On an Error Term Related to the Jordan Totient Function $J_{k}(n)$

Sukumar Das Adhikari

The Institute of Mathematical Sciences, Madras 600 113, India

AND

A. Sankaranarayanan
School of Mathematics, Tata Institute of Fundamental Research, Colaba, Bombay 400005 , India
Communicated by H. Zassenhaus

Received August 8, 1988; revised December 20, 1988

We investigate the error terms

$$
E_{k}(x)=\sum_{n \in x} J_{k}(n)-\frac{x^{k+1}}{(k+1) \zeta(k+1)} \quad \text { for } \quad k \geqslant 2
$$

where $J_{k}(n)=n^{k} \prod_{p \mid n}\left(1-1 / p^{k}\right)$ for $k \geqslant 1$. For $k \geqslant 2$, we prove

$$
\sum_{n \leqslant x} E_{k}(n) \sim \frac{x^{k+1}}{2(k+1) \zeta(k+1)} .
$$

Also,

$$
\limsup _{x \rightarrow \infty} \frac{E_{k}(x)}{x^{k}} \leqslant \frac{D}{\zeta(k+1)},
$$

where $D=.7159$ when $k=2, .6063$ when $k \geqslant 3$. On the other hand, even though

$$
\liminf _{x \rightarrow \infty} \frac{E_{k}(x)}{x^{k}} \leqslant-\frac{1}{2 \zeta(k+1)},
$$

$E_{k}(n)>0$ for integers n sufficiently large. © 1990 Academic Press, Inc.

1. Introduction

Let

$$
\begin{equation*}
E_{k}(x)=\sum_{n \leqslant x} J_{k}(n)-\frac{x^{k+1}}{(k+1) \zeta(k+1)}, \tag{1.1}
\end{equation*}
$$

where $J_{k}(n)$, the Jordan totient function, is defined by

$$
\begin{equation*}
J_{k}(n)=n^{k} \prod_{p \mid n}\left(1-\frac{1}{p^{k}}\right) . \tag{1.2}
\end{equation*}
$$

For $k=1, J_{1}(n)$ is the Euler's totient function $\phi(n)$ and the investigation of the error term $E_{1}(x)$ has a long history. Sylvester conjectured in 1883 $[6,7]$ that $E_{1}(n)>0$ for all positive integers n. The conjecture was wrong ($n=820$ is a counter example, as noted by Sarma [5]). In 1950, Erdös and Shapiro [2] showed that $E_{1}(n)$ changes sign infinitely often. In fact, they proved the stronger result $E_{1}(n)=\Omega_{ \pm}(n \log \log \log \log n)$.
(Before this, Pillai and Chowla [4] had proved that $E_{1}(x)=\Omega(x \log \log$ $\log x)$ and

$$
\left.\sum_{n \leqslant x} E_{1}(n) \sim \frac{3}{2 \pi^{2}} x^{2}\right)
$$

For $k \geqslant 2$, we prove the following theorems.
Theorem 1. We have

$$
\sum_{n \leqslant x} E_{k}(n) \sim \frac{x^{k+1}}{2(k+1) \zeta(k+1)} .
$$

Corollary 1.1. We have

$$
\limsup _{n \rightarrow \infty} \frac{E_{k}(n)}{n^{k}} \geqslant \frac{1}{2 \zeta(k+1)} .
$$

Theorem 2. For real x,

$$
\liminf _{x \rightarrow \infty} \frac{E_{k}(x)}{x^{k}} \leqslant-\frac{1}{2 \zeta(k+1)} .
$$

As regards the sign change for the error term $E_{k}(n)$ at integer points, the situation in the cases $k \geqslant 2$ is quite different from that of $k=1$, as can be seen from

Theorem 3. There is $n_{k}>0$ such that $E_{k}(n)>0$ for all integers $n \geqslant n_{k}$.
Theorem 4. We have

$$
\limsup _{x \rightarrow x} \frac{E_{k}(x)}{x^{k}} \leqslant \frac{D}{\zeta(k+1)}
$$

where $D=.7159$ when $k=2, .6063$ when $k \geqslant 3$.

