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Abstract

If A is a $nite alphabet and � is a $nitely generated amenable group, Ceccherini-Silberstein,
Mach12 and Scarabotti have proved that a local transition function de$ned on the full shift A�

is surjective if and only if it is pre-injective; this equivalence is the so-called Garden of Eden
theorem. On the other hand, when � is the group of the integers, the theorem holds in the case
of irreducible shifts of $nite type as a consequence of a theorem of Lind and Marcus but it no
longer holds in the two-dimensional case.

Recently, Gromov has proved a GOE-like theorem in the much more general framework of
the spaces of bounded propagation. In this paper we apply Gromov’s theorem to our class of
spaces proving that all the properties required in the hypotheses of this theorem are satis$ed.

We give a de$nition of strong irreducibility that, together with the $nite-type condition, it
allows us to prove the GOE theorem for the strongly irreducible shifts of $nite type in A�

(provided that � is amenable). Finally, we prove that the bounded propagation property for a
shift is strictly stronger than the union of strong irreducibility and $nite-type condition.
c© 2002 Published by Elsevier Science B.V.

1. Introduction

A cellular automaton (CA) is given by the set A� of all functions de$ned on (the
Cayley graph of) a $nitely generated group � with values in a $nite alphabet A and by
a transition function � :A� →A� which is local (i.e. the value of �(c), where c∈A� is
a con+guration, at a point �∈� only depends on the values of c at the points of a $xed
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neighborhood of �). The Garden of Eden (GOE) theorem, as proved in [1] (see also
[7]), states that if � is a $nitely generated amenable group, then the local transition
function of a CA has a GOE pattern (i.e. a con$guration with $nite support that has
no pre-image under �), if and only if it has two mutually erasable patterns (that is,
a sort of non-injectivity of the transition function on the “$nite” con$gurations). This
theorem is a generalization of the theorem that Moore [8] and Myhill [9] proved in
the case �=Z2.

Instead of the non-existence of mutually erasable patterns, we deal with the notion
of pre-injectivity (a function � :X ⊆A� →A� is pre-injective if whenever two con$g-
urations c; Ic∈X diJer only on a $nite non-empty subset of �, then �(c) �= �( Ic)); this
notion has been introduced by Gromov [5]. In fact, these two properties are equivalent
for local functions de$ned on the full shift, but in the case of proper subshifts the
former may be meaningless. On the other hand, the non-existence of GOE patterns is
equivalent to the non-existence of GOE con$gurations, that is to the surjectivity of the
transition function. Hence, in this language, the GOE theorem states that � is surjective
if and only if it is pre-injective. We call Moore’s property the implication surjective ⇒
pre-injective and Myhill’s property the inverse one. We call Moore–Myhill property
(MM-property) the union of these two properties and this last is an invariant of the
shift.
As is well known, A� is a compact metric space, and the local transition func-

tions are those that are both continuous and commute with the natural action of �
on A�. We investigate the extent to which the MM-property holds for the closed and
�-invariant subsets of A�, the so-called shifts. As proved in [2] it is possible to prove,
as a consequence of a theorem due to Lind and Marcus [6, Theorem 8.1.16], that the
irreducible shifts of $nite type in AZ have the MM-property.
Recently, Gromov has proved a GOE-like theorem in a setting of graphs much more

general than Cayley graphs, for alphabets not necessarily $nite and for subset of the
“universe” not necessarily invariant under translation. Because of the weakness of these
hypotheses, in his theorem properties that are stronger than ours are needed, for example
the bounded propagation of the spaces. In Section 3 we apply Gromov’s theorem to
our cellular automata proving that all the properties required in the hypotheses of this
theorem are satis$ed.
In Section 4, we generalize the previous result showing that the MM-property holds

for strongly irreducible shifts of $nite type of A� (and we also show that strong
irreducibility together with the $nite type condition is strictly weaker that the bounded
propagation property).
In this paper the notation A⊆B means that the set A is contained in the set B and

A⊂B means that A⊆B and A �=B.

2. Shift spaces and cellular automata

In this section, we recall some de$nitions and we state some preliminary results
about our class of CA.
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If � is a $nitely generated group and X is a $xed $nite set of generators for �,
then each �∈� can be written as

� = x
1i1 x

2
i2 : : : x
nin ; (1)

where the xij ’s are generators and 
j ∈Z. The length of � (with respect to X) is de$ned
as the natural number

‖�‖X := min{|
1|+ |
2|+ · · ·+ |
n| | � is written as in (1)};
so that � is naturally endowed with a metric space structure, with the distance given
by

distX(�; �) := ‖�−1�‖X (2)

and

DX
n := {� ∈ � | ‖�‖X 6 n}

is the disk of radius n centered at 1. Notice that DX
1 is the set X∪X−1 ∪{1}. The

asymptotic properties of the group being independent on the choice of the set of
generators X, from now on we $x a set X which is also symmetric (i.e. X−1 =X)
and we omit the index X in all the above de$nitions.
For each �∈�, the set Dn provides, by left translation, a neighborhood of �, that

is the set �Dn =D(�; n), where D(�; n) is the disk of radius n centered at �. Indeed, if
�∈ �Dn then �= �� with ‖�‖6n. Hence dist(�; �)= ‖�−1�‖= ‖�−1‖6n. Conversely,
if �∈D(�; n) then ‖�−1�‖6n (that is �−1�∈Dn), and �= ��−1�.
Given a subset E⊆� and for each n∈N we denote by

