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Abstract

If 4 is a finite alphabet and I is a finitely generated amenable group, Ceccherini-Silberstein,
Machi and Scarabotti have proved that a local transition function defined on the full shift 47
is surjective if and only if it is pre-injective; this equivalence is the so-called Garden of Eden
theorem. On the other hand, when I is the group of the integers, the theorem holds in the case
of irreducible shifts of finite type as a consequence of a theorem of Lind and Marcus but it no
longer holds in the two-dimensional case.

Recently, Gromov has proved a GOE-like theorem in the much more general framework of
the spaces of bounded propagation. In this paper we apply Gromov’s theorem to our class of
spaces proving that all the properties required in the hypotheses of this theorem are satisfied.

We give a definition of strong irreducibility that, together with the finite-type condition, it
allows us to prove the GOE theorem for the strongly irreducible shifts of finite type in 4”7
(provided that I' is amenable). Finally, we prove that the bounded propagation property for a
shift is strictly stronger than the union of strong irreducibility and finite-type condition.

(© 2002 Published by Elsevier Science B.V.

1. Introduction

A cellular automaton (CA) is given by the set AT of all functions defined on (the
Cayley graph of) a finitely generated group I" with values in a finite alphabet A and by
a transition function ©: A" — A" which is local (i.e. the value of 1(c), where c € A" is
a configuration, at a point y € I' only depends on the values of ¢ at the points of a fixed
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neighborhood of 7). The Garden of Eden (GOFE) theorem, as proved in [1] (see also
[71), states that if I" is a finitely generated amenable group, then the local transition
function of a CA has a GOE pattern (i.e. a configuration with finite support that has
no pre-image under 7), if and only if it has two mutually erasable patterns (that is,
a sort of non-injectivity of the transition function on the “finite” configurations). This
theorem is a generalization of the theorem that Moore [8] and Myhill [9] proved in
the case I' = Z°.

Instead of the non-existence of mutually erasable patterns, we deal with the notion
of pre-injectivity (a function 7:X C A" — A" is pre-injective if whenever two config-
urations ¢,¢ € X differ only on a finite non-empty subset of I', then t(c)# 1(¢)); this
notion has been introduced by Gromov [5]. In fact, these two properties are equivalent
for local functions defined on the full shift, but in the case of proper subshifts the
former may be meaningless. On the other hand, the non-existence of GOE patterns is
equivalent to the non-existence of GOE configurations, that is to the surjectivity of the
transition function. Hence, in this language, the GOE theorem states that 7 is surjective
if and only if it is pre-injective. We call Moore’s property the implication surjective =
pre-injective and Myhill’s property the inverse one. We call Moore—Myhill property
(M M-property) the union of these two properties and this last is an invariant of the
shift.

As is well known, A" is a compact metric space, and the local transition func-
tions are those that are both continuous and commute with the natural action of I’
on A", We investigate the extent to which the MM-property holds for the closed and
I'-invariant subsets of 4, the so-called shifts. As proved in [2] it is possible to prove,
as a consequence of a theorem due to Lind and Marcus [6, Theorem 8.1.16], that the
irreducible shifts of finite type in 4% have the MM-property.

Recently, Gromov has proved a GOE-like theorem in a setting of graphs much more
general than Cayley graphs, for alphabets not necessarily finite and for subset of the
“universe” not necessarily invariant under translation. Because of the weakness of these
hypotheses, in his theorem properties that are stronger than ours are needed, for example
the bounded propagation of the spaces. In Section 3 we apply Gromov’s theorem to
our cellular automata proving that all the properties required in the hypotheses of this
theorem are satisfied.

In Section 4, we generalize the previous result showing that the MM-property holds
for strongly irreducible shifts of finite type of A’ (and we also show that strong
irreducibility together with the finite type condition is strictly weaker that the bounded
propagation property).

In this paper the notation 4 C B means that the set 4 is contained in the set B and
A C B means that A CB and 4 # B.

2. Shift spaces and cellular automata

In this section, we recall some definitions and we state some preliminary results
about our class of CA.
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If I' is a finitely generated group and % is a fixed finite set of generators for I,
then each y € I" can be written as
y=xAx%2 x>, (1)

—Th in

where the x;;’s are generators and 0; € Z. The length of y (with respect to Z') is defined
as the natural number

Iyl := min{|d;]| + [02| + -+ + |8a] | y is written as in (1)},

so that I' is naturally endowed with a metric space structure, with the distance given
by

disty (o B) := [Ja~"'B

X (2)
and
D ={yerl||ylz <n}

is the disk of radius n centered at 1. Notice that Dy is the set Z UZ ' U{1}. The
asymptotic properties of the group being independent on the choice of the set of
generators &, from now on we fix a set Z which is also symmetric (i.e. Z~'=%)
and we omit the index Z in all the above definitions.

