Automorphisms of a linear Lie algebra over a commutative ring

Dengyin Wang*, Qiu Yu, Yanxia Zhao

*Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, People’s Republic of China

Received 15 July 2006; accepted 7 January 2007
Available online 19 January 2007
Submitted by R. Guralnick

Abstract

Suppose that \(m \geq 5 \) and that \(R \) is a commutative ring with identity in which 2 is invertible. This paper determines all automorphisms of the standard Borel subalgebra of the orthogonal Lie algebra \(o(2m, R) \).

AMS classification: 17B; 15A

Keywords: Orthogonal Lie algebra; Automorphisms; Commutative rings

1. Introduction

Let \(m, n \) be positive integers, \(R \) a commutative ring with identity, \(R^* \) the group consisting of all invertible elements in \(R \), \(E^{(n)} \) the \(n \times n \) identity matrix (\(E^{(m)} \) is abbreviated to \(E \)), \(R^{m \times n} \) the set of all \(m \times n \) matrices over \(R \), \(gl(m, R) \) the general linear Lie algebra consisting of all \(m \times m \) matrices over \(R \) with bracket: \([X, Y] = XY - YX \). Let \(t(m, R) \) be the subalgebra of \(gl(m, R) \) consisting of all upper triangular matrices. Set \(I = \begin{pmatrix} 0 & E \\ E & 0 \end{pmatrix} \). The orthogonal Lie algebra \(o(2m, R) \) over \(R \) is defined to be the subalgebra of \(gl(2m, R) \), consisting of all \(X \in gl(2m, R) \) satisfying \(X'I = -IX \). The condition for \(\begin{pmatrix} A & B \\ C & D \end{pmatrix} (A, B, C, D \in R^{m \times m}) \) to be orthogonal is that \(B' = -B \), \(C' = -C \) and \(D' = -A \).

* Corresponding author.
E-mail address: wdengyin@126.com (D. Wang).

© 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2007.01.003
Let
\[l = \left\{ \begin{pmatrix} A & B \\ 0 & -A' \end{pmatrix} \mid A \in t(m, R), \ B \in R^{m \times m} \text{satisfies } B' = -B \right\}. \]

It is called the standard Borel subalgebra of \(o(2m, R) \).

The problem to determine automorphisms of the Borel subalgebras of classical Lie algebras was initiated by Doković in [1]. Recently, some further progress has been made on relative problems (see [2–7]). In this paper, using the main theorem in [2], we determine all automorphisms of the standard Borel subalgebra \(l \) of \(o(2m, R) \), when \(m \geq 5 \) and \(R \) is a commutative ring with identity in which 2 is invertible. The main idea of this paper is to reduce the problem on \(l \) to that on \(t(m, R) \).

2. Preliminaries

In the following, we always suppose that \(m \geq 5 \) and \(2 \in R^* \).

If all diagonal entries of \(T \in t(m, R) \) are 0, we call \(T \) strictly upper triangular. Set
\[h = \left\{ \begin{pmatrix} A & 0 \\ 0 & -A' \end{pmatrix} \mid A \text{ is a diagonal matrix in } gl(m, R) \right\}; \]
\[t = \left\{ \begin{pmatrix} A & 0 \\ 0 & -A' \end{pmatrix} \mid A \in t(m, R) \right\}; \]
\[v = \left\{ \begin{pmatrix} A & 0 \\ 0 & -A' \end{pmatrix} \mid A \in t(m, R) \text{ is strictly upper triangular} \right\}; \]
\[w = \left\{ \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \mid B \in R^{m \times m}, \ B' = -B \right\}; \]
\[s = \{ \text{diag}(A, 0, -A', 0) \mid A \in t(m - 1, R) \}; \]

and let \(u = v + w \), then \(t = h + v \), \(l = h + u = t + w \).

For \(1 \leq i < j \leq m \), let \(E_{i,j} \) denote the \((2m) \times (2m)\) matrix, whose \((i, j)\)-entry is 1, all other entries are 0; \(E_{i,-j} \) the \((2m) \times (2m)\) matrix, whose \((i, m + j)\)-entry is 1, all other entries are 0; \(E_{-j,-i} \) the \((2m) \times (2m)\) matrix, whose \((j + m, i + m)\)-entry is 1, all other entries are 0.

