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Various theories of Quantum Gravity predict modifications of the Heisenberg Uncertainty Principle near
the Planck scale to a so-called Generalized Uncertainty Principle (GUP). In some recent papers, we
showed that the GUP gives rise to corrections to the Schrödinger equation, which in turn affect all
quantum mechanical Hamiltonians. In particular, by applying it to a particle in a one-dimensional box,
we showed that the box length must be quantized in terms of a fundamental length (which could be the
Planck length), which we interpreted as a signal of fundamental discreteness of space itself. In this Letter,
we extend the above results to a relativistic particle in a rectangular as well as a spherical box, by solving
the GUP-corrected Klein–Gordon and Dirac equations, and for the latter, to two and three dimensions. We
again arrive at quantization of box length, area and volume and an indication of the fundamentally grainy
nature of space. We discuss possible implications.

© 2010 Elsevier B.V. Open access under CC BY license. 
Various approaches to quantum gravity (such as String The-
ory and Doubly Special Relativity (or DSR) Theories), as well as
black hole physics, predict a minimum measurable length, and a
modification of the Heisenberg Uncertainty Principle to a so-called
Generalized Uncertainty Principle, or GUP, and a corresponding
modification of the commutation relations between position co-
ordinates and momenta. The following GUP which we proposed
in [1] is (and as far as we know the only one) consistent with DSR
theories, String Theory and Black Holes Physics and which ensure
[xi, x j] = 0 = [pi, p j] (via the Jacobi identity)1

[xi, p j] = ih̄

[
δi j − a

(
pδi j + pi p j

p

)
+ a2(p2δi j + 3pi p j

)]
, (1)

�x�p � h̄

2

[
1 − 2a〈p〉 + 4a2〈p2〉]

� h̄

2

[
1 +

(
a√〈p2〉 + 4a2

)
�p2 + 4a2〈p〉2 − 2a

√〈
p2
〉 ]

(2)

where a = a0/MPlc = a0�Pl/h̄, MPl = Planck mass, �Pl ≈ 10−35 m =
Planck length, and MPlc

2 = Planck energy ≈ 1019 GeV. It should
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1 (a) In [1,8,9] we had used α in place of a.

(b) The results of this article do not depend on this particular form of GUP
chosen, and continue to hold for a large class of variants, so long as an O(a) term
is present in the right-hand side of Eq. (1).
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be stressed that the GUP-induced terms become important near
the Planck scale. It is normally assumed that a0 ≈ 1. (For earlier
versions of GUP, motivated by String Theory, Black Hole Physics,
DSR, etc., see e.g. [2–7], and for some phenomenological impli-
cations see [8,9,1].) Note that although Eqs. (1) and (2) are not
Lorentz covariant, they are at least approximately covariant un-
der DSR transformations [7]. We expect the results of our Letter
to have similar covariance as well. In addition, since DSR transfor-
mations preserve not only the speed of light, but also the Planck
momentum and the Planck length, it is not surprising that Eqs. (1)
and (2) imply the following minimum measurable length and max-
imum measurable momentum

�x � (�x)min ≈ a0�Pl, (3)

�p � (�p)max ≈ MPlc

a0
. (4)

It can be shown that the following definitions

xi = x0i, pi = p0i
(
1 − ap0 + 2a2 p2

0

)
(5)

(with x0i , p0 j satisfying the canonical commutation relations
[x0i, p0 j] = ih̄δi j , such that p0i = −ih̄∂/∂x0i) satisfy Eq. (1). In [1]
we showed that any non-relativistic Hamiltonian of the form
H = p2/2m + V (�r) can be written as H = p2

0/2m − (a/m)p3
0 +

V (r) + O(a2) using Eq. (5), where the second term can be treated
as a perturbation. Now, the third order Schrödinger equation has a
new non-perturbative solution of the form ψ ∼ eix/2ah̄ , which when
superposed with the regular solutions perturbed by terms O(a),
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implies not only the usual quantization of energy, but also that
the box length L is quantized according to