For each ye I, the set D, provides, by left translation, a neighborhood of 7y, that
is the set yD, = D(y,n), where D(y,n) is the disk of radius »n centered at y. Indeed, if
a €7D, then a =7 with ||B||<n. Hence dist(e,7)= [~ !y|| =||f~"|| <n. Conversely,
if o« € D(y,n) then ||y~'a| <n (that is y~ '€ D,), and =7y~ 'a.

Given a subset £ CI' and for each n € N we denote by

E™ .= |J D(o,n), E":={a€E|D(e,n) CE} and 0,E:=E"\E™"
aEE

the n-closure of E, the n-interior of E and the n-boundary of E, respectively; by
OfE:=E"™\E and 0,E:=E\E™",

the n-external boundary of E and the n-internal boundary of E, respectively. For all
these sets, we will omit the index n if n=1.

The Cayley graph of I', is the graph in which I' is the set of vertices and there is
an edge from y to 7 if there exists a generator x € Z such that y=yx. Obviously this
graph depends on the presentation of I'. For example, we may look at the classical
cellular decomposition of Euclidean space R” as the Cayley graph of the group Z”
with the presentation (a,...,a,|a:a; = a;a;).

If G=(7",&) is a graph with set of vertices ¥~ and set of edges &, the graph
distance (or geodetic distance) between two vertices vy,v, € ¥~ is the minimal length
of a path from v; to v,. Hence the distance defined in (2) coincides with the graph
distance on the Cayley graph of I

Let A be a finite alphabet; in the classical theory of cellular automata, the “universe”
is the Cayley graph of the free abelian group Z” and a configuration is an element of
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A7, that is a function ¢ : Z" — A assigning to each point of the graph a letter of 4. We
generalize this notion taking as universe a Cayley graph of a generic finitely generated
group I' and taking suitable subsets of configurations in A”. On this set we have a
natural metric and hence a topology. This latter is equivalent to the usual product
topology, where the topology in 4 is the discrete one. An element of A” is called a
configuration.

If ¢;,c; € AT are two configurations, we define the distance

1

dist(C], C2) = m,

where n is the least natural number such that ¢; #¢; in D,. If such an n does not
exist, that is if ¢; =c¢,, we set their distance equal to zero.
Observe that the group I' acts on A on the right as follows:

(cy)|o: = Clyo

for each c € A" and each y, 0 € I' (where C|, is the value of c at ).

Now we give a topological definition of a shift space (briefly shift); as stated in
Theorem 2.5, this definition is equivalent (in the Euclidean case) to the classical com-
binatorial one.

Definition 2.1. A subset X of A7 is called a shift if it is topologically closed and
I-invariant (i.e. XT =X).

For every X CAl and ECT, we set
Xp ={cplceX};

a pattern of X is an element of Xz where E is a non-empty finite subset of I'. The
set E is called the support of the pattern; a block of X is a pattern of X with support
a disk. The language of X is the set L(X) of all the blocks of X. If X is a subshift of
A%, a configuration is a bi-infinite word and a block of X is a finite word appearing
in some configuration of X.

Hence a pattern with support E is a function p:E—A. If yeI', we have that
the function p:yF — A defined as Plyy=Pla (for each o € E), is the pattern obtained
copying p on the translated support yE. Moreover, if X is a shift, we have that p € X,
if and only if p € Xg. For this reason, in the sequel we do not make distinction between
p and p (when the context makes it possible). For example, a word a; ...a, is simply
a finite sequence of symbols for which we do not specify (if it is not necessary), if
the support is the interval [1,#n] or the interval [—n, —1].

Definition 2.2. Let X be a subshift of 4”; a function 7: X — 4" is M-local if there
exists 0:Xp, — A such that for every c€ X and ye I’

(T(C))hz = 5((C>‘)‘DM) = 5(C|"/o:| 5Clyazs« -+ 5 Clyay, ),

where Dy = {o,..., 0}
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In this definition, we have assumed that the alphabet of the shift X is the same
as the alphabet of its image t(X). In this assumption there is no loss of generality
because if 7:X CA” — B, one can always consider X as a shift over the alphabet
AUB.

Definition 2.3. Let I' be a finitely generated group with a fixed symmetric set of
generators 2, let A be a finite alphabet with at least two elements and let Dy, the
disk in I" centered at 1 and with radius M. A cellular automaton is a triple (X, Dy, )
where X is a subshift of the compact space A", D, is the neighborhood of 1 and
7:X — X is an M-local function.