We prove Theorems 1, 2, and 3 in Section 4. Theorem 4 is proved in Section 5 . We should mention here that the technique of averaging over arithmetic progressions, which was developed by Erdős and Shapiro [2] to deal with the case $k=1$ and which was later used successfully for proving Ω-results for error terms related to different arithmetic functions by Petermann and others (see [3] and [1]), does not seem to give the best possible results here (see Remark 2, Section 5). In our proof of Theorem 4 we use some ad hoc arguments instead.

2. Preliminaries

From Definition (1.2), it is clear that $J_{k}(n)$ is multiplicative and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{J_{k}(n)}{n^{s}}=\frac{\zeta(s-k)}{\zeta(s)} \tag{2.1}
\end{equation*}
$$

for $\sigma>k+1(s=\sigma+i t)$.
From (2.1) it follows that

$$
\begin{equation*}
J_{k}(n)=\sum_{d \mid n} \mu(d)\left(\frac{n}{d}\right)^{k} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
n^{k}=\sum_{d \mid n} J_{k}(d) . \tag{2.3}
\end{equation*}
$$

Notation

Symbols x and n will represent real and integer variables, respectively, and k will be an integer $\geqslant 2$. [x] and $\{x\}$ will respectively stand for the integral part and the fractional part of x. For any two integers m and n, (m, n) denotes the g.c.d. of m and n.

In this section, we first prove some lemmas.
Lemma 3.1. Let $\lambda \geqslant 1$ be an integer. Then
(a) We have

$$
\sum_{n \leqslant x} n^{\lambda}=\frac{x^{\lambda+1}}{\lambda+1}+\left(\frac{1}{2}-\{x\}\right) x^{\lambda}+O\left(x^{\lambda-1}\right) .
$$

(b) For integers j and $d(0 \leqslant j<d)$, we have

$$
\sum_{\substack{n \leq x \\ n \equiv\{(d)}} n^{\lambda}=\frac{x^{\lambda+1}}{(\lambda+1) d}+O\left(x^{\lambda}\right) .
$$

(c) For integers j, d, and $A(0 \leqslant j<d, A \geqslant 1)$, we have

$$
\sum_{\substack{n \leqslant=x \\ A n \equiv j(d)}} n^{\lambda}= \begin{cases}\frac{x^{\lambda+1}}{\lambda+1} \frac{(A, d)}{d}+O\left(x^{i}\right) & \text { if }(A, d) \mid j \\ 0 & \text { otherwise } .\end{cases}
$$

(d) For integers j, d, A, and $B(0 \leqslant j<d, 0 \leqslant B<A)$ we have

$$
\sum_{\substack{n \leqslant x \\ A n=j(d)}}(A n-B)^{\lambda}= \begin{cases}\frac{A^{\lambda} x^{\lambda+1}}{\lambda+1} \cdot \frac{(A, d)}{d}+O\left(A^{\lambda} x^{\lambda}\right) & \text { if }(A, d) \mid j \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. (a) and (b) are standard results. To prove (c), we note that $A n \equiv j(\bmod d)$ has no solution if $(A, d) \nmid j$. If $(A, d) \mid j$, then $A n \equiv j(\bmod d)$ is equivalent to $n \equiv \beta(\bmod d /(A, d))$ for some β and we now apply (b). (d) follows from (c), since

$$
(A n-B)^{\lambda}=A^{\lambda} n^{\lambda}+O\left(A^{\lambda} n^{\lambda-1}\right)
$$

Lemma 3.2. For given positive integers A and d, we have

$$
\sum_{\substack{j=0 \\(A, d) \mid j}}^{d-1}\left(\frac{1}{2}-\frac{j}{d}\right)=\frac{1}{2}
$$