L

ah̄
= L

a0�Pl
= 2pπ + θ, p ∈ N, (6)

where θ = O(1). We interpreted this as the quantization of mea-
surable lengths, and effectively that of space itself, near the Planck
scale. In this Letter, we re-examine the above problem, but now
assuming that the particle is relativistic. This we believe is im-
portant for several reasons, among which are that extreme high
energy (ultra-)relativistic particles are natural candidates for prob-
ing the nature of spacetime near the Planck scale, and that most
elementary particles in nature are fermions, obeying some form of
the Dirac equation. Furthermore, as seen from below, attempts to
extend our results to 2 and 3 dimensions seem to necessitate the
use of matrices. However, we first start by examining the simpler
Klein–Gordon equation.

1. Klein–Gordon equation in one dimension

The Klein–Gordon (KG) equation in 1-spatial dimension2

p2Φ(t, x) =
(

E2

c2
− m2c2

)
Φ(t, x). (7)

We see that this is identical to the Schrödinger equation, when one
makes the identification: 2mE/h̄2 ≡ k2 → E2/h̄2c2 − m2c2/h̄2. As a
result, the quantization of length, which does not depend on k,
continues to hold [1].

However, in addition to fermions being the most fundamental
entities, the 3-dimensional version of KG equation (7), when com-
bined with Eq. (5), suffers from the drawback that the p2 term
translates to p2 = p2

0 −2ap3
0 + O(a2) = −h̄2∇2 + i2ah̄3∇3/2 + O(a2),

of which the second term is evidently non-local. As we shall see
in the next section, the Dirac equation can address both issues at
once.

2. Dirac equation in one dimension

First we linearize p0 =
√

p2
0x + p2

0y + p2
0z using the Dirac pre-

scription, i.e. replace p0 → �α · �p, where αi (i = 1,2,3) and β are
the Dirac matrices, for which we use the following representation

αi =
(

0 σi

σi 0

)
, β =

(
I 0

0 −I

)
. (8)

The GUP-corrected Dirac equation can thus be written to O(a) as3

Hψ = (c �α · �p + βmc2)ψ(�r)
= (c �α · �p0 − ca(�α · �p0)(�α · �p0) + βmc2)ψ(�r)
= Eψ(�r) (9)

which for 1-spatial dimension, say z, is in the position representa-
tion(

−ih̄cαz
d

dz
+ cah̄2 d2

dz2
+ βmc2

)
ψ(z) = Eψ(z). (10)

Note that this is a second order differential equation instead of the
usual first order Dirac equation (we have used α2

z = 1). Thus, it has

2 In this and in subsequent sections, we start with the usual forms of the KG and
Dirac equations, as is indeed the case for massless particles, as well as for massive
particles and in their stationary states, with the re-definition m → m(1 − �Pl E/h̄c),
see e.g. Eq. (11) of [6] or Eq. (14) of [10].

3 In this section, we closely follow the formulation of [11].
two linearly independent, positive energy solutions, which to O(a)

are

ψ1 = N1eikz
(

χ

rσzχ

)
, (11)

ψ2 = N2ei z
ah̄

(
χ

σzχ

)
(12)

where m is the mass of the Dirac particle, k = k0 + ah̄k2
0, k0 satis-

fies the usual dispersion relation E2 = (h̄k0c)2 + (mc2)2, r ≡ h̄k0c
E+mc2

and χ †χ = I . Note that r runs from 0 (non-relativistic) to 1 (ultra-
relativistic). k,k0 could be positive (right moving) or negative (left
moving). N1, N2 are suitable normalization constants. As in the
case of Schrödinger equation, here too a new non-perturbative so-
lution ψ2 appears, which should drop out in the a → 0 (i.e. no
GUP) limit. This has a characteristic wavelength 2πah̄.