Let 7:X — A" be an M-local function; if ¢ is a configuration of X and E is
a subset of I', 7(c)z only depends on cjg+v. Thus we have a family of functions
(TE+M ZXE+M — T(X)E)Egl“-

There is a characterization of local functions that, in the one-dimensional case, is
known as the Curtis—Lyndon—-Hedlund theorem. A shift being compact, it holds for a
general local function and states that a function t:X — A" is local if and only if it
is continuous and commutes with the I'-action (i.e. for each ¢ € X and each yer,
one has 7(c’)=1(c)"). From this result, it is clear that the composition of two local
functions is still local. In any case, this can be easily seen by a direct proof that
follows Definition 2.2.

Now, fix y€ T and consider the function X — 4’ that associates with each ¢ €X
its translated configuration ¢’. In general, this function does not commute with the
I'-action (and therefore it is not local). Indeed, if I" is not abelian and yo # oy, then
(c")*#(c*)". However this function is continuous. In order to see this, if n>0, fix a
number m >0 such that yD, C D,,; if dist(c,¢)<1/(m + 1), then ¢ and ¢ agree on D,
and hence on yD,. If w€ D,, we have c|,, =¢},, and then Cfa :ET@( that is ¢’ and ¢’
agree on D, so that dist(c¢?,c”)<1/(n+ 1).

Observe that if X is a subshift of 4" and 7: X — 4" is a local function, then, by the
(generalized) Curtis—Lyndon—Hedlund theorem, the image Y :=1(X) is still a subshift
of A", Indeed Y is closed (or, equivalently, compact) and I'-invariant:

Y'=@x) =1 xH)=«x)=7.

Moreover, if 7 is injective then 7:X — Y is a homeomorphism; if ¢ € Y then ¢ =1(¢)
for a unique ¢ € X and we have

) = @) = @) = & = (@)

that is, t~! commutes with the I'-action. By the Curtis-Lyndon-Hedlund theorem,
7= is local. Hence the well-known theorem (see [11]), stating that the inverse of an
invertible Euclidean cellular automaton is a cellular automaton, holds also in this more
general setting. In the one-dimensional case, Lind and Marcus [6, Theorem 1.5.14] give
a direct proof of this fact.

This result leads us to give the following definition.
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Definition 2.4. Two subshifts X,Y C A" are conjugate if there exists a local bijective
function between them (namely a conjugacy). The invariants are the properties of a
shift invariant under conjugacy.

It is easy to prove that the topological definition of a shift space is equivalent to the
following combinatorial one involving the avoidance of certain forbidden blocks, this
fact is well known in the Euclidean case.

Theorem 2.5. A subset X C A is a shift if and only if there exists a subset F C |
AP such that X =Xz, where

neN

Xz ::{ceAr|c|“Dn§é97for every o € I', n € N}.

In this case, & is a set of forbidden blocks of X.

Now we give the first, fundamental notion of irreducibility for a one-dimensional
shift and we see how to generalize this notion to a generic shift.

Definition 2.6. A shift X C A% is irreducible if for each pair of words u, v € L(X), there
exists a word w € L(X') such that the concatenated word uwv € L(X).

The natural generalization of this property to any group I is the following.

Definition 2.7. A shift X C 4" is irreducible if for each pair of patterns p; € Xz and
D2 € Xr, there exists an element y € I' such that ENyF = and a configuration c € X
such that ¢z = p; and c¢,r = p>.

In other words, a shift is irreducible if whenever we have p;, p, € L(X), there exists
a configuration ¢ €X in which these two blocks appear simultaneously on disjoint
supports. This definition could seem weaker than Definition 2.6, in fact in the latter
one we establish that each word u € L(X') must always appear in a configuration on the
left of each other word of the language. In order to prove that the two definitions agree,
suppose that X C A% is an irreducible shift in accordance with Definition 2.7. If u, v are
words in L(X), there exists a configuration ¢ € X' such that ¢z =u and ¢z =v where
E and F are finite and disjoint intervals. If max £ < min F' then there exists a word
w such that uwv € L(X') (where w=c|; and [ is the interval [max £ + 1,min ' — 1]).
If, otherwise, max F' < min £ there exists a word w such that vwu € L(X); consider the
word vwu two times, there exists another word x such that vwu x vwu € L(X) and
hence uxv € L(X).

Now we give the fundamental notion of shift of finite type. The basic definition is
in terms of forbidden blocks; in a sense we may say that a shift is of finite type if
we can decide whether or not a configuration belongs to the shift only by checking
its blocks of a fixed (and only depending on the shift) size. This fact implies the
useful characterization of one-dimensional shifts of finite type, a sort of “overlapping”
property for the words of the language. As stated below, this overlapping property still
holds for a generic shift of finite type.
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Definition 2.8. A shift is of finite type if it admits a finite set of forbidden
blocks.