For \(a \in R \), \(1 \leq i < j \leq m \), set
\[T_{i,j}(a) = a(E_{i,j} - E_{-j,-i}); \]
\[T_{i,-j}(a) = a(E_{i,-j} - E_{j,-i}); \]
\[T_{i,j} = \{ T_{i,j}(a) \mid a \in R \}; \]
\[T_{i,-j} = \{ T_{i,-j}(a) \mid a \in R \}. \]

For \(1 \leq i \leq m \), \(a \in R \), set
\[H_i(a) = aE_{i,i} - aE_{-i,-i}; \]
\[H(a) = \text{diag}(aE, -aE); \]
\[h_i = \{ H_i(a) \mid a \in R \}; \]
\[d_i = h_1 + h_2 + \cdots + h_i. \]
Definition 2.1. An ideal \(L \) of \(l \) is called invariant in \(l \) if it is stable under each automorphism \(\phi \) of \(l \), i.e., \(\phi(L) = L \).

It is easy to see that \(u \), being exactly \([l, l]\), is invariant in \(l \). Let \(u^{(1)} = [u, u], \ u^{(2)} = [u, u^{(1)}], \ldots, u^{(k)} = [u, u^{(k-1)}], \ldots \).

By calculation, we see that
\[
u^{(m-2)} = T_{1,m} + \left(\sum_{1 \leq i < j \leq m} T_{i,j} \right);
\]
\[
u^{(m-1)} = \sum_{1 \leq i < j \leq m} T_{i,j};
\]
\[
u^{(2m-4)} = T_{1,2};
\]
\[
u^{(2m-5)} = T_{1,2} + T_{1,3}.
\]

They are naturally all invariant in \(l \). Let \(x = \sum_{1 \leq i < j \leq m-1} T_{i,j}; \)
\[
y = x + T_{1,m} + T_{1,-m};
\]
\[
z = \left(\sum_{i=1}^{m-1} T_{i,m} \right) + u;
\]
\[
p = T_{1,m-1} + z;
\]
\[
q = h_m + z.
\]

Lemma 2.2. The subalgebras \(x, y, z, p \) and \(q \), defined as above, are all invariant in \(l \).

Proof. The centralizer of \(u^{(m-2)} \) (resp., \(u^{(m-1)} \)) in \(u \) is \(y \) (resp., \(p \)), so \(y \) and \(p \) both are invariant in \(l \). If we can prove that \(z \) is invariant in \(l \), then \(x \), being the center of \(z \), is invariant in \(l \). Furthermore, \(q \) being the centralizer of \(x \) in \(l \), is also invariant in \(l \). So for our goal, it suffices to prove that \(z \) is invariant in \(l \). Let \(\phi \) be an arbitrary automorphism of \(l \). Since \(\phi(y) = y \subseteq z \), it suffices to prove that \(\phi(T_{i,m}), \phi(T_{i,-m}) \) are all contained in \(z \) for \(i = 2, 3, \ldots, m - 1 \). Note that \([T_{2,m}, y] = T_{1,-2} \). This shows that
\[
\phi([T_{2,m}, y]) = \phi(T_{1,-2}) = T_{1,-2}.
\]
If \(\phi(T_{2,m}) \) is not contained in \(z \), then there exists \(a_0 \in R \) such that \(\phi(T_{2,m}(a_0)) = T_{1,m-1}(r_0) + Z_0 \), where \(0 \neq r_0 \in R, Z_0 \in z \) (note that \(\phi(p) = p \)). Since \(\phi(y) = y \), we may choose \(Y_0 \in y \) such that \(\phi(Y_0) = T_{m-2, -(m-1)}(1) \). Thus
\[
\phi([T_{2,m}(a_0), Y_0]) = [T_{1,m-1}(r_0) + Z_0, T_{m-2, -(m-1)}(1)] = T_{1,-2}(r_0).
\]
This is absurd (note that \(\phi([T_{2,m}, y] = T_{1,-2}) \). So \(\phi(T_{2,m}) \subseteq z \).

