
On the Complexity of
Semantic Self-minimization

Adam Antonik1,2

Laboratoire Spécification et Vérification
LSV, CNRS & ENS de Cachan

Cachan Cedex, France

and

Michael Huth1,3

Department of Computing
Imperial College London
London, United Kingdom

Abstract

Partial Kripke structures model only parts of a state space and so enable aggressive abstraction of systems
prior to verifying them with respect to a formula of temporal logic. This partiality of models means
that verifications may reply with true (all refinements satisfy the formula under check), false (no refinement
satisfies the formula under check) or don’t know. Generalized model checking is the most precise verification
for such models (all don’t know answers imply that some refinements satisfy the formula, some don’t), but
computationally expensive. A compositional model-checking algorithm for partial Kripke structures is
efficient, sound (all answers true and false are truthful), but may lose precision by answering don’t know
instead of a factual true or false. Recent work has shown that such a loss of precision does not occur for
this compositional algorithm for most practically relevant patterns of temporal logic formulas. Formulas
that never lose precision in this manner are called semantically self-minimizing. In this paper we provide
a systematic study of the complexity of deciding whether a formula of propositional logic, propositional
modal logic or the propositional modal mu-calculus is semantically self-minimizing.

Keywords: 3-valued model checking, partial state spaces, computational complexity, supervaluations.

1 Introduction

Partial state spaces abstract an actual state space so that the resulting smaller
state space allows for a feasible verification of such partial models. Such a check

1 This research was, in part, sponsored by the UK EPSRC grants EP/D50595X/1 Efficient Specification
Pattern Library for Model Validation and EP/E028985/1 Complete and Efficient Checks for Branching-
Time Abstractions
2 Email: antonik@lsv.ens-cachan.fr
3 Email: M.Huth@doc.imperial.ac.uk

Electronic Notes in Theoretical Computer Science 250 (2009) 3–19

1571-0661 © 2009 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.08.002
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82176811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:antonik@lsv.ens-cachan.fr
mailto:M.Huth@doc.imperial.ac.uk
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

then has to be conservative: if the partial model satisfies the property under check,
then all concrete systems consistent with that partial model should satisfy that
property. This is required since we otherwise cannot be certain whether the actual
state space satisfies this property, unless we check it on that actual system – the
task we intend to avoid by using this abstraction technique in the first place – or
have some other means of connecting properties of that abstraction to properties of
the actual system.

If φ is the property we want to check, and φM a property that characterizes all
concrete systems that are consistent with the partial model M , we therefore want
to check whether the property φM → φ, a logical implication, holds in all concrete
systems. Identifying the set of concrete systems with some class of models, and
assuming that φM and φ belong to some logic that is interpretable over that class
of models, we recognize this problem as a validity check of some logic. Since the
size of φM may be exponential in the size of M , this conceptually useful insight
is perhaps less useful as the basis for efficient algorithms. Indeed, for the proposi-
tional modal mu-calculus [15] this would render a method for property verification
in 2EXPTIME whereas the most precise conservative check of partial models is
EXPTIME-complete [8].

A less precise compositional – but much cheaper and still conservative – algo-
rithm [7] (a 3-valued generalization of the familiar labelling algorithm) is available
as an alternative that often can verify that all concrete models consistent with a
partial one satisfy the property in question. Given that alternative, it is tempting
to ask whether a property φ is such that the cheaper algorithm always produces a
correct result, regardless of the choice of partial model. In fact, it turns out [5] that
this is the case for most practically relevant patterns of temporal logic specifications,
as documented in [11] and at patterns.projects.cis.ksu.edu.

We can express this desirable feature of a property φ – written in the propo-
sitional modal mu-calculus – via a computation of some normal form, followed by
a “quantified” model check. For such a φ, one can compute a formula φp in the
propositional modal mu-calculus such that running the cheap model-checking al-
gorithm on φp gives us the same result as running the expensive but most precise
algorithm on φ, for all partial models. We will refer to φp as a pessimistic semantic
minimization of φ. Unfortunately, φp may be exponentially larger than φ.

This blow-up in the size of the formula suggests that one cannot decide effi-
ciently whether properties have an efficient, compositional, and precise verification
of partial models. The results in this paper corroborate this suspicion since we
secure hardness results matching those for the validity problem of the respective
logics. Alas, our hardness results only come with an upper bound of an exponential
gap. To add to this frustration, we cannot show any hardness results for deciding
whether a formula and its negation do not lose precision in the sense discussed
above.

From a practitioner’s point of view, the results of this paper may not matter
much. For one, and as already mentioned, popular specification patterns were
shown to either not lose precision or to have minor syntactic variants that don’t

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–194

lose precision [5]. For another, temporal logic formulas used in practice tend to be
rather short, and so an exponential or double exponential worst-case inflation in
their size may sometimes be feasible. But we still think that the results reported
here are of interest. They pose the question of the exact computational complexity
of the decision problems associated with semantic minimizations. And they also
suggest connections with recent work on the complexity of decision problems for
modal and mixed specifications [3,2,4]. Such specifications are related to the partial
models we study in this paper.

Outline of paper.
In Section 2 we provide background on the verification of partial systems and

on the concepts presented informally in the introduction. Our technical results,
upper and lower bounds on the computational complexity of decision problems for
semantic minimizations in temporal logics, are featured in Section 3. Related work
is discussed in Section 4, and we conclude the paper in Section 5.

