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Abstract 

Application of modified integral neutron kinetic model to calculate principal characteristics of pulsed coupled reactor system consisting 
of pulsed reactor and subcritical block is discussed. The model is based on the use of respective time-dependent kernels of integral equation 
for reactor power and space-time Green’s function for the subcritical block. It is possible to reduce the set of integral equations to the set 
of elementary algebraic and first-order differential equations by using exponential approximation of the kernels and Green’s function. 

Approximations of «inertialess» reactivity dumping and jump reactivity boost on prompt neutrons are used as the «reactivity-power»
feedback in order to close the mathematical model. This allows integrating corresponding kinetic equations in analytical form notwithstanding 
the fact that the kinetic equation for reactor is nonlinear. 

Analytical relations allowing estimating basic characteristics of the system such as energy and maximum pulse power in the reactor and 
in the subcritical block with accuracy sufficient in engineering practices were obtained. 

The performed calculations showed applicability of the analytical dependences of energy characteristics of the system on the impact 
coefficient of subcritical block on the reactor, on the lifetime of neutrons in the reactor and on the «time» constant of the block for fixed 
value of pulse energy in the reactor. The obtained ratio is valid for the reactor within the whole range of variation of system parameters while 
for the subcritical block it is correct only for the system operated with fast neutron spectrum in the reactor and with thermal neutron spectrum 

in the subcritical block when the so-called “delta” approximation of the reactor pulse is realized. In the case when such approximation is 
not valid the “Gaussian” approximation to the shape of the reactor pulse is applied for which more accurate analytical formulas were also 
obtained for estimation of maximum pulse energy in the block. These formulas depend on the ratio of duration of start-up period of the pulsed 
coupled reactor system to the value of “time” constant of the subcritical block and are correct for the systems with similar neutron spectra. 

The obtained analytical relations can be applied for optimization of parameters of coupled reactor-laser systems. 
Copyright © 2016, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute). Production and hosting by 
Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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The use of the modified integral kinetics model [1–4] ap-
ears to be the most suitable for description of kinetics in
he “fast pulsed reactor – thermal subcritical block” system
5–13] . 
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 r (t ) = 

∫ t 

0 
[ αrr (t − τ )+ αrr 

s (t − τ ) + αrb (t − τ )] · N r (τ ) dτ, 

 b ( r , t ) = 

∫ t 

0 
G br (r, t − τ ) · N r (τ ) dτ. (1) 

Assumption that intrinsic neutron distribution has sufficient
ime to shape in the reactor at any time moment division
f variables into the amplitude and form-functions (as it is
ccepted in the derivation of usual equations of point kinetics
odel) [5–11,14] is valid was the main hypotheses used in the

erivation of Eq. (1) . No such restrictions were imposed on
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the space-time neutron distribution in the deeply subcritical
block. 

In Eq. (1) N r ( t ) is the reactor power (or fission rate) at
the time moment t ; N b ( r , t ) is the power of the subcritical
block at the point with coordinate r at the time moment t ;
G br ( r , t ) has the meaning of space-time distribution of sec-
ondary fissions in the subcritical block under the condition
that primary fission occurs in the nuclear reactor (analogue
of Green’s function for the subcritical block). Integral of this
function is described by the following spatial dependence: 

M(r) = 

∫ ∞ 

0 
G br (r, t ) dt , 

which shows the distribution of total number of fissions taking
place in the point with coordinate r of the subcritical block
normalized to one fission event in the reactor. If this function
is integrated over the volume of the block V b than the zero
moment of Green’s function equal to the total number of
fissions in the subcritical block per one fission in the reactor
is obtained as follows: 

M b = 

∫ 

V b 

M(r) dr = 

∫ ∞ 

0 

∫ 

V b 

G br (r, t ) drd t . (2)

The following characteristic of this process defined as the
“time” constant of the block will be needed in the subsequent
examination: 

l b = 

∫ ∞ 

0 

∫ 

V b 

t G br (r , t ) dr dt 

/ ∫ ∞ 

0 

∫ 

V b 

G br (r , t ) dr dt . (3)

Special explanation is needed for the functions αrr ( t ),
αrr 

s ( t ) and αrb ( t ). 
Function αrr ( t ) is the distribution of secondary fissions in

the reactor core under the condition that primary fission has
also occurred in the core; it is assumed here that the sub-
critical block is completely removed. Integral of this function
has the straightforward physical meaning of effective neutron
multiplication factor in the “bare” reactor k rr and the mean
neutron lifetime in such reactor is expressed as follows [2] : 

l rr = 

∫ ∞ 

0 
t αrr (t ) dt 

/ ∫ ∞ 

0 
αrr (t ) dt . 