Proof. It is clear that

$$
\begin{equation*}
\sum_{j=0}^{\lambda-1}\left(\frac{1}{2}-\frac{j}{\lambda}\right)=\frac{1}{2} \tag{3.1}
\end{equation*}
$$

If $(A, d) \mid j$ and $0 \leqslant j \leqslant d-1$, then j looks like $j=r(A, d)$, where $0 \leqslant r \leqslant$ $d /(A, d)-1$.

$$
\begin{aligned}
\therefore \sum_{\substack{j=0 \\
(A, d) \mid j}}^{d-1}\left(\frac{1}{2}-\frac{j}{d}\right) & =\sum_{r=0}^{d /(A, d)-1}\left(\frac{1}{2}-\frac{r(A, d)}{d}\right) \\
& =\frac{1}{2} \quad(\text { by } 3.1) .
\end{aligned}
$$

Lemma 3.3. Let $f(d)$ be any multiplicative arithmetic function such that

$$
\sum_{d=1}^{\infty} \frac{f(d)}{d^{k}}<\infty
$$

Let $F_{k, f}(n)=\sum_{d \mid n} f(d)(n / d)^{k}$ and

$$
\begin{equation*}
E_{k, f}(x)=\sum_{n \leqslant x} F_{k \cdot f}(n)-\frac{x^{k+1}}{k+1} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}} \tag{3.2}
\end{equation*}
$$

Then we have

$$
E_{k . f}(x)=x^{k} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k}}\left(\frac{1}{2}-\left\{\frac{x}{d}\right\}\right)+o\left(x^{k}\right)
$$

Proof. We have

$$
\begin{aligned}
\sum_{n \leqslant x} F_{k, f}(n) & =\sum_{n \leqslant x} \sum_{d \mid n} f(d)\left(\frac{n}{d}\right)^{k} \\
& =\sum_{m d \leqslant x} f(d) m^{k} \\
& =\sum_{d \leqslant x} f(d) \sum_{m \leqslant x / d} m^{k} \\
& =\sum_{d \leqslant x} f(d)\left(\frac{x^{k+1}}{(k+1) d^{k+1}}+\left(\frac{1}{2}-\left\{\frac{x}{d}\right\}\right)\left(\frac{x}{d}\right)^{k}+O\left(\left(\frac{x}{d}\right)^{k-1}\right)\right) \\
& =\frac{x^{k+1}}{k+1} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}}+x^{k} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k}}\left(\frac{1}{2}-\left\{\frac{x}{d}\right\}\right)+o\left(x^{k}\right)
\end{aligned}
$$

which proves the lemma, since

$$
\begin{aligned}
x^{k-1} \sum_{d \leqslant x} \frac{f(d)}{d^{k-1}} & =x^{k-1}\left\{\sum_{d \leqslant \sqrt{x}} \frac{f(d)}{d^{k-1}}+\sum_{x \geqslant d \geqslant \sqrt{x}} \frac{f(d)}{d^{k-1}}\right\} \\
& =O\left(x^{k-1 / 2}\right)+\varepsilon x^{k}\left(\because \frac{x}{d}>1\right)
\end{aligned}
$$

and $\varepsilon>0$ small.
Lemma 3.4. If

$$
H_{k, f}(x)=\sum_{n \leqslant x} \frac{F_{k, f}(n)}{n}-\frac{x^{k}}{k} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}}
$$

then

$$
H_{k, f}(x)=x^{k-1} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k}}\left(\frac{1}{2}-\left\{\frac{x}{d}\right\}\right)+o\left(x^{k-1}\right)
$$

Proof. Proof follows by a similar argument as in Lemma 3.3.
Remark. From Lemmas 3.3 and 3.4 we have

$$
\begin{equation*}
E_{k, f}(x)=x H_{k, f}(x)+o\left(x^{k}\right) . \tag{3.3}
\end{equation*}
$$