2 Background

In this paper we work with a countable set of atomic propositions, AP. Atomic
propositions are the observations one can make at states of partial models.

We now define our models of partial state spaces. Since all temporal logics we
study enjoy a finite-model property (and since we wish to verify abstractions that
have finite state space), we will – without loss of generality – work with finite-state
models throughout this paper.

Definition 2.1 A partial Kripke structure [7] M is a tuple (S,R,L) where S is
a finite set of states, R ⊆ S × S is a state transition relation, and L: S × AP →
{0, 1/2, 1} a total (labeling) function such that L(s, q) specifies the truth value of
atomic proposition q at state s.

We identify 0 with false, 1 with true, and 1/2 with don’t know and make
{0, 1/2, 1} into a poset with respect to the information ordering ≤i [14,7] speci-
fied as partial order by 1/2 ≤i 0 and 1/2 ≤i 1 as the only non-reflexive instances of
≤i. Figure 1 shows two partial Kripke structures. We note that Kripke structures
M = (S,R,L) are those partial Kripke structures that don’t have 1/2 in the image
of L. The meaning of a partial Kripke structure is that it describes a set of Kripke
structures, those refinements that resolve all partiality of the state space. Such res-
olution means that labels L(s, q) have no longer value 1/2 but that the state space
may well be larger or smaller. Refinement is defined as in [7].

Definition 2.2 Let M = (SM , RM , LM) and N = (SN , RN , LN) be two partial
Kripke structures.

(i) A binary relation � ⊆ SM × SN is a refinement iff s � t implies
(a) L(s, q) ≤i L(t, q) for all q ∈ AP,
(b) for all (s, s′) ∈ RM there is (t, t′) ∈ RN with s′ � t′, and

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–19 5

q=1

r=0

q=0

r=1/2

q=1

r=1/2

q=1

r=0

q=1

r=0

q=0

r=1

q=1

r=0

s1

s2

s4
s3

t1
t2

t3M N

Fig. 1. Two partial Kripke structures M and N such that (N, t1) refines (M, s1) and N is a Kripke structure.

(c) for all (t, t′) ∈ RN there is (s, s′) ∈ RM with s′ � t′.

(ii) Given s ∈ SM we call (M, s) a pointed model, which represents the partial
Kripke structure M with initial state s.

(iii) We say that (M, s) has (N, t) as refinement whenever there is a refinement �
as above such that s � t.

Example 2.3 Two partial Kripke structures are depicted in Figure 1. The one on
the right is a pointed Kripke structure (N, t1) and refines the pointed model (M, s1)
on the left where � = {(s1, t1), (s2, t2), (s3, t3), (s4, t3)}.

We assume the usual satisfaction semantics between pointed Kripke structures
and formulas of the propositional modal mu-calculus (MC), both of which we define
below. Refinement and this standard satisfaction notion let us define two judgments,
one for generalized model checking [8] (SAT, called GMC in loc. cit.), and one for
its logical dual (VAL).

Definition 2.4 Let (M, s) be a pointed model and φ a sentence of the propositional
modal mu-calculus. Then SAT(M, s, φ) holds iff there is a pointed Kripke structure
that refines (M, s) and satisfies φ. Dually, VAL(M, s, φ) holds iff all pointed Kripke
structures that refine (M, s) satisfy φ.

Whenever convenient, as in the next example, we make liberal use of CTL*
connectives as syntactic sugar expressible in MC.

Example 2.5 For the partial Kripke structure M in Figure 1, the judgments
VAL(M, s1,AF (q ∧ ¬r)) and VAL(M, s1,AF EG¬r) hold. But we don’t have
VAL(M, s1,AF AG¬r), where the pointed Kripke structure (N, t1) serves as a coun-
terexample.

We hasten to point out that every partial Kripke structure has some pointed
Kripke structure as refinement, so there are no vacuities [16] – here at the level
of models – introduced into these two judgments SAT(M, s, φ) and VAL(M, s, φ).
When φ ranges over the propositional modal mu-calculus, both judgments are
EXPTIME-complete in the size of φ and quadratic in the size of M [8].

The compositional semantics of [7] trades off the precision of these judgments
with their computational complexity, and gives rise to the aforementioned cheap and

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–196

sound, compositional algorithm. We present this compositional semantics through
two judgments, a “pessimistic” one (M, s) |=p φ, and an “optimistic” one (M, s) |=o

φ between pointed models and formulas of the propositional modal mu-calculus.
The syntax of this propositional modal mu-calculus MC is given by

φ ::= q | Z | φ ∧ φ | ¬φ | EX φ | μZ.φ(1)

where q ranges over a set of propositional atoms, Z ranges over a set of recursion
variables, μZ.φ binds occurrences of Z in its body φ, and all free occurrences of Z

in that body are under an even scope of negations. We use φ∨ψ as syntactic sugar
for ¬(¬φ ∧ ¬ψ), and use → and ↔ as abbreviations with their usual encodings in
terms of ¬ and ∨. A formula φ is a sentence if it has no free variables.

We let PML, (basic) propositional modal logic, be those formulas of MC that
contain neither recursion variables Z nor fixed-point operators μZ. Propositional
logic is the set PL of those formulas of PML that don’t contain any EX operator.