If X is a shift of finite type, since a finite set # of forbidden blocks of X has a
maximal support, we can always suppose that each block of % has the disk Dy, as
support (indeed each block that contains a forbidden block is forbidden). In this case
the shift X is called M-step and the number M is called the memory of X. If X is
a subshift of 4%, we define the memory of X as the number M, where M + 1 is the
maximal length of a forbidden word.

For the shifts of finite type in 4%, we have the following useful property.

Proposition 2.9 ([6, Theorem 2.1.8]). A shift X C A% is an M-step shift of finite type
if and only if whenever uv,ow € L(X) and |v| =M, then uvw € L(X).

It is easy to prove that this “overlapping” property holds more generally for subshifts
of finite type of A', as stated in the following proposition.

Proposition 2.10. Let X be an M-step shift of finite type and let E be a subset of I
If c1,c2 €X are two configurations that agree on 03,,E, then the configuration ¢ € A"
that agrees with ¢, on E and with ¢, on CE is still in X.

Corollary 2.11. Let X be an M-step shift of finite type and let E be a finite subset
of T's if pi, pr € Xgow are two patterns that agree on 03,,E, than there exist two
extensions ci,c; €X of pi and p,, respectively, that agree on (E.

Now we give the definition of entropy for a generic shift. This definition involves
the existence of a suitable sequence of sets that, as one can see, in the case of non-
exponential growth of the group can be taken as balls centered at 1 and with increasing
radius.

Let (E,),>1 be a sequence of subsets of I' such that | J E,=1T and

neN

omE,
lim|M |

n—o00 ‘En|

=0; 3)

if X C A" is a shift, the entropy of X respect to (E,),>: is defined as

. log | X;
ent(X) := lim sup M
n—o0 |En|
Condition (3) is necessary to prove the next theorem and hence that the entropy is
invariant under conjugacy; other aspects of its importance will be clarified in Section 4.

Theorem 2.12. Let X be a shift and ©:X — A" a local function. Then ent(t(X))<
ent(X) (that is, the entropy is invariant under conjugacy).
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Proof. Let t be M-local and let Y :=1(X); we have that the function tgsv : Xpov — Y,
is surjective and hence

Y, A% En.

< |XE,

< X | < X, |[X5: g,
From the previous inequalities we have

_ log|Xg,| | [3Ealog|A|
= |En| |En‘

log | Y,
|En

and hence, taking the maximum limit, ent(Y) <ent(X). [

Now we give the definition of a pre-injective function. This notion is equivalent to
the notion of non-existence of mutually erasable patterns used in the original works
of Moore [8] and Myhill [9]. Indeed they prove that a transition function 7 of a
Euclidean cellular automaton on a full shift admits two mutually erasable patterns if
and only if it admits a GOE pattern, that is a pattern without pre-image. Recall that
two different patterns with the same support are called t-mutually erasable if each
pair of configurations extending them and coinciding out of the support, have the same
image under 7.

In order to consider GOE-like theorems not in the whole of A but in a subshift
X C A", notice first that two patterns of X are not necessarily extendible by the same
configuration of X. Therefore, it could happen that two patterns with support F for
which there does not exist a common extension c|or, are T-mutually erasable although
the function t is bijective. The notion that seems to be a good generalization of the
non-existence of mutually erasable patterns, is that of pre-injectivity; it can be seen
that if X =4 then the non-existence of t-mutually erasable patterns is equivalent to
the pre-injectivity of .

Definition 2.13. A function 7:X C A" — 4! is called pre-injective if whenever cy,c; €
X and ¢; # ¢, only on a finite non-empty subset of I, then 1(c;) # t(c2).

One can prove (see [7, Theorem 5]) that a transition function on A” is surjective
if and only if there are no GOE patterns. It is easy to prove that this property holds
also for the local functions between shifts. Hence we can state the GOE theorem as
follows.

Theorem 2.14. If 1: A7 — A% s a transition function, then t is pre-injective if and
only if it is surjective.

Definition 2.15. A shift X CA" has the Moore-Myhill property (briefly MM-
property), if for every cellular automaton (X, Dy, 7) the transition function t is pre-
injective if and only if it is surjective. The Moore-property is surjective = pre-injective
and the Myhill-property is pre-injective = surjective.

In the sequel we will distinguish between these properties and the GOE theorems
for a local function. Indeed the former are properties of a single shift but, on the other
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hand, we will speak of GOE theorem whenever we have a GOE-like theorem for a
local function between two possibly different shifts.

As can be easily seen, the composition of two local pre-injective function is still a
(local) pre-injective function. Hence we have that the MM-property is invariant under
conjugacy.