E+n :=
⋃
�∈E

D(�; n); E−n := {� ∈ E |D(�; n) ⊆ E} and @nE := E+n\E−n

the n-closure of E, the n-interior of E and the n-boundary of E, respectively; by

@+n E := E+n\E and @−n E := E; \E−n;

the n-external boundary of E and the n-internal boundary of E, respectively. For all
these sets, we will omit the index n if n=1.
The Cayley graph of �, is the graph in which � is the set of vertices and there is

an edge from � to I� if there exists a generator x∈X such that I�= �x. Obviously this
graph depends on the presentation of �. For example, we may look at the classical
cellular decomposition of Euclidean space Rn as the Cayley graph of the group Zn

with the presentation 〈a1; : : : ; an|aiaj = ajai〉.
If G=(V;E) is a graph with set of vertices V and set of edges E, the graph

distance (or geodetic distance) between two vertices v1; v2 ∈V is the minimal length
of a path from v1 to v2. Hence the distance de$ned in (2) coincides with the graph
distance on the Cayley graph of �.
Let A be a $nite alphabet; in the classical theory of cellular automata, the “universe”

is the Cayley graph of the free abelian group Zn and a con+guration is an element of
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AZ
n
, that is a function c :Zn →A assigning to each point of the graph a letter of A. We

generalize this notion taking as universe a Cayley graph of a generic $nitely generated
group � and taking suitable subsets of con$gurations in A�. On this set we have a
natural metric and hence a topology. This latter is equivalent to the usual product
topology, where the topology in A is the discrete one. An element of A� is called a
con+guration.
If c1; c2 ∈A� are two con$gurations, we de$ne the distance

dist(c1; c2) :=
1

n+ 1
;

where n is the least natural number such that c1 �= c2 in Dn. If such an n does not
exist, that is if c1 = c2, we set their distance equal to zero.
Observe that the group � acts on A� on the right as follows:

(c�)|� := c|��

for each c∈A� and each �; �∈� (where c|� is the value of c at �).
Now we give a topological de$nition of a shift space (brieOy shift); as stated in

Theorem 2.5, this de$nition is equivalent (in the Euclidean case) to the classical com-
binatorial one.

De�nition 2.1. A subset X of A� is called a shift if it is topologically closed and
�-invariant (i.e. X� =X ).

For every X ⊆A� and E⊆�, we set

XE := {c|E | c ∈ X };
a pattern of X is an element of XE where E is a non-empty $nite subset of �. The
set E is called the support of the pattern; a block of X is a pattern of X with support
a disk. The language of X is the set L(X ) of all the blocks of X . If X is a subshift of
AZ, a con$guration is a bi-in$nite word and a block of X is a $nite word appearing
in some con$guration of X .
Hence a pattern with support E is a function p :E→A. If �∈�, we have that

the function Ip : �E→A de$ned as Ip|�� =p|� (for each �∈E), is the pattern obtained
copying p on the translated support �E. Moreover, if X is a shift, we have that Ip∈X�E

if and only if p∈XE . For this reason, in the sequel we do not make distinction between
p and Ip (when the context makes it possible). For example, a word a1 : : : an is simply
a $nite sequence of symbols for which we do not specify (if it is not necessary), if
the support is the interval [1; n] or the interval [−n;−1].

De�nition 2.2. Let X be a subshift of A�; a function � :X →A� is M-local if there
exists 
 :XDM →A such that for every c∈X and �∈�

(�(c))|� = 
((c�)|DM ) = 
(c|��1 ; c|��2 ; : : : ; c|��m);

where DM = {�1; : : : ; �m}.
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In this de$nition, we have assumed that the alphabet of the shift X is the same
as the alphabet of its image �(X ). In this assumption there is no loss of generality
because if � :X ⊆A� →B�, one can always consider X as a shift over the alphabet
A∪B.

De�nition 2.3. Let � be a $nitely generated group with a $xed symmetric set of
generators X, let A be a $nite alphabet with at least two elements and let DM the
disk in � centered at 1 and with radius M . A cellular automaton is a triple (X;DM ; �)
where X is a subshift of the compact space A�, DM is the neighborhood of 1 and
� :X →X is an M -local function.