Function αrr 
s ( t ) is the distribution of secondary fissions

in the reactor core under the condition that primary fission
has also occurred in the core following which fission neu-
trons penetrated the subcritical block and after reflection in
the block (and, possibly, moderation as well) they “returned”
in the reactor and induced new fissions there. Thus, function
αrr 

s ( t ) describes the effects of the subcritical block serving as
neutron reflector and moderator on the reactor performance.
In monograph [2] integral of this function �k rr 

s is called
the “passive” component of reactivity induced in the reac-
tor by the subcritical block serving as neutron reflector and
the mean lifetime of neutrons reflected, moderated and, after
that, returned in the reactor core is described by the following
parameter: 

l rr 
s = 

∫ ∞ 

0 
t αrr 

s (t ) dt 

/ ∫ ∞ 

0 
αrr 

s (t ) dt . 
Function αrb ( t ) is the distribution of secondary fissions in
he reactor core induced by fission neutrons from the subcrit-
cal block which, in turn, were born from the primary fission
n the reactor core. Integral of this function k rb is called the
active” component of reactivity induced in the reactor by the
ubcritical block serving as neutron multiplier and the mean
ifetime of such neutrons in the reactor core is described by
he following parameter: 

 rb = 

∫ ∞ 

0 
t αrb (t ) dt 

/∫ ∞ 

0 
αrb (t ) dt . 

ifferential kinetics model 

Let us examine the first equation in the set ( 1 ). 
In order to simplify its solution it is convenient to approx-

mate functions αrr ( t ), αrr 
s ( t ) and αrb ( t ) in the form of expo-

entials [2] describing different processes of prompt neutron
oderation, diffusion and transport including, in the general

ase, the processes on delayed neutrons. Taking into consid-
ration that only fast processes induced by prompt neutrons
ill be dealt with in the subsequent analysis we will neglect

he contribution from delayed neutrons in respective kernels. 
Besides that, we can combine kernels αrr ( t ) and αrr 

s ( t ) into
ne kernel αrr ( t ) = αrr ( t ) + αrr 

s ( t ) and limit the analysis with
ne-exponential approximation as follows: 

 r (t ) = ( k r / l r ) exp 

{ −t/ l r } ; a rb (t ) = ( k rb / l rb ) exp 

{ −t/ l rb } . (4)

In such case the first equation in the set ( 1 ) can be rewritten
n the form of the following set of algebraic and first-order
ifferential equations the methods for solution of which are
ell developed: 

N r (t ) = n r (t ) + n rb (t ) , 

l r d n r /dt = k r N r − n r , 

 rb d n rb /dt = k rb N r − n rb , (5)

here n r ( t ) is the intensity of fission reactions in the reac-
or induced by intrinsic neutrons and neutrons undergoing re-
ection in the subcritical block and subsequently initiating
ssions in the reactor; k r = k rr + �k rr 

s is the effective neu-
ron multiplication factor in the reactor taking into account
he subcritical block serving as neutron reflector; l r = ( l rr k rr 

 l rr 
s �k rr 

s )/( k rr + �k rr 
s ) is the mean neutron lifetime in the

eactor taking into account neutrons reflected from the sub-
ritical block; n rb ( t ) is the intensity of fission reactions in
he reactor resulting from neutrons born in the reactor from
he primary fission, penetrating the subcritical block and in-
ucing fissions there with neutrons produced in secondary
ssions returning back the reactor and inducing secondary
ssions there. 

In the case of inertialess dumping of reactivity the power
eedback can be written in the following form: 

 r = k 0 r (t ) − γ

∫ t 

0 
N r (t ) dt = k 0 r (t ) − γ E r (t ) . (6)

here γ is the quasi-static coefficient of reactivity dumping;
nd E r ( t ) is the energy released by the time moment t . 
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Thus, taking into account ( 6 ) the initial set of kinetics
quations will acquire the following form: 

N r (t ) = n r (t ) + n rb (t ) , 

l r d n r /dt = ( k 0 r − g E r (t )) N r (t ) − n r (t ) , 

 rb d n rb /dt = k rb N r (t ) − n rb (t ) . (7) 

Let us assume for simplicity that variation of reactivity at
nitial time moment occurs as the jump and k 0 r ( t ) = k r =
onst; initial conditions are following: n r (0) = n 0 , n rb (0) = 0.