Lemma 3.5. For integers A and $B(0 \leqslant B<A)$ and f as in Lemma 3.3, if

$$
S=\sum_{n \leqslant x} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k}}\left(\frac{1}{2}-\left\{\frac{A n}{d}\right\}\right)(A n-B)^{k-1}
$$

then we have

$$
S=\frac{A^{k-1} x^{k}}{2 k} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}}(A, d)+O\left(A^{k-1} x^{k-1}\right)
$$

Proof. We have

$$
\begin{aligned}
S= & \sum_{d=1}^{\infty} \frac{f(d)}{d^{k}} \sum_{j=0}^{d-1}\left(\frac{1}{2}-\frac{j}{d}\right) \sum_{\substack{n \leq x \\
A n=j(\bmod d)}}(A n-B)^{k-1} \\
= & \sum_{d=1}^{\infty} \frac{f(d)}{d^{k}} \sum_{\substack{j=0 \\
(A, d) \mid j}}^{d-1}\left(\frac{1}{2}-\frac{j}{d}\right)\left(\frac{A^{k-1} x^{k}}{k} \frac{(A, d)}{d}+O\left(A^{k-1} x^{k-1}\right)\right) \\
& (\text { by Lemma 3.1(d)) } \\
= & \frac{A^{k-1} x^{k}}{2 k} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}}(A, d)+O\left(A^{k-1} x^{k-1}\right) \quad \text { (by Lemma 3.2). }
\end{aligned}
$$

Note. Henceforth the symbols $F_{k, f}(n), E_{k, f}(x), H_{k, f}(x)$ will be used with the assumptions on f as in Lemma 3.3.

Lemma 3.6. We have

$$
\sum_{n \leqslant x} H_{k, f}(n)=\frac{x^{k}}{2 k} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}}+o\left(x^{k}\right) .
$$

Proof. By Lemma 3.4, we have

$$
\sum_{n \leqslant x} H_{k, y}(n)=\sum_{n \leqslant x}\left(n^{k-1} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k}}\left(\frac{1}{2}-\left\{\frac{n}{d}\right\}\right)+o\left(n^{k-1}\right)\right)
$$

and now the result follows by application of Lemma 3.5 with $A=1$ and $B=0$.

Lemma 3.7. We have

$$
\sum_{n \leqslant x} E_{k, f}(n) \sim \frac{x^{k+1}}{2(k+1)} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}} .
$$

Proof. Proof follows on using Lemmas 3.3 and 3.5 with $A=1$ and $B=0$.

Lemma 3.8. If $\sum_{d=1}^{\infty} f(d) / d^{k+1}>0$ (respectively <0), then we have

$$
\lim _{x \rightarrow \infty} \sup \frac{E_{k, f}(x)}{x^{k}} \geqslant \frac{1}{2} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}} \quad\left(\text { respectively } \geqslant-\frac{1}{2} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}}\right)
$$

and

$$
\lim _{x \rightarrow \infty} \inf \frac{E_{k, f}(x)}{x^{k}} \leqslant-\frac{1}{2} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}} \quad\left(\text { respectively } \leqslant \frac{1}{2} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}}\right)
$$

Proof. Suppose $\sum_{d=1}^{\infty} f(d) / d^{k+1}>0$. Then Lemma 3.7 implies that

$$
\lim _{n \rightarrow \infty} \sup \frac{E_{k, f}(n)}{n^{k}} \geqslant \frac{1}{2} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}} .
$$

It also follows from Lemma 3.7 that, for infinitely many positive integers n, we have

$$
\begin{equation*}
E_{k, f}(n) \leqslant \frac{n^{k}}{2} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}}+o\left(n^{k}\right) \tag{3.4}
\end{equation*}
$$