Let � :X →A� be an M -local function; if c is a con$guration of X and E is
a subset of �, �(c)|E only depends on c|E+M . Thus we have a family of functions
(�E+M :XE+M → �(X )E)E⊆�.
There is a characterization of local functions that, in the one-dimensional case, is

known as the Curtis–Lyndon–Hedlund theorem. A shift being compact, it holds for a
general local function and states that a function � :X →A� is local if and only if it
is continuous and commutes with the �-action (i.e. for each c∈X and each �∈�,
one has �(c�)= �(c)�). From this result, it is clear that the composition of two local
functions is still local. In any case, this can be easily seen by a direct proof that
follows De$nition 2.2.
Now, $x �∈� and consider the function X →A� that associates with each c∈X

its translated con$guration c�. In general, this function does not commute with the
�-action (and therefore it is not local). Indeed, if � is not abelian and �� �= ��, then
(c�)� �=(c�)�. However this function is continuous. In order to see this, if n¿0, $x a
number m¿0 such that �Dn ⊆Dm; if dist(c; Ic)61=(m+ 1), then c and Ic agree on Dm

and hence on �Dn. If �∈Dn, we have c|�� = Ic|�� and then c�|� = Ic�|� that is c� and Ic�

agree on Dn so that dist(c�; Ic�)¡1=(n+ 1).
Observe that if X is a subshift of A� and � :X →A� is a local function, then, by the

(generalized) Curtis–Lyndon–Hedlund theorem, the image Y := �(X ) is still a subshift
of A�. Indeed Y is closed (or, equivalently, compact) and �-invariant:

Y� = (�(X ))� = �(X�) = �(X ) = Y:

Moreover, if � is injective then � :X →Y is a homeomorphism; if c∈Y then c= �( Ic)
for a unique Ic∈X and we have

�−1(c�) = �−1(�( Ic)�) = �−1(�( Ic�)) = Ic� = (�−1(c))�;

that is, �−1 commutes with the �-action. By the Curtis–Lyndon–Hedlund theorem,
�−1 is local. Hence the well-known theorem (see [11]), stating that the inverse of an
invertible Euclidean cellular automaton is a cellular automaton, holds also in this more
general setting. In the one-dimensional case, Lind and Marcus [6, Theorem 1.5.14] give
a direct proof of this fact.
This result leads us to give the following de$nition.
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De�nition 2.4. Two subshifts X; Y ⊆A� are conjugate if there exists a local bijective
function between them (namely a conjugacy). The invariants are the properties of a
shift invariant under conjugacy.

It is easy to prove that the topological de$nition of a shift space is equivalent to the
following combinatorial one involving the avoidance of certain forbidden blocks, this
fact is well known in the Euclidean case.

Theorem 2.5. A subset X ⊆A� is a shift if and only if there exists a subset F⊆ ⋃
n∈N

ADn such that X =XF, where

XF := {c ∈ A� | c�|Dn
=∈ F for every � ∈ �; n ∈ N}:

In this case, F is a set of forbidden blocks of X .

Now we give the $rst, fundamental notion of irreducibility for a one-dimensional
shift and we see how to generalize this notion to a generic shift.

De�nition 2.6. A shift X ⊆AZ is irreducible if for each pair of words u; v∈L(X ), there
exists a word w∈L(X ) such that the concatenated word uwv∈L(X ).

The natural generalization of this property to any group � is the following.

De�nition 2.7. A shift X ⊆A� is irreducible if for each pair of patterns p1 ∈XE and
p2 ∈XF , there exists an element �∈� such that E ∩ �F = ∅ and a con$guration c∈X
such that c|E =p1 and c|�F =p2.

In other words, a shift is irreducible if whenever we have p1; p2 ∈L(X ), there exists
a con$guration c∈X in which these two blocks appear simultaneously on disjoint
supports. This de$nition could seem weaker than De$nition 2.6, in fact in the latter
one we establish that each word u∈L(X ) must always appear in a con$guration on the
left of each other word of the language. In order to prove that the two de$nitions agree,
suppose that X ⊆AZ is an irreducible shift in accordance with De$nition 2.7. If u; v are
words in L(X ), there exists a con$guration c∈X such that c|E = u and c|F = v where
E and F are $nite and disjoint intervals. If max E¡min F then there exists a word
w such that uwv∈L(X ) (where w= c|I and I is the interval [max E + 1;min F − 1]).
If, otherwise, max F¡min E there exists a word w such that vwu∈L(X ); consider the
word vwu two times, there exists another word x such that vwu x vwu∈L(X ) and
hence uxv∈L(X ).
Now we give the fundamental notion of shift of $nite type. The basic de$nition is

in terms of forbidden blocks; in a sense we may say that a shift is of $nite type if
we can decide whether or not a con$guration belongs to the shift only by checking
its blocks of a $xed (and only depending on the shift) size. This fact implies the
useful characterization of one-dimensional shifts of $nite type, a sort of “overlapping”
property for the words of the language. As stated below, this overlapping property still
holds for a generic shift of $nite type.
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De�nition 2.8. A shift is of +nite type if it admits a $nite set of forbidden
blocks.

If X is a shift of $nite type, since a $nite set F of forbidden blocks of X has a
maximal support, we can always suppose that each block of F has the disk DM as
support (indeed each block that contains a forbidden block is forbidden). In this case
the shift X is called M-step and the number M is called the memory of X. If X is
a subshift of AZ, we de$ne the memory of X as the number M , where M + 1 is the
maximal length of a forbidden word.
For the shifts of $nite type in AZ, we have the following useful property.

Proposition 2.9 ([6, Theorem 2.1.8]). A shift X ⊆AZ is an M-step shift of +nite type
if and only if whenever uv; vw∈L(X ) and |v|¿M , then uvw∈L(X ).

It is easy to prove that this “overlapping” property holds more generally for subshifts
of $nite type of A�, as stated in the following proposition.