As noted in [11], to confine a relativistic particle in a box of
length L in a consistent way avoiding the Klein paradox (in which
an increasing number of negative energy particles are excited), one
may take its mass to be z-dependent as was done in the MIT bag
model of quark confinement

m(z) = M, z < 0 (Region I),

= m, 0 � z � L (Region II),

= M, z > L (Region III), (13)

where m and M are constants and we will eventually take the
limit M → ∞. Thus, we can write the general wavefunctions in
the three regions

ψI = Ae−iK z
(

χ

−Rσzχ

)
+ Gei z

ah̄

(
χ

σzχ

)
, (14)

ψII = Beikz
(

χ

rσzχ

)
+ Ce−ikz

(
χ

−rσzχ

)
+ F ei z

ah̄

(
χ

σzχ

)
, (15)

ψIII = DeiK z
(

χ

Rσzχ

)
+ H ei z

ah̄

(
χ

σzχ

)
, (16)

where E2 = (h̄K0c)2 + (Mc2)2, K = K0 + ah̄K 2
0 and R = h̄K0c/(E +

Mc2). Thus, in the limit M → ∞, K → +i∞, the terms associ-
ated with A and D go to zero. However, those with G and H do
not. Moreover, it can be shown that the fluxes due to these terms
do not vanish. Thus, we must set G = 0 = H . In addition, without
loss of generality we choose B = 1 and C = eiδ where δ is a real
number. It can be shown that if one chooses |C | 
= 1 then the en-
ergy of the relativistic particle is complex. Finally, we must have
F ∼ as , s > 0, such that this term goes to zero in the a → 0 limit.
Now, boundary conditions akin to that for the Schrödinger equa-
tion, namely ψII = 0 at z = 0 and z = L will require ψII to vanish
identically. Thus, they are disallowed. Instead, we require the out-
ward component of the Dirac current to be zero at the boundaries
(the MIT bag model). This ensures that the particle is indeed con-
fined within the box [12].

The conserved current corresponding to Eq. (10) can be shown
to be

J z = ψ̄γ zψ + ich̄a

(
ψ† dψ

dz
− dψ†

dz
ψ

)
≡ J0z + J1z (17)

where J0z + J1z are the usual and new GUP-induced currents, re-
spectively. We will comment on J1z shortly. First, the vanishing of
the Dirac current Jμ = ψ̄γ μψ at a boundary is equivalent to the
condition iγ · nψ = ψ there, where n is the outward normal to
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the boundary [12]. Applying this to J0z for the wavefunction ψII at
z = 0 and z = L gives [11]

iβαzψII|z=0 = ψII|z=0, (18)

and

−iβαzψII|z=L = ψII|z=L, (19)

respectively. Using the expression for ψII from (15), we get from
(18) and (19), respectively,

B + C + F ′e−iπ/4

B − C
= ir, (20)

BeikL + Ce−ikL + F ′ei(L/ah̄+π/4)

BeikL − Ce−ikL
= −ir (21)

(where F ′ = √
2F ), which in turn yield

(ir − 1) − F ′e−iπ/4 = (ir + 1)eiδ, (22)

(ir − 1) − F ′ei(L/ah̄+π/4)eikLe−iδ = (ir + 1)ei(2kL−δ). (23)

Note that conditions (22) and (23) imply

|B| = |C | + O(a), (24)

which guarantees that

J1z = −2cah̄k
(
1 + r2)[|B|2 − |C |2]= 0. (25)

Furthermore, from (22) and (23) it follows that

kL = δ = arctan

(
− h̄k

mc

)
+ O(a), (26)

and

L

ah̄
= L

a0�Pl
= 2pπ − π

2
, p ∈ N. (27)

The transcendental equation (26) gives the quantized energy lev-
els for a relativistic particle in a box. Its a → 0 limit gives k0L =
arctan(− h̄k0

mc ) which is Eq. (17) of Ref. [11], its non-relativistic limit
gives (k0 + ah̄k2

0)L = nπ , while its non-relativistic and a → 0 limit
yields the Schrödinger equation result k0 L = nπ . Eq. (27) on the
other hand shows that such a particle cannot be confined in a
box, unless the box length is quantized according to this condi-
tion. Note that this is identical to the quantization condition (6),
which was derived using the Schrödinger equation (with the iden-
tification θ ≡ −π/2). This indicates the robustness of the result.
As measuring spatial dimensions requires the existence and obser-
vation of at least one particle, the above result once again seems
to indicate that effectively all measurable lengths are quantized in
units of a0�Pl .