If x lies in the open interval ($n, n+1$), then from Eq. (3.2) we have

$$
\begin{aligned}
\lim _{\theta \rightarrow 1^{-}}\left(E_{k, f}(n+\theta)-E_{k, f}(n)\right) & =\left(-\sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}}\right)\left(\frac{(n+1)^{k+1}-n^{k+1}}{k+1}\right) \\
& =-n^{k} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}}+o\left(n^{k}\right)
\end{aligned}
$$

From the inequality (3.4), it follows that $E_{k, f}(n)$ becomes negative between n and $n+1$. More precisely,

$$
\lim _{x \rightarrow \infty} \inf \frac{E_{k}(x)}{x^{k}} \leqslant-\frac{1}{2} \sum_{d=1}^{\infty} \frac{f(d)}{d^{k+1}} .
$$

The case $\sum_{d=1}^{\infty} f(d) / d^{k+1}<0$ can be dealt with in the same way.

4. Proof of Theorems 1,2 , and 3

If we take $\mu(d)=f(d)$, all the conditions for $f(d)$ in Lemma 3.3 are satisfied with $k \geqslant 2$. Also we have $F_{k, \mu}(n)=J_{k}(n)$ and $E_{k, \mu}(x)=E_{k}(x)$.

Now Theorems 1 and 2 follow respectively from Lemmas 3.7 and 3.8. We have

$$
\begin{align*}
& E_{k}(n)=n^{k} \sum_{d=1}^{\infty} \frac{\mu(d)}{d^{k}}\left(\frac{1}{2}-\left\{\frac{n}{d}\right\}\right)+o\left(n^{k}\right) \tag{4.1}\\
& \frac{1}{2}-\left\{\frac{n}{d}\right\} \begin{cases}=\frac{1}{2} & \text { if } \quad d=1 \\
>-\frac{1}{2} & \text { if } \quad d \geqslant 2 .\end{cases}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
\sum_{d=1}^{\infty} \frac{\mu(d)}{d^{k}}\left(\frac{1}{2}-\left\{\frac{n}{d}\right\}\right) & \geqslant \frac{1}{2}-\frac{1}{2}\left(\frac{1}{2^{k}}+\frac{1}{3^{k}}+\frac{1}{4^{k}}+\cdots\right) \\
& =\frac{1}{2}(1+1-\zeta(k))>1-\frac{\zeta(2)}{2}=1-\frac{\pi^{2}}{12}>0
\end{aligned}
$$

and (4.1) implies Theorem 3.

5. Proof of Theorem 4

Writing $H_{k}(x)=H_{k, \mu}(x)$, we have from Lemma 3.4

$$
\begin{equation*}
H_{k}(n)=n^{k-1} \sum_{d=1}^{\infty} \frac{\mu(d)}{d^{k}}\left(\frac{1}{2}-\left\{\frac{n}{d}\right\}\right)+o\left(n^{k-1}\right) \tag{5.1}
\end{equation*}
$$

Also, from (3.2),

$$
\begin{equation*}
E_{k}(x)=x H_{k}(x)+o\left(x^{k}\right) \tag{5.2}
\end{equation*}
$$

Now,

$$
\begin{align*}
-\sum_{d=1}^{\infty}\left\{\frac{n}{d}\right\} \frac{\mu(d)}{d^{k}} \leqslant & \sum_{p \leqslant 100} \frac{p-1}{p} \cdot \frac{1}{p^{k}}+\sum_{p_{1} \cdot p_{2} \cdot p_{3} \leqslant 100} \frac{p_{1} p_{2} p_{3}-1}{\left(p_{1} p_{2} p_{3}\right)^{k+1}} \\
& +\frac{1}{10^{2 k-4}} \sum_{d \geqslant 101} \frac{1}{d^{2}} \\
\leqslant & \sum_{p \leqslant 100} \frac{1}{p^{k}}-\sum_{p \leqslant 100} \frac{1}{p^{k+1}}+\frac{5}{(30)^{k}} \\
& +\frac{1}{10^{2 k-4}} \sum_{d \geqslant 101}\left(\frac{1}{d-1}-\frac{1}{d}\right) \tag{5.3}
\end{align*}
$$