If \(3 \leq i \leq m - 1 \), then \([T_{i,m}, y] = T_{1,-i} \). If \(\phi(T_{i,m}) \) is not contained in \(z \), then exists \(0 \neq a_i \in R \) such that \(\phi(T_{i,m}(a_i)) = T_{1,m-1}(r_i) + Z_i \), where \(r_i \neq 0, Z_i \in z \). Choose \(Y_i \in y \) such that \(\phi(Y_i) = T_{2, -(m-1)}(1) \), then
\[
\phi([T_{i,m}(a_i), Y_i]) = [T_{1,m-1}(r_i) + Z_i, T_{2, -(m-1)}(1)] = T_{1,-2}(r_i),
\]
which leads to $\phi^{-1}(T_{1,-2}(r_i)) \in T_{1,-t}$, contradicting the fact that $T_{1,-2}$ is invariant in l. So $\phi(T_{i,m}) \subseteq z$ for all $2 \leq i \leq m - 1$. We can also prove that $\phi(T_{i,-m}) \subseteq z$ for all $2 \leq i \leq m - 1$. The process, being similar to above, is omitted. So $\phi(z) = z$. □

3. Standard automorphisms of t

It is obvious that t is isomorphic to (m, R). Cao [2] has described the automorphisms of (m, R), we now transfer them to t for later use. t has the following standard automorphisms.

(a) Inner automorphisms

For invertible $A \in t(m, R)$, set $T = \begin{pmatrix} A & 0 \\ 0 & A^{-1} \end{pmatrix}$, and define $Int_t T : t \to t$, sending $X \in t$ to TX^{-1}. Then $Int_t T$ is an automorphism of t, called the inner automorphism of t induced by T.

(b) Central automorphisms

The map $\phi_t,\eta : X \mapsto X + \left(\begin{array}{cc} \eta(X)E & 0 \\ 0 & -\eta(X)E \end{array} \right)$, for all $X \in t$, where $\eta : t \to R$ is a homomorphism of Lie algebras with $1 + \eta(0) - \eta(0) = 1 \in R^*$ and R is regarded as an abelian Lie algebra, is an automorphism of t, called the central automorphism of t induced by η.

(c) Graph automorphisms

Let $\epsilon = e^2$ be an idempotent in R, $J = E_{1,m}^{(m)} + E_{2,m-1}^{(m)} + \cdots + E_{m-1,2}^{(m)} + E_{m,1}^{(m)}$. Define $\phi_{t,\epsilon} : t \to t$ by sending any $\begin{pmatrix} A & 0 \\ 0 & -A \end{pmatrix}$ to $\begin{pmatrix} \epsilon A - (1-\epsilon)JA'J & 0 \\ 0 & -\epsilon A' + (1-\epsilon)JAJ \end{pmatrix}$. Then $\phi_{t,\epsilon}$ is an automorphism of t, called the graph automorphism of t induced by ϵ.

The main theorem in [2] is as follows.

Theorem 3.1 [2]. If R is a commutative ring with identity, $m \geq 3$. Then every automorphism ϕ_t of t can be written uniquely in the form

$$\phi_t = \phi_t,\eta \cdot \phi_{t,\epsilon} \cdot Int_t T,$$

where ϕ_t,η, $\phi_{t,\epsilon}$, $Int_t T$ are the central, graph and inner automorphisms of t defined above.

4. Standard automorphisms of l

We now define some standard automorphisms for the standard Borel subalgebra l of $\mathfrak{o}(2m, R)$.

(a) Inner automorphisms

For invertible $A \in t(m, R)$ and $B' = -B \in R^{m \times m}$, set $X = \begin{pmatrix} A & AB \\ 0 & A^{-1} \end{pmatrix}$, and define $Int_l X : l \to l$, sending $Y \in l$ to XYX^{-1}. Then $Int_l X$ is an automorphism of l, called the inner automorphism of l induced by X.

(b) Graph automorphisms

Let $\omega = E^{(2m)} - E_{m,m} - E_{m,-m} - E_{-m,-m} + E_{-m,m}$, $\pi = \pi^2$ be an idempotent in R, we define $\phi_{l,\pi} : l \to l$, sending any $X \in l$ to $\pi X + (1-\pi)\omega X \omega$. Then $\phi_{l,\pi}$ is an automorphism of l (note that $\phi_{l,\pi}$ is the identity), called the graph automorphism of l induced by π.