3. Dirac equation in two and three dimensions

We now generalize to a box in two or three dimensions de-
fined by 0 � xi � Li , i = 1, . . . ,d with d = 1,2,3. We start with the
following ansatz for the wavefunction

ψ = ei�t·�r
(

χ

�ρ · �σχ

)
(28)

where �t and �ρ are d-dimensional (spatial) vectors, and χ †χ = I as
before. In this case, Eq. (9) translates to

Hψ = ei�t·�r
(

((mc2 − cah̄2t2) + ch̄(�t · �ρ + i �σ · (�t × �ρ)))χ

(ch̄�t − (mc2 + cah̄2t2) �ρ) · �σχ

)
= Eψ, (29)
where we have used the identity (�t · �σ)( �ρ · �σ) =�t · �ρ + i �σ · (�t × �ρ).
Eq. (29) implies �t × �ρ = 0, i.e. �ρ is parallel to �t , and two solu-
tions for t , namely t = k and t = 1/ah̄, and correspondingly ρ = r
and ρ = 1. The latter solutions for t and ρ are the (new) non-
perturbative ones, which as we shall see, will give rise to quanti-
zation of space. Thus the vector �t for the two cases are �t = �k and
�t = q̂

ah̄ and �ρ = rk̂ and �ρ = q̂ respectively, where q̂ is an arbitrary
unit vector.4 Thus, putting in the normalizations, the two indepen-
dent positive energy solutions are

ψ1 = N1ei�k·�r
(

χ

rk̂ · �σχ

)
, (30)

ψ2 = N2ei q̂·�r
ah̄

(
χ

q̂ · �σχ

)
(31)

with ψ2 being the new GUP-induced eigenfunction.
Next, we consider the following wavefunction

ψ =

⎛
⎜⎜⎝

[∏d
i=1(eiki xi + e−i(ki xi−δi)) + F ei q̂·�r

ah̄ ]χ∑d
j=1[
∏d

i=1(eiki xi + (−1)δi j e−i(ki xi−δi))rk̂ j

+ F ei q̂·�r
ah̄ q̂ j]σ jχ

⎞
⎟⎟⎠ (32)

where d = 1,2,3, depending on the number of spatial dimensions
and an overall normalization has been set to unity. The number of
terms in row I and row II are 2d + 1 and (2d + 1) × d respectively,
i.e. (3,3), (5,10) and (9,27) in 1,2 and 3 dimensions, respectively.
It can be easily shown that the above is a superposition of Fψ2
and the following 2d eigenfunctions, for all possible combinations
with εi (i = 1, . . . ,d), with εi = ±1

Ψ = ei(
∑d

i=1 εiki xi+ (1−εi )
2 δi)

(
χ

r
∑d

i=1 εik̂iσiχ

)
(33)

where δi (i = 1, . . . ,d) are phases to be determined shortly using
boundary conditions.

Again, we impose the MIT bag boundary conditions ±iβαkψ =
ψ , k = 1, . . . ,d, with the + and − signs corresponding to xk = 0
and xk = Lk respectively, ensuring vanishing flux through all six
boundaries. First, we write the above boundary condition for
any xk , for the wavefunction given in Eq. (32). This yields the fol-
lowing 2-component equation

±

⎛
⎜⎜⎝

i
∑d

j=1[
∏d

i=1(eiki xi + (−1)δi j e−i(ki xi−δi))σkr jσ j

+ F ei q̂·�r
ah̄ σk q̂ jσ j]χ

−i[∏d
i=1(eiki xi + e−i(ki xi−δi)) + F ei q̂·�r

ah̄ ]σkχ

⎞
⎟⎟⎠= ψ. (34)