For each partial Kripke structure M = (S,R,L) and each formula φ ∈ MC we
define in Figure 2 a set [| φ |]mρ (for m ∈ {o, p}) of those states in S that satisfy φ,
where ρ maps each recursion variable Z to a set of states, ρ(Z) ⊆ S.

We explain the salient features of this semantics:

• For atomic propositions, the “optimistic” semantics [| q |]oρ interprets the labels 1
and 1/2 for q at states as denoting truth of q at those states. The “pessimistic”
semantics [| q |]pρ, in contrast, interprets only the label 1 for q at states as denoting
truth of q at those states.

• The meaning of conjunction is compositional, interpreted as intersection as usual
in Kripke structures.

• The meaning of negation is that is swaps the evaluation mode of the semantics:
to evaluate ¬φ in the pessimistic mode, say, we evaluate φ in the optimistic mode
and then form the set complement of the resulting set of states. This reflects
the duality between satisfiability and validity checking inherent in this reasoning
about sets of refinements of models.

For a sentence φ ∈ MC we define

(M, s) |=m φ
def= s ∈ [| φ |]mρ for some ρ(2)

This is well defined as [| φ |]mρ is independent of the choice of ρ for sentence φ. The
cost of computing [| φ |]mρ is, up to a constant, essentially that of computing the
standard satisfaction relation on Kripke structures [8]. So the judgments in (2) can
be computed as efficiently as satisfaction for Kripke structures. We note that both
(K, t) |=o φ and (K, t) |=p φ render the standard satisfaction relation [15] on pointed
Kripke structures (K, t).

The results and proofs in this paper will only apply to sentences. We therefore
abuse notation by referring to MC, PML, and PL also as the subsets of sentences
of these respective logics. Context will always determine the proper interpretation
of these symbols.

The next theorem, whose result is implicit in [7,8], connects the compositional
semantics with that of generalized model checking.

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–19 7

[| q |]oρ = {s | L(s, q)
= 0} [| q |]pρ = {s | L(s, q) = 1}
[| Z |]oρ = ρ(Z) [| Z |]pρ = ρ(Z)

[| φ ∧ ψ |]oρ = [| φ |]oρ ∩ [| ψ |]oρ [| φ ∧ ψ |]pρ = [| φ |]pρ ∩ [| ψ |]pρ
[| ¬φ |]oρ = S \ [| φ |]pρ [| ¬φ |]pρ = S \ [| φ |]oρ
[| EX φ |]oρ = pre([| φ |]oρ) [| EX φ |]pρ = pre([| φ |]pρ)
[| μZ.φ |]oρ = lfpF o

φ,ρ [| μZ.φ |]pρ = lfpF p
φ,ρ

Fig. 2. Compositional semantics of propositional modal mu-calculus formulas φ over a partial Kripke struc-
ture M = (S, R, L) for environment ρ mapping recursion variables to subsets of S, where pre: P(S) → P(S)
is pre(X) = {s ∈ S | ∃(s, s′) ∈ R: s′ ∈ X}, F m

φ,ρ: (P(S),⊆) → (P(S),⊆) is F m
φ,ρ(X) = [| φ |]m

ρ[Z �→X]
for

m ∈ {o, p}, and lfp F is the least fixed point of a monotone function F on the complete lattice (P(S),⊆).

Theorem 2.6 Let (M, s) be a pointed model and φ ∈ MC a sentence. Then:

(i) (M, s) |=p φ implies VAL(M, s, φ) and

(ii) SAT(M, s, φ) implies (M, s) |=o φ.

Item (i) states that the compositional semantics is sound. We can verify the ex-
pensive VAL(M, s, φ) by trying to establish the much cheaper (M, s) |=p φ. Item (ii)
in that theorem may not be of direct interest in verification but is useful for the
proof of the first implication.

Showing VAL(M, s, φ) through the cheaper judgment (M, s) |=p φ won’t always
succeed.

Example 2.7 [12] Consider the formula φ = EX q ∧ (EX r ∨ EX¬r) and any model
M = ({s}, {(s, s)}, L) with L(s, q) = 1 and L(s, r) = 1/2. Then (M, s)
|=p φ since
(M, s)
|=p EX r∨EX¬r. But all pointed Kripke structures that refine (M, s) satisfy
φ, i.e. VAL(M, s, φ) holds.

This example illustrates the necessary trade-off between the precision of
VAL(M, s, φ) and the lower computational cost of (M, s) |=p φ. In this paper
we are interested in those φ ∈ MC for which the implications in Theorem 2.6 are
reversible for all pointed models. This leads to the concept of semantic minimization
[6,21,20,12].

Definition 2.8 [12] A sentence φ ∈ MC is

(i) pessimistically self-minimizing iff for all pointed models (M, s) we have
(M, s) |=p φ ⇔ VAL(M, s, φ),

(ii) optimistically self-minimizing iff for all pointed models (M, s) we have
(M, s) |=o φ ⇔ SAT(M, s, φ), and

(iii) semantically self-minimizing iff it is optimistically and pessimistically self-
minimizing.

Given these three concepts, we write PSM, OSM, and PSM ∩ OSM for the sets
of sentences of MC that satisfy the respective concept in items (i), (ii), and (iii).

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–198

Example 2.9 • The formula q ∨ ¬q is optimistically self-minimizing but not pes-
simistically so – consider the case when L(s, q) = 1/2.