If Green’s function integrated over the spatial coordinate
s represented in the following form: 

 b (t ) = 

∫ 

V b 

G br (r, t ) dr = M b exp {−t/ l b } / l b . 

Than the second equation in the set ( 1 ) can also be reduced
o ordinary differential equation as follows: 

 b d N b /dt = M b N r ( t ) − N b ( t ) , (8) 

here N b ( t ) is the total power of the subcritical block at the
ime moment t . 

It has to be noted that equations for description of power
ehavior in the separate laser-active element will have the
orm similar to ( 8 ). 

nalytical estimations 

Integrating Eqs. (7) and ( 8 ) and neglecting the initial and
nal values of power of the reactor and the subcritical block
e obtain the following expressions for total energies released
er one pulse in the reactor and in the subcritical block, re-
pectively: 

 

0 
r = 2(�k r + k rb ) /γ , (9) 

 

0 
b = M b E 

0 
r , (10) 

here �k r = k 0 r –1. 
Let use determine the maximum power of reactor pulse

 r 
m . We will use for this purpose the condition dN r / dt r m =

 and, as well, the approximate relation binding the energy
 r 
m released by the time moment corresponding to the max-

mum of reactor pulse t r m and the maximum power N r 
m in

he pulsed reactor operated in self-quenching mode [15–19] :
 r 
m = 2 τ r N r 

m , where τ r is the initial period of excursion of
he “pulsed reactor – subcritical block” system realized prior
o the triggering of power and temperature feedbacks. 

Omitting the transformations let us present the solution for
 r 
m : 

 r 
m = [�k r l rb + �k rb l r + 2(�k r + k rb ) τr ] / [2γ τr ( l rb + τr )] . 

(11) 

here τ r can be found from the solution of standard equation
or the set ( 7 ) in which the element γ E r ( t ) can be neglected: 

r = 2 [ �k r / l r + �k rb / l rb 

+ 

√ 

(�k r / l r + �k rb / l rb ) 
2 + 4(�k r + k rb ) / ( l r l rb ) 

]−1 

. (12) 
Maximum value of function n rb 
m realized at the time mo-

ent t b m different from t r m can be found using the approxi-
ations for the “strongly” and “loosely”-coupled system de-

cribed in [16] . The resulting expression for estimation of
 rb 

m has the following form: 

 

m 

rb = 

{(
E 

0 
r − 2 k rb 

)
k rb / l rb i f 0 < k rb < k s rb 

γ E 

0 2 
r / ( 8 l rb ) i f k rb > k s rb 

. (13) 

here parameter k rb 
s = γ E 

0 
r /4 conditionally separates the

egions of “loose” and “strong” coupling of the system. 
Let us address now Eq. (8) describing variation of power

n the subcritical block. This equation completely coincides
ith the third equation in ( 7 ) for n rb ( t ) with l rb = l b if the

ollowing designation is introduced N b ( t ) = ( M b / k rb ) �n rb ( t ).
hen formulas ( 13 ) can be used for estimation of maximum
ower of the unit, which acquire the following form: 

 

m 

b = 

{(
E 

0 
r − 2 k rb /γ

)
M b / l b i f 0 ≤ k rb ≤ k s rb . 

M b γ E 

0 2 
r / ( 8 l b k rb ) i f k rb > k s rb . 

(14) 

It has to be noted, however, that estimation ( 14 ) is valid
nly for the case of “loosely”-coupled “reactor-block” system
hen the following relation is satisfied: 

= τr / l b << 1 . (15) 

Physically the above condition is equivalent to the situa-
ion when initial period of excursion of the coupled system
s much smaller than the time constant of the block and in
athematical terms it gives the grounds for neglecting the

ast element in ( 8 ) (approximation of “delta-shaped” reactor
ulse). In practical terms the relation ( 15 ) is realized in the
ases when neutron spectrum in the reactor is fast while that
n the block is thermal. 

If, however, the relation ( 15 ) is not satisfied, than even in
he completely “uncoupled” system (with k rb = 0) estimation
 14 ) will be unsatisfactory and the shape of reactor pulse must
e taken into account. 