(c) Extremal automorphisms

Let $c \in R^*$, and define $\phi_{l,c} : l \to l$, sending $\begin{pmatrix} A & B \\ 0 & -A \end{pmatrix} \in l$ to $\begin{pmatrix} A & cB \\ 0 & -A \end{pmatrix} \in l$. Then $\phi_{l,c}$ is an automorphism of l, called the extremal automorphism of l induced by $c \in R^*$. Note that if $c = r^2$
for certain $r \in R^*$, then $\phi_{l,c}$ is exactly the inner automorphism of l induced by $\begin{pmatrix} rE & 0 \\ 0 & r^{-1}E \end{pmatrix}$. If $c \notin (R^*)^2$, $\phi_{l,c}$ is not an inner automorphism.

5. Automorphisms of l

In this paper, we obtain the main theorem as follows.

Theorem 5.1. Let R be a commutative ring with identity, $2 \in R^*$ and $m \geq 5$. Then every automorphism ϕ of l can be written in the form

$$\phi = \phi_{l,\pi} \cdot \phi_{l,c} \cdot \text{Int}_l X,$$

where $\phi_{l,\pi}$, $\phi_{l,c}$, and $\text{Int}_l X$ are the graph, extremal and inner automorphisms of l defined above.

Proof. Let ϕ be an automorphism of l. We shall give the proof by steps.

Step 1: There exists $S = \text{diag}(A, 1, A^{-1}, 1)$ with $A \in t(m - 1, R)$ invertible, such that $(\phi \cdot \text{Int}_l S^{-1})(T_i, j(a)) = T_i, j(a)(\text{mod} z)$ for all $a \in R$ and $1 \leq i < j \leq m - 1$.

Because q is stable under ϕ, then ϕ induces an automorphism $\overline{\phi}$ of l/ϕ by $\overline{\phi}(X) = \phi(X)$, $X \in l$. Since l/ϕ is isomorphic to s, we now directly view l/ϕ as s. By Section 3, we know that

$$\overline{\phi} = \phi_{s,\eta} \cdot \phi_{s,\epsilon} \cdot \text{Int}_s S,$$

where $\phi_{s,\eta}, \phi_{s,\epsilon}$ and $\text{Int}_s S$ are the central, graph and inner automorphisms of s respectively (defined in Section 3). It is easy to see that $\text{Int}_s S = \text{Int}_l S$. So $\overline{\phi} \cdot \text{Int}_l S^{-1} = \phi_{s,\eta} \cdot \phi_{s,\epsilon}$. Replace ϕ with $\phi \cdot \text{Int}_l S^{-1}$, then $\overline{\phi} = \phi_{s,\eta} \cdot \phi_{s,\epsilon}$. If we can prove that $\epsilon = 1$, then for any $a \in R$ and $1 \leq i < j \leq m - 1$, $\phi(T_i, j(a)) \equiv T_i, j(a)(\text{mod} z)$ (note that u is stable under ϕ). We know that $\phi(T_{2,3}(1)) = T_{2,3}(\epsilon) + T_{m-2,m-1}(\epsilon - 1) + Z$ for some $Z \in z$, $\phi(T_{1,-2}) = T_{1,-2}$, and $\phi(T_{1,-3}) \subseteq T_{1,-3} + T_{1,-2}$. Suppose that $\phi(T_{1,-2}(a)) = T_{1,-2}(1)$, $\phi(T_{1,-3}(a)) = T_{1,-3}(b) + T_{1,-2}(c)$, where $a, b, c \in R$. It is obvious that a, b are invertible. By applying ϕ on $T_{2,3}(1), T_{1,-3}(a) = T_{1,-2}(a)$, we have that

$$[T_{2,3}(\epsilon) + T_{m-2,m-1}(\epsilon - 1) + Z, T_{1,-3}(b) + T_{1,-2}(c)] = T_{1,-2}(1),$$

which shows that $\epsilon b = 1$, thus $\epsilon \in R^*$, leading to $\epsilon = 1$. Hence $\phi_{s,\epsilon}$ is the identity.