• The pattern “Precedence Chain: 2 stimuli, 1 response; Globally q and s precede
r” [11], as documented at patterns.projects.cis.ksu.edu, written in MC as

¬E[¬qU r] ∧ E[¬rU (q ∧ ¬r ∧ EX (E[¬sU (r ∧ ¬s)]))]

is pessimistically self-minimizing [5].
• The pattern “Absence of q, Before r”, written in MC as

φ = A[¬q ∨ AG(¬r)W r]

is not pessimistically self-minimizing but

φp = A[¬q ∨ AX (AG(¬r)W r]

is, and is logically equivalent to φ over Kripke structures [5].

3 Decision Problems

We write VAL for the valid sentences of MC and, dually, UNSAT for the un-
satisfiable sentences of MC. The set MC is partitioned into VAL, UNSAT, and
MC \ (VAL ∪ UNSAT). If we refine this partition with the sets PSM and OSM
under union, intersection, and complement we arrive at six equivalence classes.
Throughout, it will be clear from the context whether these sets are meant to be
subsets of MC, PML or PL.

The proposition stated next would not hold, as stated, in the presence of con-
stants for true and false in MC. But their absence from MC merely simplifies the
presentation of our results.

Proposition 3.1 (i) VAL is contained in OSM and disjoint from PSM. Dually,
UNSAT is contained in PSM and disjoint from OSM.

(ii) For each L ∈ {MC,PML,PL}, set L is partitioned into the six sets
I VAL

II UNSAT
III OSM \ (VAL ∪ PSM)
IV PSM \ (UNSAT ∪ OSM)
V L \ (PSM ∪ OSM)

VI PSM ∩ OSM
as illustrated in Figure 3.

Proof (Sketch)

(i) Consider the partial Kripke structure M⊥ = ({s⊥}, {(s⊥, s⊥)}, L⊥) where
L⊥(s⊥, q) = 1/2 for all q ∈ AP. Then every pointed Kripke structure (over
AP) is a refinement of (M⊥, s⊥). One shows that for all sentences φ ∈ MC we
have

(M⊥, s⊥) |=o φ and (M⊥, s⊥)
|=p φ(3)

The first statement in (3) is used to prove that UNSAT and OSM are disjoint.
The second statement in (3) implies that VAL is disjoint from PSM.

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–19 9

 SM
V I

PSM & OSM
I I

UNSAT

I
VAL

V
- (PSM + OSM)

I I I
OSM - (VAL + PSM)

 I V
PSM - (UNSAT + OSM)

Fig. 3. A partition of MC, PML, and PL into six equivalence classes, generated by Boolean combinations
of VAL and PSM.

To see that VAL ⊆ OSM, let φ be valid and (M, s) a pointed model. We
have that SAT(M, s, φ) holds since there are refining pointed Kripke structures
of (M, s) and φ is valid. But then (M, s) |=o φ holds by Theorem 2.6. Since
(M, s) was arbitrary, φ ∈ OSM follows.

The dual statement, that UNSAT is contained in PSM, is proved in the dual
fashion.

(ii) From the first item it follows that VAL, PSM, and OSM alone generate only the
six sets I - VI by repeated applications of union, intersection, and complement;
and that these six sets are mutually disjoint. We list sentences that show all six
sets are inhabited: q∨¬q ∈ VAL, q∧¬q ∈ UNSAT, (q∨¬q)∧r ∈ OSM\(VAL∪
PSM), (q ∧¬q)∨ r ∈ PSM \ (UNSAT∪OSM), [q ∧ (r ∨¬r)]∨ [¬q ∧ (r ∧¬r)] ∈
MC \ (PSM ∪ OSM), and q ∈ PSM ∩ OSM. Since these sentences are in PL,
we thus have a partition for all three cases of L ∈ {MC,PML,PL}.

�

For each of these six sets we now study the complexity of deciding membership
of that set. We first observe how negation acts on these sets.

Lemma 3.2 Negation φ �→ ¬φ maps the following pairs of sets into each other:
OSM and PSM, I and II, III and IV, V and itself, and VI and itself.

Proof (Sketch) A sentence is in VAL iff its negation is in UNSAT, and it is in
OSM iff its negation is in PSM. Therefore a sentence is in set I iff its negation is in
set II, and it is in OSM\ (VAL∪PSM) iff its negation is in PSM\ (UNSAT∪OSM).
This shows the claim for I and II, and for III and IV. Sets V and VI are closed
under negation, since φ �→ ¬φ maps set OSM into PSM, and vice versa. �

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–1910

3.1 Sets I and II.

Deciding membership of sets I (VAL) and II (UNSAT) has, of course, the same
complexity as that of the validity of the underlying logic – EXPTIME-complete for
MC, PSPACE-complete for PML, and coNP-complete for PL.

3.2 Set OSM.

By Lemma 3.2 we have φ ∈ OSM ⇔ ¬φ ∈ PSM. Thus the complexity of deciding
OSM is the same as that of deciding PSM. But deciding OSM is at least as hard
as deciding validity of the underlying logic. This can be seen by considering the
function

E(φ) = φ ∨ (x ∧ ¬x)(4)

where x is a propositional atom not in φ, and so not contained in φ. If φ is valid,
then so is E(φ), and this implies that E(φ) is in OSM. If φ is not valid, then there
is a pointed Kripke structure (K, t) in which φ is false. We extend the labeling
function L of K so that L(s, x) = 1/2 for all states s of K – making K into a partial
Kripke structure. Then (K, t) |=o E(φ) follows for this extended K but there is no
refinement of (K, t) that satisfies E(φ) as this formula is semantically equivalent to
φ over Kripke structures. Thus, φ is valid iff E(φ) is in OSM and so we can reduce
validity checks to checks of membership of OSM.