Case I. $k=2$. We have

$$
\begin{align*}
& \sum_{d=1}^{\infty} \frac{\mu(d)}{d^{2}}\left(\frac{1}{2}-\left\{\frac{n}{d}\right\}\right) \leqslant \\
& \frac{1}{2 \zeta(2)}+\sum_{p \leqslant 100} \frac{1}{p^{2}}-\sum_{p \leqslant 100} \frac{1}{p^{3}} \\
&+\frac{5}{(30)^{2}}+.01 \quad(\text { by }(5.3)) \\
& \leqslant \frac{.5 \times \frac{\zeta(3)}{\zeta(2)}+.2915 \times \zeta(3)}{\zeta(3)} \tag{5.4}\\
& \leqslant \frac{.71582}{\zeta(3)} \quad \text { (by numerical computations). }
\end{align*}
$$

Case II. $k \geqslant 3$. Proceeding similarly,

$$
\begin{align*}
\sum_{d=1}^{\infty} \frac{\mu(d)}{d^{k}}\left(\frac{1}{2}-\left\{\frac{n}{d}\right\}\right) & \leqslant \frac{1}{2 \zeta(k)}+\sum_{p \leqslant 100} \frac{1}{p^{3}}-\sum_{p \leqslant 100} \frac{1}{p^{4}}+\frac{5}{(30)^{3}}+.0001 \\
& \leqslant \frac{.60628}{\zeta(k+1)} \tag{5.5}
\end{align*}
$$

Now, Theorem 4 follows from (5.1), (5.2), (5.4), (5.5), and the fact that $E_{k}(x)$ decreases between two consecutive integers.

Remarks. 1. Since

$$
\left|\sum_{\substack{d \leqslant 100 \\ d \neq p \\ d \neq p_{1} p_{2} p_{3}}}\left\{\frac{n}{d}\right\} \frac{\mu(d)}{d^{2}}\right| \leqslant .0711
$$

(by numerical computations), it is clear from the calculations in Case I, that

$$
-\sum_{d=1}^{\infty}\left\{\frac{n}{d}\right\} \frac{\mu(d)}{d^{2}} \geqslant .2
$$

and therefore

$$
\sum_{d=1}^{\infty}\left(\frac{1}{2}-\left\{\frac{n}{d}\right\}\right) \frac{\mu(d)}{d^{2}} \geqslant \frac{.35+.2 \times 1.2}{\zeta(3)}=\frac{.59}{\zeta(3)}
$$

Thus, for $k=2$, we have

$$
\limsup _{n \rightarrow \infty} \frac{E_{k}(n)}{n^{2}} \geqslant \frac{.59}{\zeta(3)} \quad \text { (cf. Corollary 1.1). }
$$

With more careful calculations this can be improved slightly and the lower bound for $\lim \sup _{n \rightarrow \infty} E_{k}(n) / n^{k}$ can be improved for other small k 's in a similar way.
2. We give an outline of the technique of averaging over arithmetic progressions which yields a result weaker than Theorem 4.

One proves
Lemma *. For integers $0 \leqslant \beta<A$,

$$
\sum_{\substack{m \leq=\\ m \equiv \beta(A)}} \frac{J_{k}(m)}{m}=\frac{C(A) z^{k}}{k A} \sum_{d \mid A A, B)} \frac{\mu(d)}{d^{k}}+o\left(z^{k}\right),
$$

where $C(A)=\prod_{p \nmid A}\left(1-1 / p^{k+1}\right)>0$.
Then we get
Lemma **. For integers $0<B<A$,

$$
\begin{aligned}
\sum_{n \leqslant x} H_{k}(A n-B)= & \frac{A^{k-1} x^{k}}{k}\left[\frac{B}{\zeta(k+1)}+\frac{C(A)}{2} \sum_{d \mid A} \frac{\mu(d)}{d^{k}}\right. \\
& \left.-C(A) \sum_{k=0}^{B-1} \sum_{d \mid A A . c)} \frac{\mu(d)}{d^{k}}\right] \\
& +O\left(A^{k-1} B x^{k-1}\right)+o\left(A^{k-1} x^{k}\right) .
\end{aligned}
$$

