma 4.2 we get that the distinguished vector field Fp,(jr+lch) of 

JT+leE1 is given by rk o J”fi(j’h). Th en our Lemma 4.3 follows from the definition of 
the Lie derivative (3.16) and from the fact that TD((Ta) o (h)) = T(Da) o (h) for any 

section h : B -+ TB. Indeed, we have 

and 

TD(LjrhO) = TD(T (TO h - fil(j’h) o (0)) 

= T(Da) o (h) - TD(fil(j’h) o (0)) 

= T(Da) o (h) - 727 o (J”@l(j’h) o (0))) 

= T(Da) o (h) - TD o (x,(jr+kh) o (jko)) 

LjshD(o) = T(Da) o (h) - ,!i2(jSh) o (Do) 

= T(Do) o (h) - p2(jsh) o (2) o (jko)). 0 

5. Infinitesimal gauge-natural lifts 

Analogously to the case of infinitesimal natural lift we shall define infinitesimal gauge- 
natural lift by using the concept of systems. Our definition will be motivated by the 

following remark and lemma. 

Remark 5.1. Let (H,q) b e a strong system of vector fields on a fibred manifold 
E + B. In Section 3 we have defined the bracket [. ,.I in C”H which makes C”H to 
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be a sheaf of Lie algebras. This bracket can be prolonged to a bracket in the subsheaf 

,7’H c C” J’H of integrable sections of J’H + B by 

[j’h, j’k] E j’[h, k], (5.1) 
where h, k are local sections of H. From (3.6) we obtain the associated fibred morphism 

[.,-I : J”+lH x J’+lH + J’H. (5.2) 

The restriction of (5.2) to the subbundle J’+l HO z Ker(rA+l o J’q) factorizes through 

the canonical projection J T+l Ho + J’Ho and defines a structure of Lie algebra bundle 
on J’HO. This Lie algebra bundle is locally a semidirect product of the Lie algebra 

bundles J’TBo and J’ A. 

Lemma 5.1. Let F be an r-order gauge-natural bundle functor in the sense of Defy- 

nition 2.1 defined on the category P&(G). Th e construction of the flow prolongation 

of G-invariant vector fields defines a projectable, linear, regular and canonical system 

p : Jr(TP/G) XB FP + TFP 

of FP, (r : P -t B) E Ob Pan(G). This system is almost involutive with respect to the 

subsheaf of integrable sections of J’(TP/G) + B. 

Proof. The evaluation morphism of the system (J’(TP/G), p) is given by the mapping 

(2.2). This system is projectable (over the mapping Tn o r;), linear, regular, canonical 

and almost involutive, [lo]. Cl 

The above results suggest the following new notion. 

Definition 5.1. Let (H,q) be a strong system on p : E + B. An infinitesimal gauge- 

natural lift of order r is a fibred manifold p : E + B together with a system (J’H,p) 

which is linear, regular, canonical, projectable over (~6 o Jr@ : J’H --) TB and almost 

involutive with respect to the subsheaf of integrable sections of J’H + B. 

We shall say that the system (J’H,p) defines a structure of an infinitesimal gauge- 

natural lift of order r on E. The system (J’H,p) will be called the gauge-natural 

system. 

Let s < T be the minimum number such that PA can be factorized through the 
canonical projection nl : J’A + J”A. Then we say that the infinitesimal gauge-natural 
lift is of order (T, s), and s is called the gauge order of the infinitesimal gauge-natural lift 
on E. 

For any section h : B -+ H the distinguished vector field p(j’h) : E -+ TE is 
induced and similarly for a section h : B --f A the distinguished vertical vector field 
pA(j’h) : E + VE is induced. A structure of infinitesimal gauge-natural lift on E is 
said to be gauge trivial if its gauge order is 0 and PA(h) is the zero vector field for all 
sections h : B --) A. 
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Example 5.1. Let F be an r-order gauge-natural bundle functor in the sense of Def- 

inition 2.1 defined on the category P&(G), i.e. F can be represented by its standard 
fibre Fo with the action of the group W,‘G = GL xs T,‘G on Fo. Then a structure of 

infinitesimal gauge-natural r-order lift is given on any FP, P E Ob?B,(G), by means 

of the system (J’(TP/G),p) defined by Lemma 5.1. The adjoint bundle WLQ(B) + B 

is then isomorphic to J’(TP/G)o + B. 

Example 5.2. Any infinitesimal natural lift of order T is an infinitesimal gauge-natural 

lift of the order (r,O) with the gauge trivial structure. 