To summarize, deciding OSM is EXPTIME-hard, PSPACE-hard, and coNP-
hard for MC, PML, and PL respectively.

MC.
We can decide in 2EXPTIME whether a sentence φ ∈ MC is in OSM. This is

implicit in [12], where from φ two alternating tree automata are being constructed –
with exponential blowup in the worst case – and membership of φ in OSM is then
being reduced to a language inclusion check for these automata, again, in EXPTIME
but now in the size of these automata.

PML.
Consider a sentence φ ∈ PML. As just said for MC, in [12], two tree au-

tomata A3
φ and A3

|=oφ were constructed such that φ is optimistically self-minimizing
iff L(A3

|=o) ⊆ L(A3
φ), i.e. the language accepted by A3

|=o is contained in the lan-
guage accepted by A3

φ. Since PML ⊆ MC, such a language inclusion check is in
EXPTIME in the size of these automata. However, since both automata cannot
distinguish trees at depths greater than the size of φ, reflecting the shallow model
property of PML, such a language inclusion check can be performed already in
PSPACE. Since the underlying automata has size at most exponential in the size
of φ we conclude that the language inclusion check can be done in EXPSPACE in
the size of φ.

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–19 11

boolean NotInOSM(phi) {
choose model M such that M(x) = 1/2 for some x in AP(phi);
if (M |=^o phi) {

for (all x in AP(phi) with M(x) = 1/2) {
if (!(M[x --> 0] |=^o phi) && !(M[x --> 1] |=^o phi)) {

ACCEPT;
}

}
REJECT;
}

}

Fig. 4. NP algorithm that decides membership of PL\OSM. If at least one choice of model leads to ACCEPT,
the algorithm returns true; otherwise it returns false.

PL.
We now show that, for PL, deciding membership of OSM is in coNP, and so the

above hardness result is indeed exact. Let AP(φ) be the set of atomic propositions
that occur in φ. The evaluation of (M, s) |=o φ for φ ∈ PL depends only on the
values {LM (s, q) | AP(φ)}. Therefore, we can think of the pointed model (M, s) as a
function from atomic propositions to values in {0, 1/2, 1} and so we will write M(q)
etc. below with that interpretation in mind. We write M [q �→ v] for the model that
is as M , except that it maps q to value v ∈ {0, 1}. We will also use that M |=o φ

will only depend on the behavior of M on set AP(φ).
If there are k > 0 atomic propositions in φ ∈ PL, we have just seen that we can

decide semantic self-minimization of φ by inspecting, for 3k models, whether the
compositional model-checking algorithm loses any precision. This observation leads
to a non-deterministic algorithm, depicted in Figure 4, for showing that PL \OSM
is in NP, and so OSM is in coNP.

The idea behind the algorithm is the following: suppose we have that M |=o φ

but neither M [q �→ 0] |=o φ nor M [q �→ 1] |=o φ hold. Then φ cannot be in
OSM: otherwise, there is some function K from atomic propositions to {0, 1} that
refines M and satisfies φ. But any refinement of M has to be either a refinement
of M [q �→ 0] or M [q �→ 1]. So at least one M [q �→ 0] |=o φ and M [q �→ 1] |=o φ

would have to hold by Theorem 2.6, a contradiction. Thus this is a sound test
for membership in OSM. But if we apply this method to all partial models M , it
becomes complete as such a membership test.

Proposition 3.3 The NP algorithm in Figure 4 correctly decides membership of
PL \ OSM.

Proof (Sketch)

• Let φ ∈ PL be such that the algorithm accepts it. Then there is some model M

and some x ∈ AP(φ) such that
· M(x) = 1/2,
· M |=o φ, and
· M [x �→ v]
|=o φ for all v ∈ {0, 1}.

The last item and Theorem 2.6 imply that SAT(M [x �→ v], ·, φ) is false for both
v = 0, 1. Then it must also be that SAT(M, ·, φ) is false. But then the second
item implies that φ is not in OSM.

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–1912

• Conversely, let φ
∈ OSM. Then, by Theorem 2.6, there is a model M such that

M |=o φ holds and SAT(M, ·, φ) does not hold(5)

This can only be if there is some x ∈ AP(φ) with M(x) = 1/2. Let M be a model
satisfying (5) but where the set

{x ∈ AP(φ) | M(x) = 1/2}
is minimal amongst all models satisfying (5). Since there is some x with M(x) =
1/2, the algorithm will encounter the first if-statement and its guard will be true.
Therefore, its for-statement will be executed and, for the first (indeed all) x it
executes we can now reason that the algorithm will accept.

Since SAT(M, ·, φ) is false, we know that SAT(M [x �→ v], ·, φ) is false for all
v ∈ {0, 1}. By the minimality of model M with respect to (5), we infer that
M [x �→ v] |=o φ has to be false for v = 0 and for v = 1. Thus the algorithm
reaches ACCEPT.

