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We present two theorems on periodic solutions of nth-order ordinary differential
equations with the right-hand side T-periodic with respect to the time variable. We
apply a topological method based on the Lefschetz Fixed Point Theorem and the
Wazewski Principle. © 1995 Academic Press, Inc.

The problem of the existence of periodic solutions of an nth-order nonlin-
ear differential equation has been considered by numerous authors, [OZ,
P,R,RSC, S1, W], for example. [OZ] and [RSC] contain extensive bibliogra-
phies of the subject. The techniques of [P, S1] are topological, while the
approach of [OZ, R, W] is based on an application of functional analysis
methods to the study of solutions of the considered differential equations.
The purpose of this note is to present an application of an alternative
approach to the study of periodic solutions of differential equations based
on the Lefschetz Fixed Point Theorem and ideas coming from the Wazew-
iski retract principle. This approach, introduced in [Sr1, Sr2] (cf. also [Sr3]),
permits one not only to obtain different proofs of known results (compare
Theorem 1), but also to improve these (see Theorem 2).
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The basis for the paper will be the following Theorem 0 (See [Sr2,
Theorem 7.1 and Corollary 7.4; Sr3, Theorems 3.1 and 3.2]). It is a conse-
quence of a version of the Lefschetz Fixed Point Theorem stated in [D].
The first assertion of the theorem was established in [Sr1}:

THEOREM 0. Assume that the Cauchy problem

x'=f(tx), x(t)=x, 0)
where f: R X R" — R" is continuous and T-periodic in t ( for some T > 0),
has the uniqueness property. Denote by t — ®, .., \(xo) its solution (i.e., ®
is the (local) process generated by (0); cf. [H]). Let (E, E**) be a pair of

compact Euclidean neighborhood retracts (ENR—see [D] for the definition)
contained in R" and assume that

RXE® ={(t,x) ER X E:Heu}, e > 0, lim & = 0, P, (%) & E}-

if
X(E) = X(E*) # 0
where y denotes the Euler chracteristic, then there exists a T-periodic solution
of (0) staying in the set E. If for every x € OF and t, € R there exists a
t € R such that @ (x) & E then the set
KE = {x € R": @(Q’T)(x) =X, Yte [0, T] . (D((]v,)(X) S E}

is compact and isolated in the set of fixed points of the Poincaré operator
q)(gy-r), and

ind(®e.ry, Ke) = x(E) — x(E™")

where ind denotes the fixed point index.

The equation considered here has the form
YO+ 8,y st ay = by, Y yD), (n

where ay, ..., a,_, denote real numbers and b:R"*! — R is a continuous
map. R* is a Euclidean space with the scalar product x-y and the norm
|x| = (x-x)V2. T is a positive number and let & denote the number 1 or
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—1. In the following we will impose the following conditions on a, ..., 4,1,
b,and T:
(H1) b(, xy, ..., x,) is T-periodic for each (xy, ..., x,) € R".
(H2) The equation
/\nﬁl + a,,_lx\""z + -+ az)\ +a = 0 (2)

has no pure imaginary roots.

(H3) b(t, x1, oy X)) |(x2, <o X,)| — O as |(x2, ..., X,)| = ¢ uniformly
in (t, xl) (S RZ.

(H4) &b(t, xy, ..., x,)x; — @ as |xy| — oo uniformly in (¢, x5, ..., X,)
on compact subsets of R".

Our aim is to prove the following results:

THEOREM 1. The equation (1) has a T-periodic solution provided the
conditions (H1)-(H4) hold.

THEOREM 2. Assume (H1)—(H4). Assume in addition that
b(t, xy, . X)) = bixy + - + bux, + c(t, Xy, ...y X)
with ¢ continuous satisfying the condition

c(t, Xy, e Xp)

—0as|(xy,...,x,)|—> Ouniformlyint € R,
,(xla---,xn)l I( 1 )I f y

and constants by, ..., b, such that the equation
Mt (@, —b IV T+ -+ (a—b)A—b, =0 3
has no roots on iR. Denote by k and ! the number of roots (counted with
their multiplicities) of, respectively, (2) and (3) which have real positive
parts. If
(—=D(sgn ar)e = (-1)
then (1) has a nontrivial T-periodic solution. If, moreover, b is odd in x, i.e.,

b(t, —x1, coey =X,) = —b(L, Xy, ...y X)

then there are at least two distinct such solutions.