Example 5.3. Let a structure of (r,s)-order infinitesimal gauge-natural lift be given 

on E, then a structure of infinitesimal gauge-natural lift of order at most (r + k, s + k) 

is induced on J”E. The number (r + k) is exact but the gauge order (.s + k) may be 
too big. For example, if a structure of infinitesimal natural r-order lift is given on E, 
i.e. a structure of infinitesimal gauge-natural lift of order (r,O) with the gauge trivial 

structure, then a structure of (T + k)- or d er infinitesimal natural lift, i.e. a structure 
of (T+k,O)- d or er infinitesimal gauge-natural lift with the gauge trivial structure, is 
induced on JkE. 

Example 5.4. Let (H,q) be a strong system on p : E -+ B. In Theorem 3.1 we have 

defined the canonical system (H, CA) of vector fields on A. This system is linear, pro- 

jectable, regular, canonical and almost involutive. So, we have the canonical structure 

of infinitesimal O-order gauge-natural lift on A. The coordinate expression of (‘A is 

Example 5.5. Let (H, 77) be a strong system on p : E ---) B. Let A’ = A 8 A’T*B. 
On A’ there is the (1, 0)-order structure of infinitesimal gauge-natural lift induced from 

the (O,O)-order infinitesimal gauge-natural lift on A and (l,O)-order infinitesimal gauge 
trivial lift on A’ T*B. The coordinate expression of the evaluation morphism p’ is 

= (xX, %Lw h -qpl...pr_lZ;r] - Gc~b@;l.../J, 
(5.3) 

where (xx, @zl...Pp, k’, it,..+,,) is the induced fibred coordinate chart on TAT. 

Example 5.6. Let (H,q) be a strong system on p : E + B. In Section 3 we have 
defined the strong system of connections (C,[) induced from a strong system of vector 

fields on a fibred manifold. In [14] a fibred morphism 

cc : J’H XB C + TC (5.4) 

is provided which turns out to be an infinitesimal gauge-natural lift on C. Let (xx, vi) 
be the induced fibred coordinate chart on C. Then the coordiante expression of CC is 
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Definition 5.2. Let Er,E2 be two fibred manifolds over B and let a structure of r- 

order infinitesimal gauge-natural lift is given on Er by a gauge-natural system (J’H, ~1) 

and a structure of s-order infinitesimal gauge-natural lift is given on E2 by a gauge- 

natural system (J”H,pz). A k-order operator D from C”Er to C”E2 is said to be 

natzlral (respectively gauge-natural) if 

TD(Ljqp) = LjShDcT, (5.6) 

for any section (T : B --) El and any section h : B + H (respectively h : B + A). 

By using the same methods as in Lemma 4.3 we can prove 

Lemma 5.2. A k-order operator D from CWEl to C”E2 is natural (resp. guuge- 

natural) if and only if the distinguished vector fields j&(j’+“h) (req. ~~,,(jr+kh)) 

of J”E1 and j&(jsh) (resp.’ j&A(jsh)) of E 2 are related by the associated fibred mor- 

phism V : JkEl -+ E2, i.e. if the following diagrams 

TJkEI TZ, TE2 

3 PI (jk+‘q r T T @zWh) 
JkE1 - E2 

v 

resp. 

VJkEl = VE2 

5- 3 hAb .+hlT T b2A(jsh) 
JkE1 - E2 

2, 

commute for any section h : B + H (resp. h : B ---t A). 

Lemma 5.3. The strong curvature form is a first order natural operator from C”C 

to C”A2. 

Proof. The (1, l)- d or er infinitesimal gauge-natural structure on C implies the (2,2)- 
order infinitesimal gauge-natural structure on J’C which is given by the jet prolongation 

of the evaluation morphism (5.4). In the induced coordinate chart 

(xA , ,v;,q 0’ i&+x”, 6x”&) 

on TJlC this prolonged evaluation morphism is given by 
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For any local section h of H we get from (5.7) the vector field JTCc(j2h) of PC 

d 
j&(j2h) = hXs + (aAh” - w;&h” - C;chbt$)& 

x 

+ (t&h” - t&tIXhP - v~J3,hP - v;dXphP 

and from (5.3) we get the vector field ji2(j*h) of A2 

p2(j1h) = hX * 
dXA 

+ (-W&,d,hP - @;,&hP - C;chbQ~l,2)& 
X1X2 

Then the diagram 

TJlC -% TA2 

x (j2h) c T T B2(j1h) 
JIC - A2 

cl 

commutes for all sections h : B + H, where R : JIC + A2 is the induced fibred 

manifold morphism corresponding to the strong curvature operator. From (3.15) we 
get its coordinate expression 
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