Proposition 2.10. Let X be an M-step shift of +nite type and let E be a subset of �.
If c1; c2 ∈X are two con+gurations that agree on @+2ME, then the con+guration c∈A�

that agrees with c1 on E and with c2 on –E is still in X .

Corollary 2.11. Let X be an M-step shift of +nite type and let E be a +nite subset
of �; if p1; p2 ∈XE+2M are two patterns that agree on @+2ME, than there exist two
extensions c1; c2 ∈X of p1 and p2, respectively, that agree on –E.

Now we give the de$nition of entropy for a generic shift. This de$nition involves
the existence of a suitable sequence of sets that, as one can see, in the case of non-
exponential growth of the group can be taken as balls centered at 1 and with increasing
radius.
Let (En)n¿1 be a sequence of subsets of � such that

⋃
n∈N En =� and

lim
n→∞

|@MEn|
|En| = 0; (3)

if X ⊆A� is a shift, the entropy of X respect to (En)n¿1 is de$ned as

ent(X ) := lim sup
n→∞

log |XEn |
|En| :

Condition (3) is necessary to prove the next theorem and hence that the entropy is
invariant under conjugacy; other aspects of its importance will be clari$ed in Section 4.

Theorem 2.12. Let X be a shift and � :X →A� a local function. Then ent(�(X ))6
ent(X ) (that is, the entropy is invariant under conjugacy).
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Proof. Let � be M -local and let Y := �(X ); we have that the function �E+M
n

:XE+M
n

→YEn

is surjective and hence

|YEn |6 |XE+M
n

|6 |XEn ||X@+MEn
|6 |XEn ||A@+MEn |:

From the previous inequalities we have

log |YEn |
|En| 6

log |XEn |
|En| +

|@+MEn| log |A|
|En|

and hence, taking the maximum limit, ent(Y )6ent(X ).

Now we give the de$nition of a pre-injective function. This notion is equivalent to
the notion of non-existence of mutually erasable patterns used in the original works
of Moore [8] and Myhill [9]. Indeed they prove that a transition function � of a
Euclidean cellular automaton on a full shift admits two mutually erasable patterns if
and only if it admits a GOE pattern, that is a pattern without pre-image. Recall that
two diJerent patterns with the same support are called �-mutually erasable if each
pair of con$gurations extending them and coinciding out of the support, have the same
image under �.
In order to consider GOE-like theorems not in the whole of A� but in a subshift

X ⊆A�, notice $rst that two patterns of X are not necessarily extendible by the same
con$guration of X . Therefore, it could happen that two patterns with support F for
which there does not exist a common extension c|–F , are �-mutually erasable although
the function � is bijective. The notion that seems to be a good generalization of the
non-existence of mutually erasable patterns, is that of pre-injectivity; it can be seen
that if X =A� then the non-existence of �-mutually erasable patterns is equivalent to
the pre-injectivity of �.

De�nition 2.13. A function � :X ⊆A� →A� is called pre-injective if whenever c1; c2 ∈
X and c1 �= c2 only on a $nite non-empty subset of �, then �(c1) �= �(c2).

One can prove (see [7, Theorem 5]) that a transition function on A� is surjective
if and only if there are no GOE patterns. It is easy to prove that this property holds
also for the local functions between shifts. Hence we can state the GOE theorem as
follows.

Theorem 2.14. If � :AZ
2 →AZ

2
is a transition function, then � is pre-injective if and

only if it is surjective.

De�nition 2.15. A shift X ⊆A� has the Moore–Myhill property (brieOy MM-
property), if for every cellular automaton (X;DM ; �) the transition function � is pre-
injective if and only if it is surjective. The Moore-property is surjective ⇒ pre-injective
and the Myhill-property is pre-injective ⇒ surjective.

In the sequel we will distinguish between these properties and the GOE theorems
for a local function. Indeed the former are properties of a single shift but, on the other
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hand, we will speak of GOE theorem whenever we have a GOE-like theorem for a
local function between two possibly diJerent shifts.
As can be easily seen, the composition of two local pre-injective function is still a

(local) pre-injective function. Hence we have that the MM-property is invariant under
conjugacy.
A group � is called amenable if it admits a �-invariant probability measure; using

the following characterization of it due to FHlner (see [3,4,10]), the GOE theorem
holds in the case of local transition functions � :A� →A�.

Theorem 2.16 (FHlner). A group � is amenable if and only if for each +nite subset
F ⊆� and each &¿0 there exists a +nite subset K ⊆� such that

|KF\K |
|K | ¡ &:

Using this characterization we can prove the existence of a (nested) sequence (En)n¿1

satisfying condition (3). Such a sequence is called amenable (or FHlner sequence);
from now on we $x the amenable sequence (En)n¿1 found above and the entropy
of a shift will be de$ned with respect to (En)n¿1. Notice that condition (3) implies
limn→∞ |@+MEn|=|En|=0 and limn→∞ |@−MEn|=|En|=0.
Using the existence of an amenable sequence in the amenable group �, Ceccherini-

Silberstein, Mach12 and Scarabotti have proved, in our language, the the full shift A�

has the MM-property.