�

3.3 Set III.

Deciding set III is at least as hard as deciding OSM, and therefore at least as hard
as deciding validity of the underlying logic. To see this, consider the function

F (φ) = (φ ∨ x) ∧ (y ∧ (z ∨ ¬z))(6)

where x, y, and z are propositional atoms not contained in φ. The reduction is
shown through the composition F ◦ E if

F (φ) ∈ III ⇔ φ ∈ OSM(7)

holds. We show (7):

• For no φ is F (φ) in PSM: consider a pointed model (M, s) with L(s, x) = L(s, y) =
1 and L(s, z) = 1/2. Then (M, s)
|=p F (φ) holds but all pointed Kripke structures
that refine (M, s) satisfy φ.

• For no φ is F (φ) in VAL since there are, e.g., pointed models (M, s) for which
L(s, y) = 0.

So F (φ) is in set III iff F (φ) is in OSM \ VAL iff F (φ) is in OSM. Thus it
suffices to show F (φ) ∈ OSM ⇔ φ ∈ OSM. In doing so, we appeal to the fact
that φ, ψ ∈ OSM imply that φ ∧ ψ ∈ OSM whenever φ and ψ share no atomic
propositions, and that OSM is closed under disjunctions [12].

• Let φ ∈ OSM. Since y and z ∨ ¬z ∈ OSM we get y ∧ (z ∨ ¬z) ∈ OSM as both
conjuncts share no atomic propositions. Since φ, x ∈ OSM, their disjunction φ∨x

is in OSM as well. Since φ ∧ x and y ∧ (z ∨ ¬z) share no atomic proposition and
both are in OSM, we get F (φ) ∈ OSM.

• Let φ
∈ OSM. Then there is a pointed model (M, s) such that (M, s) |=o φ

and SAT(M, s, φ) is false. Extend the labeling function LM of (M, s) such that
LM (s, y) = LM (s, z) = 1 and LM (s, x) = 0. Then (M, s) |=o F (φ) holds for this
extension but SAT(M, s, F (φ)) is false, since SAT(M, s, φ) is false and all pointed

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–19 13

Kripke structures (K, t) that refine the extended (M, s) must satisfy LK(t, x) = 0
and LK(t, y) = 1. So F (φ)
∈ OSM.

Combining (7) with the reduction of OSM to validity checks, we infer that
deciding set III is EXPTIME-hard, PSPACE-hard, and coNP-hard for MC, PML
and PL (respectively).

MC.
We can decide PSM and OSM in 2EXPTIME, and decide VAL in EXPTIME.

So we can decide set III in 2EXPTIME.

PML.
We already have seen that OSM can be decided in EXPSPACE, so this applies

to PSM as well. Since VAL can be decided in PSPACE we can decide set III also
in EXPSPACE.

PL.
We have shown that OSM is in coNP. By Lemma 3.2 this implies that PSM is in

coNP as well. Since VAL is in coNP, the language PL \ (VAL∪PSM) is in NP. Set
III equals OSM∩ (PL\ (VAL∪PSM)) and so is in DP [18,19] as the intersection of
a language in coNP with one in NP. We are presently unable to show DP-hardness
of set III, despite having made a considerable effort to that end.

3.4 Set V.

Sentences in set V lose precision in the pessimistic and in the optimistic compo-
sitional semantics. Since unsatisfiable sentences are in PSM, sentences in set V
must be satisfiable. Deciding membership of set V is also at least as hard as the
satisfiability check of the relevant logic. To see this, consider

G(φ) = (φ ∧ (x ∨ ¬x) ∧ y) ∨ (z ∧ ¬z)(8)

where x, y, and z are in AP and again not appearing in φ.

• For no φ is G(φ) in OSM, and so G(φ) is in set V iff G(φ) is not in PSM:
consider a pointed model (M, s) with LM (s, z) = 1/2 and LM (s, y) = 0. Then
(M, s) |=o G(φ) holds but no pointed Kripke structure that refines (M, s) satisfies
φ.

• Now if φ is unsatisfiable, then G(φ) is also unsatisfiable, so G(φ) will be in PSM.
Conversely, if φ is satisfiable (on some pointed Kripke structure (K, t)) we claim
that G(φ) is not in PSM. To see this we make K into a partial Kripke structure
by extending its labeling function L with L(t, x) = L(t, y) = 1 and L(t, z) = 1/2.
Then all pointed Kripke structures that refine this expanded (K, t) satisfy φ, yet
(K, t)
|=p G(φ).

The combination of these two items shows

φ satisfiable ⇔ G(φ) ∈ V(9)

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–1914

To summarize, deciding set V is EXPTIME-hard, PSPACE-hard, and NP-hard
for MC, PML, and PL (respectively).

MC.
It is easily seen that deciding set V is in 2EXPTIME as that complexity class

is closed under finite unions and complements.

PML.
We can decide membership of set V by two checks, one for OSM and one for

PSM – both were shown to be in EXPSPACE. We therefore conclude that set V
can be decided in EXPSPACE as well.

PL.
Since OSM and PSM are in coNP so is their union. But then set V is in NP

as the complement of a language in coNP. Since we already showed that set V is
NP-hard, we get that set V is NP-complete.