A group I is called amenable if it admits a I'-invariant probability measure; using
the following characterization of it due to Felner (see [3,4,10]), the GOE theorem
holds in the case of local transition functions t:A4" — A",

Theorem 2.16 (Folner). 4 group I' is amenable if and only if for each finite subset
F CT and each ¢>0 there exists a finite subset K C I such that

[KF\K]
K|

Using this characterization we can prove the existence of a (nested) sequence (E,),>1
satisfying condition (3). Such a sequence is called amenable (or Folner sequence);
from now on we fix the amenable sequence (£,),>; found above and the entropy
of a shift will be defined with respect to (E,),>1. Notice that condition (3) implies
lim, ., oo |05,En|/|Ex| =0 and lim, _, o |03,En|/|E| =0.

Using the existence of an amenable sequence in the amenable group I', Ceccherini-
Silberstein, Machi and Scarabotti have proved, in our language, the the full shift A"
has the M M-property.

3. Gromov’s theorem

In [5], Gromov has proved a GOE-like theorem in a setting of graphs much more
general than Cayley graphs, for alphabets not necessarily finite and for subset of the
“universe” not necessarily invariant under translation. Because of the weakness of
these hypotheses, in his theorem properties that are stronger than ours are needed
(as we will see in the next section), for example the bounded propagation of the
spaces. In this section we apply Gromov’s theorem to our cellular automata prov-
ing that all the properties required in the hypotheses of this theorem are
satisfied.

Definition 3.1. A closed subset X C A" is of bounded propagation <M if for each
pattern p € A" with support F one has

P|FOD(a,M) S XFﬂD(at,M) for each « € F = p € Xr.
If ye I, the left translation i,:I' — I" defined by i,(o) =yo is an isometry.
Consider a subgroup I' CT' and the set .#(I') consisting of all restriction to

each finite subset F* of I' of the left translations by an element of I'; a generic
element of #(I') is i” p o F—yF. The set 4(I') is, following Gromov’s definition,
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a pseudogroup of partial isometries. Now consider a stable (i.e. closed) and I-invariant
space X C A”; if we consider the finite subsets of I and the elements of I', a family of
functions

Hry: Xp — Xop = Xiyry

which commute with the restriction (i.e. (Hr;(c|r)),e = Hgy(c|g)), gives rise to a set
of holonomy maps. In particular, we have a set of holonomy maps #(I") defining

—1
HF,y(C‘F) = ci/"/F .

Following Gromov’s definition, the set #(I") is a pseudogroup of holonomies and if
J(T') is dense (that is, if I' has finite index), we have defined a dense pseudogroup
of holonomies.

If Y C A" is another stable and I'-invariant space, a function 7: X — Y is of bounded
propagation <M if it is the limit of a family of functions 75 : Xp — Yr-» that commute
with the restrictions; then a function of bounded propagation is such that t(c), = Tp(,m)
(¢|p(x,m))}x and, in general, tr(cp)=1(c)p-u.

If 7 is a function of bounded propagation, one can see that the holonomies in ,%’(F )
commute with 7 if T commutes with the I-action and in this case, provided that .#(I")
is dense, we say that the function t admits a dense holonomy.

Under these hypotheses and supposing that I" is amenable, we have the following
theorem.

Theorem 3.2 (Gromov [5]). Let X,Y C A" be stable spaces of bounded propagation
and ©:X —Y a map of bounded propagation admitting a dense holonomy, then
ent(X)=-ent(Y) implies that t is surjective if and only if it is pre-injective.

Suppose that 7 is a bounded propagation <M function between two I-invariant
stable spaces and t commutes with the I'-action, if the pseudogroup .#(I) is dense,
we can write each o€ I" as a=yd (y€T, d € Dg) and

W)y = W) = (W()ja = T (Cpganld = DualClp,, -

This means that in order to know the function 7 it is sufficient to know how the image
under 7 of a configuration in X acts on Dg. In other words, it is sufficient to know
the function tp,,., : Xp,,., — T1(X)p,.

On the other hand, if 7 is M-local between two shift spaces, we have

T(C)‘a = ‘C(C“)ll = TDM(CTDM)“’

that is it suffices to know how the image under 7 of a configuration in X acts on the
identity of I', i.e. the local rule .

For these reasons, the notion of bounded propagation is a generalization of the notion
of local function as far as stable spaces, not necessarily the I'-invariant, are concerned.
Hence, if I' is amenable, the next theorem follows from Theorem 3.2.
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Corollary 3.3 (GOE theorem for shifts of bounded propagation). Let X,Y CA" be
shift spaces of bounded propagation and t:X — Y a local function, then ent(X)=
ent(Y) implies t surjective < t pre-injective.