3. Gromov’s theorem

In [5], Gromov has proved a GOE-like theorem in a setting of graphs much more
general than Cayley graphs, for alphabets not necessarily $nite and for subset of the
“universe” not necessarily invariant under translation. Because of the weakness of
these hypotheses, in his theorem properties that are stronger than ours are needed
(as we will see in the next section), for example the bounded propagation of the
spaces. In this section we apply Gromov’s theorem to our cellular automata prov-
ing that all the properties required in the hypotheses of this theorem are
satis$ed.

De�nition 3.1. A closed subset X ⊆A� is of bounded propagation 6M if for each
pattern p∈AF with support F one has

p|F∩D(�;M) ∈ XF∩D(�;M) for each � ∈ F ⇒ p ∈ XF:

If �∈�, the left translation i� :�→� de$ned by i�(�)= �� is an isometry.

Consider a subgroup I�⊆� and the set I( I�) consisting of all restriction to
each $nite subset F of � of the left translations by an element of I�; a generic
element of I( I�) is i�|F : F → �F . The set I( I�) is, following Gromov’s de$nition,
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a pseudogroup of partial isometries. Now consider a stable (i.e. closed) and I�-invariant
space X ⊆A�; if we consider the $nite subsets of � and the elements of I�, a family of
functions

HF;� :XF → X�F = Xi�(F)

which commute with the restriction (i.e. (HF;�(c|F))|�E =HE;�(c|E)), gives rise to a set
of holonomy maps. In particular, we have a set of holonomy maps H( I�) de$ning

HF;�(c|F) := c�
−1

|�F :

Following Gromov’s de$nition, the set H( I�) is a pseudogroup of holonomies and if
I( I�) is dense (that is, if I� has $nite index), we have de$ned a dense pseudogroup
of holonomies.
If Y ⊆A� is another stable and I�-invariant space, a function � :X →Y is of bounded

propagation 6M if it is the limit of a family of functions �F :XF →YF−M that commute
with the restrictions; then a function of bounded propagation is such that �(c)|� = �D(�;M)

(c|D(�;M))|� and, in general, �F(c|F)= �(c)|F−M .
If � is a function of bounded propagation, one can see that the holonomies in H( I�)

commute with � if � commutes with the I�-action and in this case, provided that I( I�)
is dense, we say that the function � admits a dense holonomy.
Under these hypotheses and supposing that � is amenable, we have the following

theorem.

Theorem 3.2 (Gromov [5]). Let X; Y ⊆A� be stable spaces of bounded propagation
and � :X →Y a map of bounded propagation admitting a dense holonomy, then
ent(X )= ent(Y ) implies that � is surjective if and only if it is pre-injective.

Suppose that � is a bounded propagation 6M function between two I�-invariant
stable spaces and � commutes with the I�-action, if the pseudogroup I( I�) is dense,
we can write each �∈� as �= �d (�∈ I�, d∈DR) and

�(c)|� = �(c)|�d = (�(c�))|d = �D(d;M)(c
�
|D(d;M))|d = �DM+R(c

�
|DM+R

)|d:

This means that in order to know the function � it is suQcient to know how the image
under � of a con$guration in X acts on DR. In other words, it is suQcient to know
the function �DM+R :XDM+R → �(X )DR .
On the other hand, if � is M -local between two shift spaces, we have

�(c)|� = �(c�)|1 = �DM (c
�
|DM

)|1;

that is it suQces to know how the image under � of a con$guration in X acts on the
identity of �, i.e. the local rule 
.
For these reasons, the notion of bounded propagation is a generalization of the notion

of local function as far as stable spaces, not necessarily the �-invariant, are concerned.
Hence, if � is amenable, the next theorem follows from Theorem 3.2.
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Corollary 3.3 (GOE theorem for shifts of bounded propagation). Let X; Y ⊆A� be
shift spaces of bounded propagation and � :X →Y a local function, then ent(X )=
ent(Y ) implies � surjective ⇔ � pre-injective.

As a consequence of this fact, we have that a shift of bounded propagation has the
MM-property.

4. Strongly irreducible shifts

In this section we give the de$nition of strong irreducibility for a shift. In general,
as we have seen, it is possible to give a de$nition of irreducibility that generalizes
the one-dimensional one. But although we can prove the MM-property for irreducible
shifts of $nite type of AZ (see [2]), there are simple counterexamples showing that
this irreducibility is too weak in the general case of subshifts of $nite type of AZ

2
. We

prove the MM-property for the strongly irreducible shifts of $nite type of A�. On the
other hand, we will see that a shift of bounded propagation (that has, by Gromov’s
theorem, the MM-property), is strongly irreducible and of $nite type, but the converse
does not hold.

De�nition 4.1. A shift X is called M-irreducible if for each pair of $nite sets E; F ⊆�
such that dist(E; F)¿M and for each pair of patterns p1 ∈XE and p2 ∈XF , there exists
a con$guration c∈X that satis$es c=p1 in E and c=p2 in F . The shift X is called
strongly irreducible if it is M -irreducible for some M ∈N.

In the particular case �=Z, it can be easily seen that a shift X ⊆AZ is M -irreducible
if for each n¿M and for each pair of words u; v∈L(X ), there exists a word w∈L(X )
with |w|= n, such that uwv∈L(X ).