3.5 Set VI.

Sentences in VI are well behaved in that they lose precision neither for the pes-
simistic nor for the optimistic compositional semantics. So satisfiability and validity
checks for all partial state spaces are reducible to a single, simple verification for
such sentences. The exact complexity of deciding this set remains to be frustrat-
ingly unknown. Of course, deciding set VI is no harder than deciding two instances
of OSM:

(φ ∈ PSM ∩ OSM) ⇔ (φ ∈ OSM & ¬φ ∈ OSM)

So deciding set VI is no harder than deciding validity of the respective logic. Alas,
we are unable to produce any hardness results for this class for any of the logics
considered.

MC.
Since OSM and PSM are in 2EXPTIME and the latter is closed under finite

intersections, set VI is in 2EXPTIME.

PML.
We argue as for set V to see that deciding set VI is in EXPSPACE.

PL.
Since OSM and PSM are in coNP and coNP is closed under finite intersections,

set VI is in coNP.

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–19 15

3.6 Experimental data

With the decision problems at hand, experimental data are probably not obtainable
with ease. Still, we wanted to get a feel for how many formulas of a given size are
in OSM and in the sets V and VI. We used Perl scripts to randomly generate “all”
formulas of PL in sizes ranging from 1 to 5 where “size” refers to the number of
occurrences of logical connectives in the formula. These scripts then performed a
brute-force check for membership of sets of interest. This showed that about 75%
of those formulas are in OSM and about the same percentage are in PSM, whereas
about 50% of formulas were in PSM∩OSM. Of the formulas generated, only about
2.45% were in the NP-complete set PL \ (PSM ∪ OSM). Our results indicate that
less formulas are in the latter set as the number of occurrences of logical operators
in these formulas increases.

3.7 Summary of results

The complexity results shown in this paper are summarized in Figure 5. These
results illustrate that we cannot issue any exact complexity results, apart from
those for propositional logic for sets PSM and OSM (coNP-complete) and set PL \
(PSM ∪ OSM) (NP-complete). Our hardness results either exhibit an exponential
gap for upper bounds (for MC and PML) or a believed gap in the Boolean hierarchy
over NP (for PL). One can also see that semantic self-minimization, the question
of whether a formula and its negation are in PSM, lacks any hardness results at
present.

4 Related work

The partial models, their refinement notion, and the compositional semantics for
partial models presented in this paper were introduced (for CTL, a fragment of MC)
in [7]. Generalized model checking, its complexity analysis, and a model-checking
algorithm for it were then presented in [8] for linear-time and branching-time tem-
poral logics. Partial models, their refinement, and temporal logic semantics were
already developed for labelled transition systems in [17] and for Kripke structures in
[9,10]. Partial versions of models that have labels on transitions as well as on states
were discussed in [13]. The notion of semantic minimization, as presented in this
paper, was proposed and shown to exist for propositional logic, propositional modal
logic, and the propositional modal mu-calculus in [12]. The demonstration that
practically relevant temporal logic specifications are by and large pessimistically
self-minimizing was given in [5].

Blamey [6] studied partial-valued logics and their applications to linguistics and
model theory and proved the existence of semantic minimizations (in our terminol-
ogy) for propositional logic. The notion of supervaluational meaning was defined
and studied by van Fraassen [21]; it is the definitional template for the generalized
model checking judgements for temporal logics in this paper. Reps et al. [20] use
BDD-based prime-implicant algorithms for a more efficient implementation of the

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–1916

Results for MC:
2EXPTIME, EXPTIME-hard EXPTIME-complete 2EXPTIME

OSM VAL PSM ∩ OSM

PSM UNSAT

OSM \ (VAL ∪ PSM)

PSM \ (UNSAT ∪ OSM)

MC \ (PSM ∪ OSM)

Results for PML:
EXPSPACE, PSPACE-hard PSPACE-complete EXPSPACE

OSM VAL PSM ∩ OSM

PSM UNSAT

OSM \ (VAL ∪ PSM)

PSM \ (UNSAT ∪ OSM)

PML \ (PSM ∪ OSM)

Results for PL:
DP, coNP-hard NP-complete coNP-complete coNP

OSM \ (VAL ∪ PSM) PL \ (PSM ∪ OSM) VAL PSM ∩ OSM

PSM \ (UNSAT ∪ OSM) UNSAT

OSM

PSM

Fig. 5. Complexity results for PSM, OSM, and for the partition induced by VAL and PSM; the three tables
present these results for MC, PML, and PL (respectively).

computation of semantic minimizations in propositional logic.
In [3,2,4], modal and mixed transition systems serve as partial models and the

following decision problems are studied:

• (Common implementation) Do finitely many models have a common transition
system as refinement? This is EXPTIME-complete for both mixed and modal
transition systems [4].

• (Consistency) Does a model have a transition system as a refinement? This is
trivial for modal transition systems, and EXPTIME-complete for mixed transition
systems [4].

• (Thorough refinement) Are all transition systems that refine one model also re-
finements of another model? This is EXPTIME-complete for mixed transition
systems [4], and only known to be PSPACE-hard for modal transition systems
[2,3] at the time of writing.