In order to do this the approach accepted in Ref. [2] can
e used and the shape of the fast part of the pulse in the
eactor can be approximated by the Gaussian as follows: 

 r ( t ) = N r 
m exp {−π( t − t r 

m ) 
2 
/ (16 τr 

2 ) } , (16)

ith maximum corresponding to t r m . 
Application of representation ( 16 ) allows integrating

q. (8) and finding the expression for N b ( t ) in the follow-
ng analytical form: 

 b (t ) = 

M b N r 
m 

l b 

∫ t 

−∞ 

exp {−πξ 2 / (16 τr 
2 ) −(ξ − t + t r 

m ) / l b } dξ

= 2 N r 
m ε M b exp { 4 ε 2 /π − (t − t r 

m ) / l b } 
× [

1 + erf ( 
√ 

π(t − t r 
m ) / (4 τr ) − 2ε/ 

√ 

π) 
]
. (17) 

In order to determine the maximum of function ( 17 ) it is
ecessary to find the time between maximums of pulses in
he block and in the reactor �t br = t b m − t r m corresponding
o it. This time interval can be found from the solution of
ranscendental equation as follows: 

ε ( 1 + erf( y ) ) = exp ( −y 2 ) . (18) 
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Fig. 1. Dependences of N r 
m on k rb calculated numerically using model ( 7 ) 

(points) and using formula ( 13 ) (solid curves) for l b = 10 −3 and for different 
l r = 1.5 ·10 −8 (1); 1 ·10 −7 (2), 5 ·10 −7 (3) and 1 ·10 −6 s (4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Dependences of N r 
m on k rb calculated numerically using model ( 7 ) 

(points) and using formula ( 13 ) (solid curves) for k rb = 1.5 ·10 −3 and for 
different l r = 1.5 ·10 −8 (1); 1 ·10 −7 (2), 5 ·10 −7 (3) and 1 ·10 −6 s (4). 

Fig. 3. Numerical (points) and analytical estimations of N b 
m ( k rb ) for 

l r = 1.5 ·10 –8 (curve 1); 1 ·10 –7 (2), 5 ·10 –7 (3) and 1 ·10 –6 s (4). 

 

v  

o  

d  

c
 

c  

t  

f  

c  

d  

a  

a  

t
 

m  

k  

i  

(  

r  
Where y = π1/2 �t br /(4 τ r ) – 2 ε/ π1/2 . 
Using expressions ( 17 ) and ( 18 ) it is not difficult to demon-

strate that the value of maximum pulse power in the block is
described by the following expression: 

N b 
m = N r 

m · M b · exp { −π�t br 
2 / 16 } . 

Eq. (18) does not have analytical solution but, however,
certain approximate estimations can be made for different val-
ues of ɛ . Then general solution for N b 

m will have the follow-
ing form: 

N b 
m (ε) = N r 

m M b 

×

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

4ε exp {−4 ε 2 /π

−4ε 
√ 

ln (1 / (4ε)) / 
√ 

π} , 0 < ε ≤ 0. 1617 ;
exp 

{
2ε − 1 − 4 ε 2 /π

}
, 0. 1617 ≤ ε ≤ 0. 9133 ;

exp 

{−π/ (16 ε 2 ) 
}
, ε > 0. 9133 . 

(19)

Numerical calculations 

Calculations of model system consisting of pulsed reactor
and subcritical block were performed in order to verify ap-
plicability of the obtained relations in the estimation of N r 

m 

and N b 
m for different values of k rb , l r and l b . Coefficient of

reactivity dumping γ = 0.5 ·10 

−10 J –1 , reactor pulse energy
E 

0 
r = 6 MJ and the Green’s function zero moment M b = 1

were assumed to be constant in the calculations. 
Dependences of maximum reactor pulse power N r 

m on the
k rb coefficient and on the time constant l b calculated numeri-
cally using the model ( 7 ) with application of MathCad com-
plex [20] and using formulas ( 11 ) and ( 12 ) are presented in
comparison in Figs. 1 and 2 , respectively. 

It has to be noted that calculations of N r 
m presented in

Fig. 2 were performed for the value of k rb = 1.5 ·10 

−3 because
in this case the reactor does not “undergo excursion” into the
prompt super-criticality conditions ( �k r = γ E 

0 
r /2 – k rb = 0)

and the pulse shape in the reactor significantly differs from
Gaussian. 
However, as it is evident from the figures, solution ( 11 ) is
alid for all the examined values of parameters for the cases
f both “loosely”- and “strongly”-coupled systems [2,16] with
iscrepancy between the analytical estimation and numerical
alculation not exceeding 1–3% anywhere. 