As a consequence of this fact, we have that a shift of bounded propagation has the
MM-property.

4. Strongly irreducible shifts

In this section we give the definition of strong irreducibility for a shift. In general,
as we have seen, it is possible to give a definition of irreducibility that generalizes
the one-dimensional one. But although we can prove the MM-property for irreducible
shifts of finite type of 4% (see [2]), there are simple counterexamples showing that
this irreducibility is too weak in the general case of subshifts of finite type of A7 We
prove the MM-property for the strongly irreducible shifts of finite type of A”. On the
other hand, we will see that a shift of bounded propagation (that has, by Gromov’s
theorem, the MM-property), is strongly irreducible and of finite type, but the converse
does not hold.

Definition 4.1. A shift X is called M-irreducible if for each pair of finite sets E,F C I’
such that dist(E, F)>M and for each pair of patterns p; € Xz and p, € X, there exists
a configuration ¢ € X that satisfies c= p; in £ and ¢= p, in F. The shift X is called
strongly irreducible if it is M -irreducible for some M € N.

In the particular case I = Z, it can be easily seen that a shift X C 4% is M-irreducible
if for each n>M and for each pair of words u,v € L(X), there exists a word w € L(X)
with |w| =n, such that uwv € L(X).

Proposition 4.2. Let I' be an amenable group. Let X be a strongly irreducible shift of
finite type and let v:X — A" be a local and pre-injective function. Then ent(1(X))=
ent(X).

Proof. Suppose that the memory of X is M, that X is M-irreducible and that 7 is
M-local. Set Y :=1(X) and fix an amenable sequence (E,),; we have

Yoo | < |V, ||d] 15,
and then

log | Y 2u| < loglYs,
|En]

|033En| log |4
|En| ||

Taking the maximum limit and being lim, o |05,,En|/|E.| =0, we have

i log | Vg, au|
msup —————
el |,

< ent(Y).
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Suppose that ent(Y) <ent(X); then there exists n € N such that

log |YEn+2M| 10g |XEn|
|Enl Bl

that is |Yg.v| <|Xg,|. Fix 0€Xpy pov; since dist(9y,E,™,E,) =M + 1>M for each
u € Xg, there exists a pattern p € Xp.u that coincides with u on E, and with v on
O E;M. Then

|{p EXE:3M|p‘(;sz;rM = U}l = |XE,, > |YE,TZM‘.

Since tgiam 1 Xgiw — Ypoow is surjective, there exist two patterns py, pr € Xpsw such
that p; # p, but py =v= p; on 03, E;M and tgsu(p1) = tgs5u( p2). By Corollary 2.11,
there exist two configurations c;,c; € X which extend p; and p, and which coincide
outside E,"™. We prove that t(c;)=1(c;), and hence that t is not pre-injective. If
vEEFM we have 7Dy CE>M and hence, if Dy = {o1,..., 0}, (e, = 5((:1‘7_11,...,
€1y, )= (P15 P1y,, ) = TEw (P = T (p2)ly = 0(Pay, se-os P2,,,) = 0(C2p, s
ey, Y=1(cr)y If p€EFM, we have yDy CC(E™) and hence t(c))), = t(c2)jy
since ¢; coincide with ¢, on ((E;™). O

The proof of the following lemma only depends on the regularity of the Cayley graph
of a finitely generated group. It is also implicit that the group is not finite and we do
not treat the finite case because in the latter one the implications between surjectivity
and injectivity are trivial.

Lemma 4.3. If I' is a finitely generated group, there exists a sequence of disks
(F})jen obtained by translation of a disk D and at distance >M such that U/.GN 1*;+R
=T for a suitable R>0. We call the above sequence a (D, M,R)-net. '

Proof. Let D be the disk centered at 1 and of radius p; define the following sequence
of finite subsets of I

Fo = {1},

e={yerllhl=2p+M+1}
and, in general,

Ly:={yerlllyl=n2p+M+1}

It is clear that for each n, dist({},I},+1)=2p + M + 1. Inside the set I}, fix y,; and
eliminate all the points in I}, whose distance from v, is less than 2p +M + 1.

Next, fix y,» among the remaining points and eliminate all the points whose distance
from 7,5 is less than 2p + M + 1. In this way, we will get a set I}, whose elements
have mutual distance >2p+M + 1 and such that for each element y, of I, there exists
an element of I, whose distance from 7y, is less than 2p + M + 1.