5 Conclusions

We presented two notions of satisfaction for partial state spaces – a precise but
expensive one, and a cheap but imprecise one. We then asked how complex it is
to decide whether a given property yields the same satisfaction result, for all par-
tial state spaces, in both notions. We showed that this problem is connected to
the validity problem of the respective temporal logic but that the actual picture is

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–19 17

more complex. For the propositional modal mu-calculus and propositional modal
logic we showed that deciding optimistic and pessimistic self-minimization is at least
as hard as the respective validity problems, but that we can show membership of
this decision problem only for a complexity class exponentially higher than that.
For semantic self-minimization, we could not show a hardness result for any logic
considered. For propositional logic we could show that optimistic and pessimistic
self-minimization both match the complexity of validity and that the set of formu-
las that are neither optimistically nor pessimistically self-minimizing matches the
complexity of satisfiability. We also discovered that two sets, for which we had ex-
ponential gaps for the propositional modal mu-calculus and for propositional modal
logic, are coNP-hard sets in DP in the case of propositional logic.

Acknowledgments

We expressly thank the anonymous referees for their thoughtful comments, which
helped to improve the presentation and clarity of this paper. A preliminary version
of this paper, with all results reported in this final version, appeared in the workshop
proceedings of the Seventh International Workshop on Automated Verification of
Critical Systems, held in Oxford, England, from 10-12 September 2007. The work
reported here is already published as Chapter 4 of the first author’s PhD thesis [1].

References

[1] A. Antonik. Decision problems for partial specifications: empirical and worst-case complexity. PhD
thesis, Imperial College London, Department of Computing, London, United Kingdom, October 2008.

[2] A. Antonik, M. Huth, K. G. Larsen, U. Nyman, and A. Wasowski. 20 Years of Mixed and Modal
Specifications. Bulletin of the European Association for Theoretical Computer Science 95:94–129, July
2008.

[3] A. Antonik, M. Huth, K. G. Larsen, U. Nyman, and A. Wasowski. Complexity of decision problems
for mixed and modal specifications. In Proc. of the 11th International Conference on Foundations
of Software Science and Computation Structures, volume 4962 of Lecture Notes in Computer Science
pages 112-126. Springer Verlag, March 2008.

[4] A. Antonik, M. Huth, K. G. Larsen, U. Nyman, and A. Wasowski. EXPTIME-complete Decision
Problems for Mixed and Modal Specifications. In Proc. of the 15th International Workshop On
Expressiveness in Concurrency (2008), to appear in ENTCS.

[5] A. Antonik and M. Huth. Efficient Patterns for Model Checking Partial State Spaces in CTL & LTL.
ENTCS 158:41–57, Elsevier and Science Direct, 2006.

[6] S. Blamey. Partial-Valued Logic. PhD thesis, University of Oxford, Oxford, England, 1980.

[7] G. Bruns and P. Godefroid. Model Checking Partial State Spaces with 3-Valued Temporal Logics.
In Proc. of the 11th Conference on Computer Aided Verification, volume 1633 of Lecture Notes in
Computer Science, pages 274–287. Springer Verlag, July 1999.

[8] G. Bruns and P. Godefroid. Generalized Model Checking: Reasoning about Partial State Spaces. In
Proc. of the 11th International Conference on Concurrency Theory, volume 1877 of Lecture Notes in
Computer Science, pages 168–182. Springer Verlag, August 2000.

[9] D. Dams. Abstract interpretation and partition refinement for model checking. PhD thesis, Technische
Universiteit Eindhoven, The Netherlands, 1996.

[10] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM TOPLAS,
19:253–291, 1997.

[11] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in Property Specifications for Finite-state
Verification. In Proc. of the 1999 International Conference on Software Engineering, pages 411-420,
IEEE Computer Society Press, May 1999.

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–1918

[12] P. Godefroid and M. Huth. Model Checking Vs. Generalized Model Checking: Semantic Minimizations
for Temporal Logics. In Proc. of LICS’05, pages 158–167, Chicago, Illinois, 26-29 June 2005. IEEE
Computer Society Press.

[13] M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: a foundation for three-valued
program analysis. In D. Sands, editor, Proc. of the 10th European Symposium on Programming, pages
155–169. Springer Verlag, April 2001.

[14] S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.

[15] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science, 27:333–354, 1983.

[16] O. Kupferman and M. Y. Vardi. Vacuity Detection in Temporal Model Checking. In Proc. of the 10th
IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design and Verification,
volume 1703 of Lecture Notes in Computer Science, pages 82–96, Springer Verlag, 1999.

[17] K. G. Larsen and B. Thomsen. A modal process logic. In Proc. of the 13th Annual Symposium on
Logic in Computer Science, pages 203–210, IEEE Computer Society Press, 1989.

[18] C. H. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets of complexity).
In Proc. of the fourteenth annual ACM symposium on Theory of Computing, pages 255–260, San
Fransisco, California, ACM Press, 1982.

[19] C. H. Papadimitriou and D. Wolfe. The Complexity of Facets Resolved. Journal of Computer and
System Sciences 37:2–13 (1998).

[20] T. Reps, A. Loginov, and M. Sagiv. Semantic Minimization of 3-Valued Propositional Formulae. In
Proc. of the 17th Annual IEEE Symposium on Logic in Computer Science, pages 40–51, Copenhagen,
Denmark, 22-25 July 2002. IEEE Computer Society Press.

[21] B. van Fraassen. Singular terms, truth-value gaps, and free logic. J. Phil., 63(17):481–495, September
1966.

A. Antonik, M. Huth / Electronic Notes in Theoretical Computer Science 250 (2009) 3–19 19

	Introduction
	Background
	Decision Problems
	Sets I and II.
	Set OSM.
	Set III.
	Set V.
	Set VI.
	Experimental data
	Summary of results

	Related work
	Conclusions
	References