PERIODIC SOLUTIONS 669

Let us mention that Theorem 1 is known; it is a corollary from [W]. We
present it here, because our proof differs from the proof in [W] and can
be given simultaneously with the proof of Theorem 2. OQur proof does not
use functional analysis and is based on Theorem 0. It seems that in the
published literature there are not many results similar to Theorem 2 on
the existence of nontrivial periodic solutions for the considered equations,
even in the case n = 2. In the latter case [Sr2, Corollary 11.2] represents
another such result, but it is slightly different from the result in Theorem 2.

Proof of Theorems 1 and 2. Assume additionally that the Cauchy prob-
lem for (1) has the unique solution. Rewrite the equation (1) in an equiva-
lent form

x' = Ax + B(t,x), (4)

where x = col(x, ..., x,,), A is the (n X n)-matrix defined by

0 1 0
A= o 0o .- 1 ’
0 —a; - —an,

and B(¢, x) = col{0, ..., 0, b(¢, x)). Consider an auxiliary equation
"= Pu )

where Pis an (n — 1) X (n — 1)-matrix,

0 1 0
P=10o o 1
—ap —a - Tap
By (H2),
R-1=yU, DU (6)

where U, (and U.) is the generalized eigenspace of the eigenvalues with
positive real parts (negative real parts, respectively). In order to simplify
notation, suppose that both U, and U. are different from {0}. (The case
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U, or U- equal to R" follows by a similar argument; it has been also
considered in [S1, §2].) Let dim U, = k and let

P+:P,U‘7 P*=P|U,9

hence
P = diag(P,,P.).

For an element ¥ € R"™!' denote by u, and u_ its components in the
decomposition (6). For a A > 0 define
Yh(u) = (A7 'u,) — 1,
i) =¢-(A'u) — 1,
where ¢., ¢. denote quadratic forms being Lyapunov functions associated
with the equations
v'=—-Pu
w =P.w,
respectively. Since the right-hand side of (5) is homogeneous of degree 1,

by (H3) and the argument in the proof of [Sr2, Proposition 9.1] there exists
> 0 such that for any (¢, y) € R?,

grad g () - (P(u) + col(0, ..., 0, b(t, y, u))) > 0, ©)
provided
wru) =0,  yru) =<0
and
grad g (u) - (P(u) + col(0, ..., 0, b(t, y, u))) <0, (8)
provided

Y (u) =0, Yt (u) = 0.



PERIODIC SOLUTIONS 671
Set
D={ucR':y2(u) <0,y (u) <0}

Define a function w:R"” — R by
— a ,
w(xy, 0 Xy) = | (@x2+ -+ + @y X, + x,)x) + S xi)-

The direct calculation yields

grad w(x) - (Ax + B(1,x)) = arxi + asx3x;

+ o+ a, 1 x,o 1 x + b, x)x;. (10)
Since D is compact, there exists an M < o such that
M = max{|a,x3 + asxsx; + -+« + a,_ 1 x,-1x2|: (x3, ..., x,,) € D}.
By (H1) and (H4), there exists an R > 0 such that if |x;| = R then
eb(t, x)x;, > M (11)
for every (1, x,, ..., x,) € R X D. Denote
N = max{layx; + -+ + a,_1x,-1 + x,|:(x2, ..., x,) € D}.
Let r > 0 be so chosen that
——Vzl"|:1|1’| -V (12)
and define as in [S1, S2] a function L,:R" — R by the formula
L,(x) = (sgn ay)w(x) — r.
From the formula for the roots of the equation L,(x) = 0,
L EVA - (sgna)(ax, o+ X,y X))
Xy = , (13)

||
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where
A= (ayx; + o0+ ApiXpg + X,)7 = 2aylr,

and from (12) it is clear that for (x,, ..., x,) € D the roots x| are different
from zero and of opposite signs. Moreover, |x;| > R. Define also functions
L1 , L3 ‘R — R:

Li(x) = ¢4 (x2, ..., Xn),
L3(x) = d’ﬁ(xZw '--7xn)1

and let E be the set
E={ixeR:L(x)=0,i=1,2, 3}
Its boundary I’ is the union of sets
I'={&e€E:L(x) = 0},

i=1,2,3. By (13), E is homeomorphic to [0, 1] X D, and, as a consequence,
it is also homeomorphic to the n-dimensional ball B”. By (7) and (8),

grad L,(x) - (Ax + B(t,x)) > 0, forxerl,, (14)
grad L;(x) - (Ax + B(t,x)) <0, forx €T, (15)

and by (10), (11), and (14)
(sgn a,)e grad L,(x) - (Ax + B(¢t,x)) > 0, forxerl,. (16)
Assume now that (sgn a;)e = 1. Put
EX =T, UT,.

By (14), (15), and (16) the pair (£, E<*') fulfills the assumptions of Theorem
0. E** is homeomorphic to {0, 1} X D U [0, 1] X §¥°! X B"*~! hence it
has the homotopy type of S*. Following the notation used in Theorem 0,
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as its consequence we conclude that in our case the set K is compact and
isolated, and

ind(®,1), Ke) = x(E) — x(E=) = (-1)**L
If (sgn a;)e = —1 then we put
Eexit — rl’

hence it has the homotopy type of $*°!. By the above argument we assert
that in both of the cases

ind(q)([)‘r), KE) = (—l)kﬂ(sgn 01)8. (17)

We have already proved the conclusion of Theorem 1, because the differ-
ence of the Euler characteristics is always nonzero. Actually, the set K¢ is
nonempty and each of its points is an initial point of a T-periodic solution
of (4) starting at the time 0.

We continue the proof under the assumptions of Theorem 2. By an
argument similar to that above, using Lyapunov functions one can construct
functions A;, A,:R” — R such that the set

E, = {x e [R":A,(x) =0, Az(x) = 0}
is a compact neighborhood of 0 homeomorphic to B" satisfying conditions

grad A (x) - (Ax + B(t,x)) >0 (x EEp, Ai(x) =0), (18)
grad A(x) - (Ax + B(t,x)) <0 (x € Ep, As(x) = 0), (19)

and the set
ES"“ = {x (S E():Al(x) = O}
has the homotopy type of S'"!. By the argument above we conclude that

KEo = {x eR": (D(U,T)(x) =X, Ve [0, T] : (D(Q,,)(X) (< Eo}



674 SEDZIWY AND SRZEDNICKI

is compact and isolated, and
ind(®,7), Kg,) = x(Eo) — x(E§™) = (—1)". (20)
If x = 0 is the only periodic solution of (4), then

KEO = KE = {0}9

hence

ind(®o 1), KE(,) =ind(®, 1), Kg).

This equation, together with (17) and (20), contradicts the assumptions on
k and /.

The last conclusion concerning the existence of two distinct periodic
solutions follows easily from the fact that, since b is odd with respect to x,
the set of solutions of (1) is invariant under multiplication by —1. The
proof with the additional hypothesis is finished.

To remove the uniqueness hypothesis, note that since inequalities (14)—
(16), (18), and (19) are strict and hold in compact sets, they are also satisfied
by any B, provided |B(¢, x) — B(t, x)| is small for (¢, x) € K, where K C
R*! is a fixed compact set containing [0, 1] X D in its interior. Thus
Theorems 1 and 2 remain valid for equations having the uniqueness prop-
erty, approximating in K Eq. (1). By the standard limiting process, we
conclude that theorems hold true also for the limit equation (1). The proof
is finished.

ExampLE. The equation
y® — y’ =2ye™ arctan y + sin(y*) sin ¢

has two distinct nonzero 2#-periodic solutions.
Indeed, in thiscase g, = e = —landk =1 = 1.
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