Employing the MIT bag model boundary conditions and thus
equating rows I and II of Eq. (32) with the corresponding ones
of Eq. (34) yields, respectively

d∏
i=1

(
eiki xi + e−i(ki xi−δi)

)+ F ei q̂·�r
ah̄

= ±
[

i
d∏

i=1

(
eiki xi + (−1)δik e−i(ki xi−δi)

)
rk̂k + i F ei q̂·�r

a q̂k

+ i
d∑

j=1 
=k

[
d∏

i=1

(
eiki xi + (−1)δi j e−i(ki xi−δi)

)
rk̂ jσkσ j

+ F ei q̂·�r
a q̂ jσkσ j

]]
(35)

4 Although one can choose q̂ = k̂, per se our analysis does not require this to be
the case. We will comment on this towards the end of the Letter.
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and

d∏
i=1

(
eiki xi + e−i(ki xi−δi)

)+ F ei q̂·�r
ah̄

= ±
[

i
d∏

i=1

(
eiki xi + (−1)δik e−i(ki xi−δi)

)
rk̂k + i F ei q̂·�r

ah̄ q̂k

+ i
d∑

j=1 
=k

[
d∏

i=1

(
eiki xi + (−1)δi j e−i(ki xi−δi)

)
rk̂ jσ jσk

+ F ei q̂·�r
ah̄ q̂ jσ jσk

]]
. (36)

Note that the only difference between Eqs. (35) and (36) is in the
order of σk and σ j in the last two terms in the RHS. Thus, adding
the two equations and using {σk, σ j} = 0, these terms simply

drop out. Next, dividing the rest by fk̄(xi,ki, δi) ≡∏d
i=1 
=k(eiki xi +

e−i(ki xi−δi)), where the subscript k̄ of fk̄ signifies the lack of depen-
dence on (xk,kk, δk), we get

eikkxk + e−i(kkxk−δk) + f −1
k̄

F ei q̂·�r
ah̄

= ±i
(
eikkxk − e−i(kkxk−δk)

)
rk̂k ± i f −1

k̄
F ei q̂·�r

ah̄ q̂k. (37)

Note that for all practical purposes the boundary condition has
factorized into its Cartesian components, at least in the a indepen-
dent terms, which contain (xk,kk, δk) alone, i.e. no other index i.
Eq. (37) yields, at xk = 0 and xk = Lk , respectively,

eiδk (1 + irk̂k) = (irk̂k − 1) + f −1
k̄

F ′
ke−iθk (38)

and

ei(2kk Lk−δk)(1 + irk̂k) = (irk̂k − 1) + f −1
k̄

F ′
keiθk ei(kk Lk−δk) (39)

where F ′
k ≡√1 + |q̂k|2 F , θk ≡ arctan q̂k and we have assumed that

fk̄ is evaluated at the same xi (i 
= k) at both boundaries of xk .
Comparing Eqs. (38) and (39), which are the d-dimensional gener-
alizations of Eqs. (22) and (23), we see that the following relations
must hold

kk Lk = δk = arctan

(
− h̄kk

mc

)
+ O(a), (40)

|q̂k|Lk

ah̄
= |q̂k|Lk

a0�Pl
= 2pkπ − 2θk. (41)

While Eq. (40) yields quantization of energy levels in d dimen-
sions (kk Lk = nπ in the non-relativistic limit), Eq. (41) shows that
lengths in all directions are quantized. Further, one may choose
the symmetric case |q̂k| = 1/

√
d,5 in which case, it follows from

Eq. (41) above

Lk

a0�Pl
= (2pkπ − 2θk)

√
d, p ∈ N, (42)

which reduces to Eq. (27) for d = 1. Note that the above also
gives rise to quantization of measured areas (N = 2) and volumes
(N = 3), as follows