Results of calculations of maximum power in the subcriti-
al block are presented in Fig. 3 depending on k rb with fixed
ime constant of the block equal to l b = 10 

−3 s and with dif-
erent values of neutron lifetimes in the reactor. Results of
alculations performed using model ( 7 ) are represented with
ots while the curves represent the estimation made using
nalytical formulas as follows: solid curve 1 was calculated
ccording to formula ( 14 ) and dashed curves 2–4 were ob-
ained using formulas ( 19 ). 

As it was demonstrated by the performed calculations, for-
ula ( 14 ) produces good estimation for N b 

m for all values of
 rb for the cases when the initial period of system excursion
s significantly shorter that the “time” constant of the block
 е << 1) which is realized with fast neutron spectrum in the
eactor core and with thermal neutron spectrum in the block.
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Fig. 4. Numerical calculations (points) and analytical estimations (curves) of 
N b 

m ( k rb ) for l b values equal to 10 −5 (curve 1), 10 −4 (2), 10 −3 (3) and 10 −2 s 
(4). 
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Fig. 5. Pulses in the reactor (1) and in the block (2) for l r = 1.5 ·10 −8 s, 
k rb = 1.5 ·10 −3 and l b = 10 −3 s. 

Fig. 6. Numerical calculations (points) and analytical estimations (curves) of 
N b 

m ( l b ) for l r equal to 1.5 ·10 −8 (curve 1); 1 ·10 −7 (2), 5 ·10 −7 (3) and 1 ·10 −6 s 
(4). 
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n the case when ε is comparable to or is greater than unity
curves 2–4) good results are produced by formula ( 19 ). 

Results of calculations of dependence of maximum unit
ower on k rb for fixed l r = 1.5 ·10 

–8 s and different values of
time” constant of the block are presented in Fig. 4 . Dots
epresent results of numerical modeling according to model
 7 ); analytical estimations were made using formulas ( 14 )
solid curves) and ( 19 ) (dashed lines). Comparison shows that
ormula ( 14 ) produces satisfactory (not worse than 20–25%)
greement with numerical calculations for l b ≥ 10 

−4 s (curves
–4). Formula ( 19 ) must be applied for l b < 10 

−4 s (curve
) when neutron spectrum in the block is not thermal any
ore ( 19 ). The latter formula produces in turn unsatisfac-

ory estimations for intermediate region of coupling between
he block and the reactor ( k r b ≈ 1.5 ·10 

−3 , curves 3 and 4).
his is explained by the fact that Gaussian approximation of

eactor pulse shape of ( 16 ) is not satisfactory in this case
 Fig. 5 ). 

Calculations of maximum power of the block dependent
n its “time” constant were performed in order to investigate
pplicability of analytical formulas in the intermediate region
or fixed k rb = 1.5 ·10 

−3 and different values of l r ( Fig. 6 ). Re-
ults of numerical modeling are presented, as in the preceding
ases, as dots, while curves represent the estimations obtained
sing analytical formulas ( 14 ) (solid curve) and ( 19 ) (dotted
urve). Analysis of calculated results confirms that for small
alues of neutron lifetimes in the reactor and large “time”
onstants of the block (when ε << 1 conditions is realized)
ood estimations are produced by formula ( 14 ) (solid curve)
hile for ε of the order or in excess of 1 good estimations

re produced by formula ( 19 ). 
Analysis of the performed calculations demonstrates the

vident enough result that in order to enhance pulse char-
cteristics of the subcritical block (i.e. simultaneous increase
f energy and maximum power of the block at fixed pulse
nergy in the reactor) increase of zero moment from Green
unction M b , decrease of “time” constant of the unit l b and of
mpact factor k rb are needed. This is not difficult to achieve
n the calculations by maximum “uncoupling” of the reactor
rom the subcritical block at k rb → 0 and is fairly difficult to
e implemented practically. 

onclusion 

Analytical relations were obtained for estimation of ener-
ies and values of maximum pulse power in the coupled reac-
or system consisting of pulsed reactor and subcritical block.
he performed calculations demonstrated accuracy acceptable 

or practical applications. The obtained relations are applica-
le both for systems with fast reactor and thermal subcritical
lock, and for systems with close neutron spectra of compo-
ent parts. 

The obtained analytical relations can be useful in the op-
imization of energy characteristics of coupled reactor-laser
ystems. 
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