Now, if we choose B to be a large positive integer, $A=$ $\Pi_{p<B} p^{[(\log B\rangle /(\log 2)]}$ and $x=A^{2}$, for $1 \leqslant C<B,(A, C)=C$ and hence from Lemma ${ }^{* *}$,

$$
\begin{aligned}
\sum_{n \leqslant x} H(A n-B)= & \frac{A^{k-1} x^{k}}{k}\left[\frac{B}{\zeta(k+1)}-\frac{C(A)}{2} \sum_{d \mid A} \frac{\mu(d)}{d^{k}}\right. \\
& \left.-C(A) \sum_{C=1}^{B-a} \sum_{d \mid c} \frac{\mu(d)}{d^{k}}\right]+o\left(A^{k-1} x^{k}\right)+O\left(A^{k \cdot 1} x^{k-1} B\right)
\end{aligned}
$$

which leads to

$$
\begin{aligned}
\sum_{n \leqslant x} H(A n-B)= & \frac{C(A) A^{k-1} x^{k}}{k}\left[\frac{1}{\zeta(k+1)}-\frac{H(B-1)}{(B-1)^{k}-1}+O\left(\frac{1}{B^{k-1}}\right)\right] \\
& +o\left(A^{k-1} x^{k}\right)+O\left(A^{k-1} x^{k-1} B\right) .
\end{aligned}
$$

Since $C(A) \rightarrow 1 / \zeta(k+1)$ as $B \rightarrow \infty$,

$$
\frac{H(B-1)}{(B-1)^{k-1}}>\frac{1}{\zeta(k+1)}+\varepsilon \quad \text { for } \quad \varepsilon>0
$$

and for infinitely many B 's this would imply that $H(m)<0$ for infinitely many m 's, which is false, as is apparent from the proof of Theorem 3.

Hence,

$$
\frac{H_{k}(n)}{n^{k-1}} \leqslant \frac{1}{\zeta(k+1)}+\varepsilon
$$

for $n \geqslant n_{k}$ for some $n_{k}>0$, which gives

$$
\limsup _{x \rightarrow \infty} \frac{E_{k}(x)}{x^{k}} \leqslant \frac{1}{\zeta(k+1)} .
$$

Acknowledgment

We thank Professors K. Ramachandra and R. Balasubramanian for many valuable discussions and constant encouragement.

References

1. S. D. Adhikari, R. Balasubramanian, and A. Sankaranarayanan, On an error term related to the greatest divisor of n, which is prime to k, Indian J. Pure Appl. Math. 19 (1988), 830-841.
2. P. Erdös and H. N. Shapiro, On the changes of sign of a certain error function, Canad. J. Math. 3-4 (1951), 375-385.
3. Y.-F. S. Petermann, An Ω-theorem for an error term related to the sum of divisors function, Mh. Math. 103 (1987), 145-157.
4. S. S. Pillai and S. Chowla, On the error terms in some asymptotic formulae in the theory of numbers, I, J. London Math. Soc. 5 (1930), 95101.
5. M. N. L. Sarma, On the error term in a certain sum, Proc. Indian Acad. Sci. A, B (1931), 338.
6. J. J. Sylvester, Note sur le théorème de Legendre citée dans une note insérée dans les "Comptes rendus," C. R. Acad. Sci. Paris 46 (1983), 463-465; or "Coll. Papers IV," pp. 88-90.
7. J. J. Sylvester, On the number of fractions contained in any Farey series of which the limiting number is given, Philos. Mag. 15 (1983), 230-233; or "Coll. Papers IV," pp. 101-109.