5 Alternatively, assuming no direction is intrinsically preferred in space and the

only special direction is provided by the particle momentum �k, one can make

the identification q̂ = k̂, in which case |q̂k| = nk/

√∑d
i=1 n2

i ≈ 1/
√

d, assuming that
the momentum quantum numbers nk � 1 and approximately equal, when space is
probed at the fundamental level with ultra high energy super-Planckian particles.
AN ≡
N∏

k=1

Lk

a0�Pl
= dN/2

N∏
k=1

(2pkπ − 2θk), pk ∈ N. (43)

4. Spherical cavity: Dirac equation in polar coordinates

Finally, we solve the Dirac equation with the GUP-induced
terms in a spherical cavity, and show that only cavities of certain
discrete dimensions can confine a relativistic particle. We follow
the analysis of [13]. For related references, see [12,14]. A spherical
cavity of radius R , defined by the potential

U (r) = 0, r � R,

= U0 → ∞, r > R, (44)

yields the following Dirac equation in component form

c(�σ · �p0)χ2 + (mc2 + U
)
χ1 − cap2

0χ1 = Eχ1, (45)

c(�σ · �p0)χ1 − (mc2 + U
)
χ2 − cap2

0χ2 = Eχ2 (46)

where the Dirac spinor has the form ψ =
(

χ1
χ2

)
. It can be shown

that the following operators commute with the GUP-corrected
Hamiltonian: the total angular momentum operator (not to be
confused with the Dirac current represented by the same letter)
�J = �L + �Σ/2, K = β( �Σ · �L + I), where �L is the orbital angular

momentum, �Σ =
( �σ 0

0 �σ
)

, and K 2 = J 2 + 1/4. Thus, eigenvalues

of J 2 and K , namely j( j + 1) and κ respectively, are related by
κ = ±( j + 1/2). Correspondingly, the Dirac spinor has the follow-
ing form

ψ =
(

χ1

χ2

)
=
(

gκ (r)Y j3
j� (r̂)

i fκ (r)Y j3
j�′(r̂)

)
, (47)

Y j3
j� =

(
l

1

2
j3 − 1

2

1

2

∣∣∣ j j3

)
Y

j3− 1
2

� (r̂)

(
1
0

)

+
(

l
1

2
j3 + 1

2
−1

2

∣∣∣ j j3

)
Y

j3+ 1
2

� (r̂)

(
0
1

)
(48)

where Y
j± 1

2
l are spherical harmonics and ( j1 j2 m1 m2 | J M) are

Clebsch–Gordon coefficients. χ1 and χ2 are eigenstates of L2 with
eigenvalues h̄2�(� + 1) and h̄2�′(�′ + 1), respectively, such that the
following hold

if κ = j + 1

2
> 0,

then � = κ = j + 1

2
, �′ = κ − 1 = j − 1

2
, (49)

and if κ = −
(

j + 1

2

)
< 0,

then � = −(κ + 1) = j − 1

2
, �′ = −κ = j + 1

2
. (50)

Next, we use the following identities

�σ · �p0 = �σ · �r
r2

[
(�σ · �r)(�σ · �p0)

]
= �σ · �r

r2
[�r · �p0 + i �σ · �r × �p0]

= �σ · �r
r2

[
−ih̄r

d

dr
+ i �σ · �L

]
, (51)

(�σ · �L + 1)χ1,2 = ∓κχ1,2, (52)

(�σ · r̂)Y j3 = −Y j3′ , (�σ · r̂)Y j3′ = −Y j3 (53)
j� jl j� jl
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where we have used (�σ · �A)(�σ · �B) = �A · �B + i �σ · (�A × �B), the
related identity (�σ · �r)(�σ · �r) = r2, and the relation p2

0 F (r)Y m
� =

h̄2[− 1
r2

d
dr (r

2 d
dr ) + �(�+1)

r2 ]F (r)Y m
� for an arbitrary function F (r), to

obtain from Eqs. (45)–(46)