Proposition 4.2. Let � be an amenable group. Let X be a strongly irreducible shift of
+nite type and let � :X →A� be a local and pre-injective function. Then ent(�(X ))=
ent(X ).

Proof. Suppose that the memory of X is M , that X is M -irreducible and that � is
M -local. Set Y := �(X ) and $x an amenable sequence (En)n; we have

|YE+2M
n

|6 |YEn ||A||@
+
2MEn|;

and then

log |YE+2M
n

|
|En| 6

log |YEn |
|En| +

|@+2MEn| log |A|
|En| :

Taking the maximum limit and being limn→∞ |@+2MEn|=|En|=0, we have

lim sup
n→∞

log |YE+2M
n

|
|En| 6 ent(Y ):
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Suppose that ent(Y )¡ent(X ); then there exists n∈N such that

log |YE+2M
n

|
|En| ¡

log |XEn |
|En| ;

that is |YE+2M
n

|¡|XEn |. Fix v∈X@+2ME+M
n

; since dist(@+2ME+M
n ; En)=M + 1¿M for each

u∈XEn there exists a pattern p∈XE+3M
n

that coincides with u on En and with v on
@+2ME+M

n . Then

|{p ∈ XE+3M
n

|p|@+2ME+M
n

= v}|¿ |XEn | ¿ |YE+2M
n

|:
Since �E+3M

n
:XE+3M

n
→YE+2M

n
is surjective, there exist two patterns p1; p2 ∈XE+3M

n
such

that p1 �=p2 but p1 = v=p2 on @+2ME+M
n and �E+3M

n
(p1)= �E+3M

n
(p2). By Corollary 2.11,

there exist two con$gurations c1; c2 ∈X which extend p1 and p2 and which coincide
outside E+M

n . We prove that �(c1)= �(c2), and hence that � is not pre-injective. If
�∈E+2M

n we have �DM⊆E+3M
n and hence, if DM = {�1; : : : ; �m}, �(c1)|� = 
(c1|��1 ; : : : ;

c1|��m )= 
(p1|��1
; : : : ; p1|��m )= �E+3M

n
(p1)|� = �E+3M

n
(p2)|� = 
(p2|��1

; : : : ; p2|��m ) = 
(c2|��1 ;
: : : ; c2|��m )= �(c2)|�. If � �∈E+2M

n , we have �DM ⊆–(E+M
n ) and hence �(c1)|� = �(c2)|�,

since c1 coincide with c2 on –(E+M
n ).

The proof of the following lemma only depends on the regularity of the Cayley graph
of a $nitely generated group. It is also implicit that the group is not $nite and we do
not treat the $nite case because in the latter one the implications between surjectivity
and injectivity are trivial.

Lemma 4.3. If � is a +nitely generated group, there exists a sequence of disks
(Fj)j∈N obtained by translation of a disk D and at distance ¿M such that

⋃
j∈N F+R

j
=� for a suitable R¿0. We call the above sequence a (D;M; R)-net.

Proof. Let D be the disk centered at 1 and of radius ,; de$ne the following sequence
of $nite subsets of �:

�0 := {1};
�1 := {� ∈ � | ‖�‖ = 2,+M + 1}

and, in general,

�n := {� ∈ � | ‖�‖ = n(2,+M + 1)}:
It is clear that for each n, dist(�n; �n+1)= 2, + M + 1. Inside the set �n, $x �n;1 and
eliminate all the points in �n whose distance from �n;1 is less than 2,+M + 1.
Next, $x �n;2 among the remaining points and eliminate all the points whose distance

from �n;2 is less than 2, + M + 1. In this way, we will get a set I�n whose elements
have mutual distance ¿2,+M+1 and such that for each element �n of �n there exists
an element of I�n whose distance from �n is less than 2,+M + 1.
We now prove that, denoting by (�j)j∈N the sequence of the elements of

⋃
n∈N I�n, the

sequence (�jD)j∈N is a (D;M; R)-net with R := 2,+2M ; so that we can set Fj := �jD.
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Then let �∈�; there exists �n ∈�n such that dist(�; �n)6, + M . Since �n belongs
to �n, there is I�n ∈ I�n such that dist(�n; I�n)62,+M and hence dist(�; I�n)63,+ 2M ;
then �∈ ( I�nD)

+(2,+2M).

Recall that a subshift of AZ is so+c if it is the set of all labels of the bi-in$nite
paths in a $nite labeled graph (or +nite-state automaton). A fundamental result given
in Section 4.4 of [6], is that if X is an irreducible so+c shift and Y is a proper subshift
of X, then ent(Y )¡ent(X ). Now we prove a theorem of this kind in a much more
general setting.

Lemma 4.4. Let � be an amenable group and let (En)n be a +xed amenable sequence
of �. Let (Fj)j∈N be a (Dr; 2M;R)-net, let X be an M-irreducible shift and let Y be
a subset of X such that YFj ⊂XFj for every j∈N. Then ent(Y )¡ent(X ).