We now prove that, denoting by (f;);en the sequence of the elements of J, ¢y I, the
sequence (f;D)jen is a (D, M, R)-net with R:=2p +2M; so that we can set F; := f;D.
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Then let y € I'; there exists 7, € I}, such that dist(y,,)<p + M. Since y, belongs
to I, there is y, € I', such that dist(y,,7,) <2p +M and hence dist(y,7,)<3p + 2M;
then y € (5,D)"22M) 7

Recall that a subshift of 4% is sofic if it is the set of all labels of the bi-infinite
paths in a finite labeled graph (or finite-state automaton). A fundamental result given
in Section 4.4 of [6], is that if X is an irreducible sofic shift and Y is a proper subshift
of X, then ent(Y)<ent(X). Now we prove a theorem of this kind in a much more
general setting.

Lemma 4.4. Let I' be an amenable group and let (E,), be a fixed amenable sequence
of I'. Let (F;)jen be a (D,,2M,R)-net, let X be an M-irreducible shift and let Y be
a subset of X such that Yr, C Xp, for every j€N. Then ent(Y) <ent(X).

Proof. Let (p;);en be a sequence of patterns such that p; € Xz\Yg; let N(n) be the
number of F;’s such that I*J"-+M CE, and denote by Fj,,...,F}, these disks. Set & :=|Xp|
(where D=D, and we omit the index » denoting the radius, if it is not necessary),
and denote by m;, : Xg, — Xp the restriction to Fj, of the patterns of Xg,. We prove that

(4)

N
Xe,\ Ul 7 ()| <= &YX,

by induction on m € {1,...,N}. We have
X, | < |XF;;M | |XE,1\F;;M |
then

| XE,

< 5|XE,1\F,+IM |

Since X is an M-irreducible shift and since dist(lﬁ,,En\E:LM)>M , given a pattern

P € Xg,\p+u, there exists a pattern p defined on all E, that coincides with p on En\Iﬁ'M
W\E,

and with p; on Fj;; then

|XE,1\F;M| < |7Tj71(Pj1)|-

Hence

1 _
E Xz, | < |75, (pj)

and

X\ ()] < |XE, = (1 - &ENXg,|.

1
~z | Xz,

Suppose that (4) holds for m — 1; we have

m—1
X\ U ;' (p))
i=1

m—1
< é‘{pm\pmﬂp € Xg,\ !1 n,-,l(pj,)}‘-
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Moreover, since X is M-irreducible,

m—1
HpEn\F;jW | p € Xg,\ U1 n;l(l’j,»)}’
, =

m—1
< Hp ex;\ U =" (i)l pr, = pj,,,}’-
i=1

Hence

=‘< \g (pj,>\ (P

m
XEn\ U TC]Tl(pji)
i=1

\(xE,,\ U n—1<p,,>)\

{PEXE,,\ U =, ' (pi) | piF,, = jm}

1 m—1 _
~z X\ U ;' (p))
i=1

(1 - 5) (=& | =

~1(p;j,)|, we have

\U T, (pj,

Hence (4) holds, and since |Yg, | <|Xg,\ Ul |\

log | Yz, | - N(n) log(1 —¢71)  log |XE, |
|En |Ex| ||

Observe that

N
g U FJT:»R U (En\E,,,_(R+2r+M))-
1

Indeed suppose that y€ E, and y¢ |, R

6—1 )m |XEn .

(5)

(6)

(£7); being a (D,,2M, R)-net, we have

that y € F,® for some £, that is y € BD*® with f8 such that D & E,. Hence dist(y, )
<r+4R so that f€yD*RIf ye E; ©2 M) then peyD™R C B, M) 5o that M =

BD*M C E, which is excluded.
From (6), we have

Ea| < N(n)|D™R| + |E,\E, R,

so that

|al¥+2r+ME”| .
Eal 7

N(n)
|Enl

ID*R| +
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taking the minimum limit and being lim, _, o |0z 5, ) Enl/|Ex| =0,

¢ = liminf 2

n—oo | nl

>0

and then from (5) it follows

ent(Y) < (log(l — &7 +ent(X) < ent(X). [

Proposition 4.5. Let X be a strongly irreducible shift of finite type, let 1: X — AT be
a local function such that ent(t(X))=ent(X). Then t is pre-injective.

Proof. Suppose that X has memory M, that is X is M-irreducible and that 7 is
M-local. Moreover suppose that 7 is not pre-injective; then there exist ¢;,c; € X and a
disk D contained in I', such that ¢; #c¢, on D, ¢; =c¢; out of D and t(c;)=1(c;). Set
(F)jen=(BiD™);en a (DM ,2M, R)-net and denote by Y the subset of X defined
by

Y i={ceX|(c)pw # e for every j € N},

|D+2M

that is the subset of X avoiding the pattern c;p+v on the disk DM and on the
translated disks F,-:ﬁ,-D”M . The set Y is a subset of X such that Yy C Xp; we
prove that ©(Y)=1t(X). Indeed if c€X\Y, there exists a subset J C N such that
for every je€J, we have (c)paw=cypiw. Define ¢€X in the following

way:
—1

° c':cff on F; for every j€J,

e ¢=c out of the union {J,, F.