−ch̄
dfκ
dr

+ c
(κ − 1)

r
fκ + (mc2 + U

)
gκ

+ cah̄2
[

1

r2

d

dr

(
r2 dgκ

dr

)
− �(� + 1)

r2
gκ

]
= Egκ , (54)

ch̄
dgκ

dr
+ c

(κ + 1)

r
gκ − (mc2 + U

)
fκ

+ cah̄2
[

1

r2

d

dr

(
r2 dfκ

dr

)
− �′(�′ + 1)

r2
fκ

]
= E fκ . (55)

As in the case of rectangular cavities, Eqs. (54)–(55) have the stan-
dard set of solutions, slightly perturbed by the GUP-induced term
(represented by the O(a) terms below)

gκ (r) = Ñ j�(p0r) + O(a),

where � =
{

κ, if κ > 0,

−(κ + 1), if κ < 0,
(56)

fκ (r) = Ñ
κ

|κ |

√
E − mc2

E + mc2
j�′(p0r) + O(a),

where �′ =
{

(κ − 1), if κ > 0,

−κ, if κ < 0,
(57)

where jl(x) are spherical Bessel functions. It can be shown that
the MIT bag boundary condition (at r = R) is equivalent to [12,13]

ψ̄κψκ = 0 (58)

which in the massless (high energy) limit yields[
g2
κ (r) − f 2

κ (r)
](

Y j3
jl

)† Y j3
jl + O(a) = 0 (59)

which in turn gives the quantization of energy (for energy eigen-
values obtained numerically from Eq. (59), see Table 2.1, Chapter 2,
Ref. [13]. These will also undergo tiny modifications O(a)).

But from the analysis of previous sections, we expect new non-
perturbative solutions of the form fκ = Fκ (r)eiεr/ah̄ and gκ =
Gκ (r)eiεr/ah̄ (where ε = O(1)) for which Eqs. (54)–(55) simplify to

ah̄
d2 gκ

dr2
= dfκ

dr
, (60)

ah̄
d2 fκ
dr2

= −dgκ

dr
(61)

where we have dropped terms which are ignorable for small a.
These indeed have solutions

f N
κ = iN ′eir/ah̄, (62)

gN
κ = N ′eir/ah̄, (63)

where similar to the constant C in Ref. [1], here one must have
lima→0 N ′ = 0, such that these new solutions drop out in the a → 0
limit. The boundary condition (58) now gives∣∣gκ (r) + gN

κ (r)
∣∣2 = ∣∣ fκ (r) + f N

κ (r)
∣∣2, (64)

which to O(a) translates to[
j2
�(p0 R) − j2

�′(p0 R)
]

+ 2N ′[ j�(p0 R) cos(R/ah̄) − j�′(p0 R) sin(R/ah̄)
]= 0. (65)
This again implies the following conditions

j�(p0 R) = j�′(p0 R), (66)

tan(R/ah̄) = 1. (67)

The first condition is identical to Eq. (59), and hence the energy
quantization. The second implies

R

ah̄
= R

a0�Pl
= 2pπ − π

4
, p ∈ N. (68)

This once again, the radius of the cavity, and hence the area and
volume of spheres are seen to be quantized.

5. Conclusions

In this Letter, we have studied a relativistic particle in a box
in one, two and three dimensions (including a spherical cavity
in three dimensions), using the Klein–Gordon and Dirac equa-
tions with corrections that follow from the Generalized Uncer-
tainty Principle. We have shown that to confine the particle in the
box, the dimensions of the latter would have to be quantized in
multiples of a fundamental length, which can be the Planck length.
As measurements of lengths, areas and volumes require the ex-
istence and use of such particles, we interpret this as effective
quantization of these quantities. Note that although existence of
a fundamental length is apparently inconsistent with special rela-
tivity and Lorentz transformations (fundamental length in whose
frame?), it is indeed consistent, and in perfect agreement with
Doubly Special Relativity Theories. It is hoped that the essence of
these results will continue to hold in curved spacetimes, and even
if possible fluctuations of the metric can be take into account in
a consistent way. In addition to exploring these issues, it would
be interesting to study possible phenomenological implications of
space quantization; e.g. if it has any measurable effects at dis-
tance scales far greater than the Planck length, such as at about
10−4 fm, the length scale to be probed by the Large Hadron Col-
lider. We hope to make further studies in this direction and report
elsewhere.

