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We investigate the error terms 

.%++I 
E,(x)=~~~J,(n)-(k+l)i(k+l) 

for ka2, 

where J,(n) = nk npln( 1 - l/pk) for k 3 1. For k 2 2, we prove 

1 E&)- 

xk+l 

n d x 2(k+l)[(k+l)’ 

Also, 

-uX) D 
IimsupTQ- 

1: - cc S(k+ 1)’ 

where D = .7159 when k = 2, .6063 when k 2 3. On the other hand, even though 

liminfy,< -A, 
-i - a 

E,(n) > 0 for integers n sufficiently large. c 1990 Academic Press, Inc. 

1. INTRODUCTION 

Let 

J%(x)= 1 Jk(n)-(k+ n*;(;+ 1)’ 

n < .r 
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where J,(n), the Jordan totient function, is defined by 

J,(n)=nk~ l-J$ . 
Pin ( > (1.2) 

For k = 1, J,(n) is the Euler’s totient function d(n) and the investigation 
of the error term E,(x) has a long history. Sylvester conjectured in 1883 
[6, 71 that E,(n) > 0 for all positive integers n. The conjecture was wrong 
(n = 820 is a counter example, as noted by Sarma [S]). In 1950, Erdiis and 
Shapiro [2] showed that E,(n) changes sign infinitely often. In fact, they 
proved the stronger result E,(n) = Q-t- (n log log log log n). 

(Before this, Pillai and Chowla [4] had proved that E,(X) = B(x log log 
log X) and 

For k > 2, we prove the following theorems. 

THEOREM 1. We have 

c &(“)- 

Sk+l 

rr< 7; 2(k+ l)[(k+ 1)’ 

COROLLARY 1.1. We have 

E,(n) 1 lim sup nk > 
H + x. 2((k+ 1)’ 

THEOREM 2. For real x, 

liminfq< - l 
li -+ -1 x 2i(k + 1)’ 

As regards the sign change for the error term E,(n) at integer points, the 
situation in the cases k > 2 is quite different from that of k = 1, as can be 
seen from 

THEOREM 3. There is nk > 0 such that E,(n) > 0 for all integers n >, nk. 

THEOREM 4. We have 

Ek(X) D 
lim sup - - 

i - 7. xk “i(k+ 1) 

where D = .7159 when k = 2, .6063 when k > 3. 
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We prove Theorems 1, 2, and 3 in Section 4. Theorem 4 is proved in 
Section 5. We should mention here that the technique of averaging over 
arithmetic progressions, which was developed by Erdiis and Shapiro [2] to 
deal with the case k = 1 and which was later used successfully for proving 
G-results for error terms related to different arithmetic functions by 
Petermann and others (see [3] and Cl]), does not seem to give the best 
possible results here (see Remark 2, Section 5). In our proof of Theorem 4 
we use some ad hoc arguments instead. 

2. PRELIMINARIES 

From Definition (1.2), it is clear that J,(n) is multiplicative and 

m J,(n) Us-k) c s=- 
n=l n i(s) 

for Q > k + 1 (s = 0 + it). 
From (2.1) it follows that 

k 

(2.1) 

(2.2) 

and 

nk = c J,(d). 
din 

(2.3) 

Notation 

Symbols x and n will represent real and integer variables, respectively, 
and k will be an integer 2 2. [x] and {x} will respectively stand for the 
integral part and the fractional part of x. For any two integers m and II, 
(m, n) denotes the g.c.d. of m and n. 

3 

In this section, we first prove some lemmas. 

LEMMA 3.1. Let A 2 1 be an integer. Then 

(a) We have 
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(b) For integersj and d (O<j< d), we have 

(c) For integers j, d, and A (0 < j< d, A > l), we have 

c 
gy+O(x”) ij” (A,d)lj 

,;. = 
n < I 

An z j(d) 0 otherwise. 

(d) For integersj, d, A, andB(O<j<d, O<B<A) we have 

A’x’+l (A, d) -.- if Md)lj c (An-B)j,= E,+1 d +Ob@-r”) 

n < .Y 
An E j(d) 0 otherwise. 

Proof. (a) and (b) are standard results. To prove (c), we note that 
An z j (mod d) has no solution if (A, d)i j. If (A, d) 1 j, then An E j (mod d) 
is equivalent to n G /? (mod d/(A, d)) for some /I and we now apply (b). (d) 
follows from (c), since 

(A~ _ B)j. = AAn” + o(A;.nA-- 1). 

LEMMA 3.2. For given positive integers A and d, we have 

Proof. It is clear that 

‘-llj 1 
I( > 

-_- =- 
j=. 2 2 2’ 

(3.1) 

If (A,d)lj and O<j<d-1, then j looks like j=r(A,d), where Odrd 
d/(A, d) - 1. 

(A.d)li 
1 =- 
2 

(by 3.1). 
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LEMMA 3.3. Let f(d) be any multiplicative arithmetic function such that 

f f(d)<a, 
d=l dk 

Let Fk,k,s(n) = Cdln f(4W)k and 

xk+l O” f(d) 
Ek,f(X)= c Fk.f@+k-+l ; dk+L. 

n < c d-l 
(3.2) 

Then we have 

Proof: We have 

=d&fV) C mk 
m  $ x/d 

which proves the lemma, since 

and E > 0 small. 

LEMMA 3.4. If 
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then 

Hk,,(X)=Xk-l 2 f3 + o(xk - 1). 
d=l 

Proqf: Proof follows by a similar argument as in Lemma 3.3. 