That is, ¢ is obtained from c¢ substituting all the occurrences of cypiav With ¢jjpeaw.
By Proposition 2.10, we have ¢ € X and moreover ¢ € ¥; we prove that 7(¢)=1(c).
If ye [3]-D+M for some je&J, we have 9Dy CF and then r(c')h, =

B! B!
o) =)y, =), = ey )y =1

Suppose that y & ;D™ for every jeJ; then yDy C((;D) and hence (), =
t(c)),- Indeed ¢ and ¢ coincide on J,¢, C(B;D): if j€J and y € 03,,8;D =F;\B;D, we

—1

- B! . —1 + B;
have ¢, = (c; )l‘/_cl‘,,fl.ﬁ Since ;7 € 0;),D one has €l =62 =(cy Jp=cpp
) e 1

; \
Then, by Theorem 2.12 and Lemma 4.4,

ent(7(X)) = ent(7(Y)) < ent(Y) < ent(X). ]

Proposition 4.6. Let I' be an amenable group. Let X be a shift, let Y be a strongly
irreducible shift and let 1. X — Y be a local function such that ent(t(X))=-ent(Y).
Then t is surjective.

Proof. Let X and Y be as in the hypotheses and let 7 : X — Y be a local function.
We prove that if 7(X)C Y, then ent(t(X))<ent(Y). Indeed if 7(X)C Y, there exists
a configuration ¢ € Y which does not belong to 7(X) and then there exists a disk D
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such that ¢p € Yp\(1(X))p. Let (F)jen be a (D,2M,R)-net; then (¢(X))s C Yg; by
Lemma 4.4, ent(t(X))<ent(Y). [

Theorem 4.7. Let I be an amenable group. Let X be a strongly irreducible shift of
finite type, let Y be a strongly irreducible shift and let 1:X — Y be a local function
with ent(X ) =ent(Y). Then t is pre-injective if and only if is surjective.

Proof. If 7 is pre-injective we have, by Proposition 4.2, that ent(7(X))=ent(X ). Then
ent(t(X))=ent(Y) so that, by Proposition 4.6, 7 is surjective.

If, conversely, 7 is surjective then ent(t(X))=-ent(Y), that is ent(t(X)) = ent(X).
By Proposition 4.5, t is pre-injective. [

Corollary 4.8 (MM-property for strongly irreducible shifts of finite type). If I' is an
amenable group, a strongly irreducible subshift of finite type of A" has the MM-

property.

We conclude this section proving that the property of bounded propagation for a
shift is strictly stronger than the union of strong irreducibility and finite type condition.
The following characterization of the finite type condition is an easy consequence of
the definition.

Lemma 4.9. A4 shift X is of finite type with memory M if and only if each configu-
ration ¢ € AT such that C\p(a ) € Xp(o,ur) Jor every a €T, belongs to X.

Now we can prove the following statement.

Proposition 4.10. If X CA" is a shift of bounded propagation, then X is strongly
irreducible and of finite type.

Proof. Suppose that X has bounded propagation <M; if E,F C I are such that dist(E,
F)>M and p, € Xg, p, € Xp are two patterns of X, consider the pattern p with sup-
port EUF given by the union of the functions p; and p,. Clearly p € Xg r be-
cause if «€ EUF and, for instance o € E, we have (FEUF)NaDy CE and hence
P|(EUF)NaDy € X(EUF)NaD,, - A configuration in X extending p is such that ¢z = p; and
¢ = p2. Hence X is M-irreducible.

Now suppose that ¢ €A is such that C\pm) € Xp,my for every a€I'. Then if
n>=M and o € D, we have

cip,npeM) = (C|pEMm))|D.nDEM) € XD,nD(M)

X being of bounded propagation we have c¢|p, € Xp,. X being closed we have c € X.
O

Recall that an edge shift is the set of all the bi-infinite paths in a finite graph. If
I'=7 and X is an edge shift, it can be seen that also the converse of the previous
theorem holds.
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Now we prove that in general strong irreducibility and finite type condition do not
imply the bounded propagation property. Consider the subshift X C {0, 1}% with a set
of forbidden blocks:

{010,111},

Clearly X is a strongly irreducible (in fact 2-irreducible) shift of finite type; if M >1
consider the following pattern p with F :=supp(p)

O [ [ [ [t [ [t [J1]o]

M copies of

In this case we have p\rnpe,ar) € XFrpe,m) but p & Xp; hence X is not of bounded
propagation <M for each M >1.
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