Proof. Let (pj)j∈N be a sequence of patterns such that pj ∈XFj\YFj ; let N (n) be the
number of Fj’s such that F+M

j ⊆En and denote by Fj1 ; : : : ; FjN these disks. Set . := |XD+M |
(where D=Dr and we omit the index r denoting the radius, if it is not necessary),
and denote by /ji :XEn →XFji the restriction to Fji of the patterns of XEn . We prove that∣∣∣∣XEn\

N⋃
i=1

/−1
ji (pji)

∣∣∣∣6(1− .−1)N |XEn | (4)

by induction on m∈{1; : : : ; N}. We have

|XEn |6 |XF+M
j1

||XEn\F+M
j1

|
then

|XEn |6 .|XEn\F+M
j1

|:

Since X is an M -irreducible shift and since dist(Fj1 ; En\F+M
j1 )¿M , given a pattern

p∈XEn\F+M
j1

, there exists a pattern Ip de$ned on all En that coincides with p on En\F+M
j1

and with pj1 on Fj1 ; then

|XEn\F+M
j1

|6 |/−1
j1 (pj1 )|:

Hence

1
.
|XEn |6 |/−1

j1 (pj1 )|

and

|XEn\/−1
j1 (pj1 )|6 |XEn | −

1
.
|XEn | = (1− .−1)|XEn |:

Suppose that (4) holds for m− 1; we have∣∣∣∣XEn\
m−1⋃
i=1

/−1
ji (pji)

∣∣∣∣6 .
∣∣∣∣
{
p|En\F+M

jm
|p ∈ XEn\

m−1⋃
i=1

/−1
ji (pji)

}∣∣∣∣ :



490 F. Fiorenzi / Theoretical Computer Science 299 (2003) 477–493

Moreover, since X is M -irreducible,
∣∣∣∣
{
p|En\F+M

jm
|p ∈ XEn\

m−1⋃
i=1

/−1
ji (pji)

}∣∣∣∣
6

∣∣∣∣
{
p ∈ XEn\

m−1⋃
i=1

/−1
ji (pji) |p|Fjm

= pjm

}∣∣∣∣ :
Hence∣∣∣∣XEn\

m⋃
i=1

/−1
ji (pji)

∣∣∣∣ =
∣∣∣∣
(
XEn\

m−1⋃
i=1

/−1
ji (pji)

)
\/−1

jm (pjm)
∣∣∣∣

6
∣∣∣∣
(
XEn\

m−1⋃
i=1

/−1
ji (pji)

)
\

{
p ∈ XEn\

m−1⋃
i=1

/−1
ji (pji) |p|Fjm

= pjm

}∣∣∣∣
6

∣∣∣∣XEn\
m−1⋃
i=1

/−1
ji (pji)

∣∣∣∣− 1
.

∣∣∣∣XEn\
m−1⋃
i=1

/−1
ji (pji)

∣∣∣∣
6

(
1− 1

.

)
(1− .−1)m−1|XEn | = (1− .−1)m|XEn |:

Hence (4) holds, and since |YEn |6|XEn\
⋃N

i=1 /
−1
ji (pji)|, we have

log |YEn |
|En| 6

N (n) log(1− .−1)
|En| +

log |XEn |
|En| : (5)

Observe that

En ⊆
N⋃
i=1

F+R
ji ∪ (En\E−(R+2r+M)

n ): (6)

Indeed suppose that �∈En and � �∈ ⋃N
i=1 F

+R
ji ; (Fj)j being a (Dr; 2M;R)-net, we have

that �∈F+R
k for some k, that is �∈ �D+R with � such that �D+M *En. Hence dist(�; �)

6r + R so that �∈ �D+R. If �∈E−(R+2r+M)
n , then �∈ �D+R ⊆E−(r+M)

n so that F+M
k =

�D+M ⊆En which is excluded.
From (6), we have

|En|6 N (n)|D+R|+ |En\E−(R+2r+M)
n |;

so that

16
N (n)
|En| |D

+R|+ |@−R+2r+MEn|
|En| ;
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taking the minimum limit and being limn→∞ |@−R+2r+MEn|=|En|=0,

1 := lim inf
n→∞

N (n)
|En| ¿ 0

and then from (5) it follows

ent(Y )6 1 log(1− .−1) + ent(X ) ¡ ent(X ):

Proposition 4.5. Let X be a strongly irreducible shift of +nite type, let � :X →A� be
a local function such that ent(�(X ))= ent(X ). Then � is pre-injective.

Proof. Suppose that X has memory M , that is X is M -irreducible and that � is
M -local. Moreover suppose that � is not pre-injective; then there exist c1; c2 ∈X and a
disk D contained in �, such that c1 �= c2 on D, c1 = c2 out of D and �(c1)= �(c2). Set
(Fj)j∈N=(�jD+2M )j∈N a (D+2M ; 2M;R)-net and denote by Y the subset of X de$ned
by

Y := {c ∈ X | (c�j)|D+2M �= c2|D+2M for every j ∈ N};

that is the subset of X avoiding the pattern c2|D+2M on the disk D+2M and on the
translated disks Fj = �jD+2M . The set Y is a subset of X such that YFj ⊂XFj ; we
prove that �(Y )= �(X ). Indeed if c∈X \Y , there exists a subset J ⊆N such that
for every j∈ J , we have (c�j)|D+2M = c2|D+2M . De$ne Ic∈X in the following
way:

• Ic= c
�−1
j

1 on Fj for every j∈ J ,
• Ic= c out of the union

⋃
j∈J Fj.