Remark. From Lemmas 3.3 and 3.4 we have 

&Jb) = ,Y&,,(x) + o(Xk). (3.3) 

LEMMA 3.5. For integers A and B (0 < B < A) and f as in Lemma 3.3, if 

then we have 

SJ--‘.Yk 

2k 
f f(d) 

d=l 

dkf’ (A, d) + O(Ak - ‘xk - ‘). 

Proof: We have 

& (An-Blk-’ 

An--j&d d) 

(by Lemma 3.1(d)) 

‘) (by Lemma 3.2). 

Note. Henceforth the symbols Fk,Jn), Ek. f(.x), H,,(x) will be used 
with the assumptions on f as in Lemma 3.3. 

LEMMA 3.6. We have 

Pro& By Lemma 3.4, we have 
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and now the result follows by application of Lemma 3.5 with A = 1 and 
B=O. 

LEMMA 3.7. We have 

Proof Proof follows on using Lemmas 3.3 and 3.5 with A = 1 and 
B=O. 

LEMMA 3.8. IfCT=, f(d)/dk+’ > 0 (respectively < 0), then we have 

m f(d) respectively 2 --i 1 - 
d=l 

dk+l 

and 

(respectively <i f 9). 
d=l 

Prooj Suppose x7=, f(d)/dk+’ > 0. Then Lemma 3.7 implies that 

Ekf(n) 1 
lim supT,2 >- f f;"', 

n-m d=l 

d+. 

It also follows from Lemma 3.7 that, for infinitely many positive integers n, 
we have 

nk O" f(d) 
Ek,r(n) G y 1 h”+’ + o(n”). 

d=l 
(3.4) 

If x lies in the open interval (n, n + l), then from Eq. (3.2) we have 

,‘$- (Ek,f(n + 0) -E/c&)) = ( d:,v4)((n+v;l;n*+l) - 1 

= -nk 2 *+ o(n”) 
d=l d’ ’ 

From the inequality (3.4), it follows that E,,Jn) becomes negative between 
n and n + 1. More precisely, 

The case CF=, f(d)/dk+’ ~0 can be dealt with in the same way. 
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4. PROOF OF THEOREMS 1, 2, AND 3 

If we take p(d) = f(d), all the conditions for f(d) in Lemma 3.3 are 
satisfied with k32. Also we have F,,,(n)=J,(n) and E,,,(x)=&(x). 

Now Theorems 1 and 2 follow respectively from Lemmas 3.7 and 3.8. We 
have 

+o(nk) 

1 
=2 

if d=l 

1 
>-- 

2 
if da2. 

Therefore, 

and (4.1) implies Theorem 3. 

5. PROOF OF THEOREM 4 

Writing Hk(x) = Hk./c(x), we have from Lemma 3.4 

Also, from (3.2), 

Now, 
E/+(X) = xH,(x) + o(.xk). 

c P-l 1 ------if+ 1 PlP2P3- 1 

P<lOO P P P,.PL.~l~100~PlP2P3~k+1 

(4.1) 

(5.1) 

(5.2) 

(5.3 1 
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Case I. k = 2. We have 

5 
+o’+.Ol (by (5.3)) 

.5xu+ 2915x5(3) 

< 
C(2) ’ 

C(3) 

.71582 

G l(3) 
(by numerical computations). (5.4) 

Case II. k > 3. Proceeding similarly, 

Now, Theorem 4 follows from (5.1), (5.2), (5.4), (5.5), and the fact that 
Ek(x) decreases between two consecutive integers. 

Remarks. 1. Since 

(by numerical computations), it is clear from the calculations in Case I, 
that 

- 

and therefore 

Thus, for k = 2, we have 

Edn) >.59 lim sup 7, 
i-(3) 

(cf. Corollary 1.1). 
n-m 
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With more careful calculations this can be improved slightly and the 
lower bound for lim sup, _ ~ Ek(n)/nk can be improved for other small k’s 
in a similar way. 

2. We give an outline of the technique of averaging over arithmetic 
progressions which yields a result weaker than Theorem 4. 

One proves 

LEMMA *. For integers 0 </I c A, 

where C(A)=n,,,(l - l/~~+l)>O, 

Then we get 

LEMMA * *. For integers 0 < B < A, 

nTvHk(An-B)=y 

-C(A)Bf’ 1 y] 
s,=o d((A,<, 

+O(Ak~‘Bxk~‘)+o(Ak~‘.yk). 

Now, if we choose B to be a large positive integer, A = 
rI p< B pc(b ~)/(~W2)1 and ?c = A2 3 for 1 d C < B, (A, C) = C and hence 
from Lemma **, 

1 H(An-B)=- 
,I s Y 

-C(A)Biu c $$]+o(A~-~I~~)+O(A~ lxk~-‘B) 
C=l d(r 

which leads to 

+o(A”~‘x~)+ O(A’-‘sk ‘B). 

Since C(A) -+ l/[(k -I- 1) as B -+ 05, 
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and for infinitely many B’s this would imply that H(m) < 0 for infinitely 
many m’s, which is false, as is apparent from the proof of Theorem 3. 

Hence, 

H,(n) 1 
nk-’ ‘i(k+’ 

for n 2 nk for some nk > 0, which gives 

Ek(x) 1 lim sup 7 < ---. 
x - 00 i&-t 1) 
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