Note added

Following a suggestion of the anonymous referee to re-examine wave equations
for a spinless particle with relativistic corrections, we explore two routes:

(i) First, we write the time-dependent version of the GUP-corrected Dirac equa-
tion (9)

Hψ = (c �α · �p + βmc2)ψ(�r, t)

= (c �α · �p0 − ca(�α · �p0)(�α · �p0) + βmc2)ψ(�r, t)

= ih̄
∂ψ(�r, t)

∂t
. (69)

To study the non-relativistic limit, we write the spinor ψ in a slightly different
form as [15]

ψ = e− i
h̄ mc2t

(
χ1(�r, t)

χ2(�r, t)

)
, (70)

and obtain the two component equations

ih̄
∂χ1

∂t
= c(�σ · �p0)χ2 − ca(�σ · �p0)2χ1, (71)

ih̄
∂χ2

∂t
= −2mc2χ2 + c(�σ · �p0)χ1 − ca(�σ · �p0)2χ2. (72)

For mc2 � |∂χ2/∂t|, Eq. (72) gives to O(a)

χ2 = 1
[

1 − a
(�σ · �p0)2

]
(�σ · �p0)χ1, (73)
2mc 2mc
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which when substituted in Eq. (71) leads to

ih̄
∂χ1

∂t
= 1

2m
(�σ · �p0)2χ1 − a

(2m)2c
(�σ · �p0)4χ1 − ca(�σ · �p0)2χ1. (74)

Using the identity (�σ · �p0)2 = p2
0, Eq. (74) becomes

ih̄
∂χ1

∂t
=
[(

1

2m
− ca

)
p2

0 − a

(2m)2c
p4

0

]
χ1. (75)

Finally, substituting χ1(�r, t) = e−iEt/h̄χ1(�r), we get

[(
1

2m
− ca

)
p2

0 − a

(2m)2c
p4

0

]
χ1 = Eχ1. (76)

Although the above GUP-corrected Pauli equation actually describes a 2-com-
ponent, non-relativistic spinor, it is an interesting (and new) extension of
the Schrödinger equation, and can have potential applications elsewhere. Note
that the above holds in any spacetime dimension and is local. In particular,
in one dimension, in addition to the usual plane wave solutions χ1 = e±ik′z

(where k′ =
√

2mE/h̄2 + O(a)), Eq. (76) also admits of the non-perturbative

solutions χ1 = e± i
h̄

√
2mc/az , which too are plane waves but with wavelength

≈ h̄
√

a/mc = √a0�plh̄/mc. Imposing standard boundary condition χ1 = 0 at
z = 0 and z = L and following the procedure outlined in [1], it is easy to show
that L/

√
a0�Pl is quantized.

(ii) Next, we square the operators on both sides of Eq. (9), use β2 = 1 and the
relation (�α · �p0)2 = p2

0 to obtain

H2 = p2
0c2 + m2c4 − 2cap2

0

[
c �α · �p + βmc2]

= p2
0c2 + m2c4 − 2cap2

0 H

= p2
0c2(1 − 2aH/c) + m2c4 (77)

where in the last term of the intermediate step we have substituted H =
c �α · �p0 + βmc2 + O(a). It is seen that the above too can be used in any di-
mension and is local. Furthermore, by construction, solutions of (9) are also
solutions of (77) treated as a differential equation, resulting in identical space
quantization results.

We expect similar results to hold for equations governing bosonic fields with
higher spins, such as Maxwel’s equations, including GUP corrections. It would be
interesting to see the interplay of such a field with fermions, say via minimal cou-
pling. We hope to report on it elsewhere.
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