That is, Ic is obtained from c substituting all the occurrences of c2|D+2M with c1|D+2M .
By Proposition 2.10, we have Ic∈X and moreover Ic∈Y ; we prove that �( Ic)= �(c).
If �∈ �jD+M for some j∈ J , we have �DM ⊆Fj and then �( Ic)|� =

�(c
�−1
j

1 )|� = �(c1)|�−1
j � = �(c2)|�−1

j � = �(c
�−1
j

2 )|� = �(c)|�.

Suppose that � �∈ �jD+M for every j∈ J ; then �DM ⊆–(�jD) and hence �( Ic)|� =
�(c)|�. Indeed Ic and c coincide on

⋃
j∈J –(�jD): if j∈ J and �∈ @+2M�jD=Fj\�jD, we

have Ic|� =(c
�−1
j

1 )|� = c1|�−1
j �

. Since �−1
j �∈ @+2MD one has c1|�−1

j �
= c2|�−1

j �
=(c

�−1
j

2 )|� = c|�.

Then, by Theorem 2.12 and Lemma 4.4,

ent(�(X )) = ent(�(Y ))6 ent(Y ) ¡ ent(X ):

Proposition 4.6. Let � be an amenable group. Let X be a shift, let Y be a strongly
irreducible shift and let � :X →Y be a local function such that ent(�(X ))= ent(Y ).
Then � is surjective.

Proof. Let X and Y be as in the hypotheses and let � : X →Y be a local function.
We prove that if �(X )⊂Y , then ent(�(X ))¡ent(Y ). Indeed if �(X )⊂Y , there exists
a con$guration c∈Y which does not belong to �(X ) and then there exists a disk D
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such that c|D ∈YD\(�(X ))D. Let (Fj)j∈N be a (D; 2M;R)-net; then (�(X ))Fj ⊂YFj ; by
Lemma 4.4, ent(�(X ))¡ent(Y ).

Theorem 4.7. Let � be an amenable group. Let X be a strongly irreducible shift of
+nite type, let Y be a strongly irreducible shift and let � :X →Y be a local function
with ent(X )= ent(Y ). Then � is pre-injective if and only if is surjective.

Proof. If � is pre-injective we have, by Proposition 4.2, that ent(�(X ))= ent(X ). Then
ent(�(X ))= ent(Y ) so that, by Proposition 4.6, � is surjective.
If, conversely, � is surjective then ent(�(X ))= ent(Y ), that is ent(�(X )) = ent(X ).

By Proposition 4.5, � is pre-injective.

Corollary 4.8 (MM-property for strongly irreducible shifts of $nite type). If � is an
amenable group, a strongly irreducible subshift of +nite type of A� has the MM-
property.

We conclude this section proving that the property of bounded propagation for a
shift is strictly stronger than the union of strong irreducibility and $nite type condition.
The following characterization of the $nite type condition is an easy consequence of
the de$nition.

Lemma 4.9. A shift X is of +nite type with memory M if and only if each con+gu-
ration c∈A� such that c|D(�;M) ∈XD(�;M) for every �∈�, belongs to X .

Now we can prove the following statement.

Proposition 4.10. If X ⊆A� is a shift of bounded propagation, then X is strongly
irreducible and of +nite type.

Proof. Suppose that X has bounded propagation 6M ; if E; F ⊆� are such that dist(E;
F)¿M and p1 ∈XE , p2 ∈XF are two patterns of X , consider the pattern p with sup-
port E ∪F given by the union of the functions p1 and p2. Clearly p∈XE∪F be-
cause if �∈E ∪F and, for instance �∈E, we have (E ∪F)∩ �DM ⊆E and hence
p|(E∪F)∩�DM ∈X(E∪F)∩�DM . A con$guration in X extending p is such that c|E =p1 and
c|F =p2. Hence X is M -irreducible.
Now suppose that c∈A� is such that c|D(�;M) ∈XD(�;M) for every �∈�. Then if

n¿M and �∈Dn we have

c|Dn∩D(�;M) = (c|D(�;M))|Dn∩D(�;M) ∈ XDn∩D(�;M);

X being of bounded propagation we have c|Dn ∈XDn . X being closed we have c∈X .

Recall that an edge shift is the set of all the bi-in$nite paths in a $nite graph. If
�=Z and X is an edge shift, it can be seen that also the converse of the previous
theorem holds.
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Now we prove that in general strong irreducibility and $nite type condition do not
imply the bounded propagation property. Consider the subshift X ⊆{0; 1}Z with a set
of forbidden blocks:

{010; 111}:
Clearly X is a strongly irreducible (in fact 2-irreducible) shift of $nite type; if M¿1
consider the following pattern p with F := supp(p)

0 1 1 1 : : : 1 1︸ ︷︷ ︸
M copies of 1

1 0

In this case we have p|F∩D(�;M) ∈XF∩D(�;M) but p �∈XF ; hence X is not of bounded
propagation 6M for each M¿1.
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