Step 2: There exists a graph automorphism $\phi_{l,\pi}$ of l induced by an idempotent $\pi \in R$ such that w is stable under $\phi_{l,\pi} \cdot \phi$.

We know that $w = x + (\sum_{i=1}^{m-1} T_{i,-m})$, and $\phi(x) = x \subseteq w$. For our goal, we need to choose an idempotent $\pi \in R$ such that $(\phi_{l,\pi} \cdot \phi)(T_{i,-m}) \subseteq w$ for all $1 \leq i \leq m - 1$. Since y is stable under ϕ, we assume that

$$\phi(T_{1,-m}(1)) = T_{1,-m}(a) + T_{1,m}(b) + X,$$

with $a, b \in R$ and $X \in x$. Since $T_{1,-m} + X$ is an ideal of l, then so does $\phi(T_{1,-m} + x)$. Thus

$$[H_m(1), \phi(T_{1,-m}(1))] = T_{1,-m}(a) + T_{1,m}(-b) \in \phi(T_{1,-m} + x).$$

This shows that $T_{1,m}(b)$ and $T_{1,-m}(a)$ both lie in $\phi(T_{1,-m} + x)$. Suppose that

$$\phi(T_{1,-m}(\pi)) = T_{1,-m}(a)(\text{mod} x);$$

$$\phi(T_{1,-m}(\rho)) = T_{1,m}(b)(\text{mod} x).$$

Then $\pi + \rho = 1$ and $\pi \cdot \rho = 0$ and $\phi(T_{1,-m}(\pi \cdot \rho)) \equiv 0(\text{mod} x)$, we see that $\pi \cdot \rho = 0$. Now we see that π and ρ both are idempotents in R. We now construct the graph automorphism
\(\phi_{l,\pi}\) of \(l\), and replace \(\phi_{l,\pi} \cdot \phi\) with \(\phi\), then we see that \(\phi(T_1, -m(1)) \in w\), leading to \(\phi(T_1, -m) \subseteq w\). Since \(\phi(z) = z\), we may assume that

\[
\phi(T_{m-1, -m}(1)) = \sum_{i=1}^{m-1} T_{i,m}(a_i) (\text{mod } w).
\]

For \(1 \leq k \leq m - 3\), assume that \(\phi(T_{k,k+1}(1)) = T_{k,k+1}(1) + Z_k\), and \(\phi(T_{m-1, -m}(1)) = \sum_{i=1}^{m-1} T_{i,m}(a_i) + W_0\) with \(Z_k \in w, W_0 \in w\). By applying \(\phi\) on \([T_{k,k+1}(1), T_{m-1, -m}(1)] = 0\), we see that

\[
\left[T_{k,k+1}(1) + Z_k, \sum_{i=1}^{m-1} T_{i,m}(a_i) + W_0 \right] = 0.
\]

This shows that \(a_{k+1} = 0\) for \(k = 1, 2, \ldots, m - 3\). Hence

\[
\phi(T_{m-1, -m}(1)) = T_{1,m}(a_1) + T_{m-1, -m}(a_{m-1}) (\text{mod } w).
\]

By applying \(\phi\) on \([T_{1,m}(1), T_{m-1, -m}(1)] = T_{1,-m}(1)\), we see that \([T_{1,m}(1), \phi(T_{m-1, -m}(1))] \subseteq w\), which leads to \(a_{m-1} = 0\). So \(\phi(T_{m-1, -m}(1)) \equiv T_{1,m}(a_1) (\text{mod } w)\). Furthermore, for any \(2 \leq i \leq m - 2\),

\[
\phi(T_{i,-m}(1)) = \phi([T_{i,m}(1), T_{m-1, -m}(1)]) = [\phi(T_{i,m}(1)), \phi(T_{m-1, -m}(1))] \subseteq w.
\]

Hence \(\phi(T_{i,-m}) \subseteq w\) for any \(2 \leq i \leq m - 2\). Now only \(\phi(T_{m-1, -m}) \subseteq w\) is left, for this we only need to prove that \(a_1 = 0\). By above, we see that \(x + \sum_{i=1}^{m-2} T_{i,-m}\) is stable under \(\phi\). We may choose \(W_1 \in x + \sum_{i=1}^{m-2} T_{i,-m}\) such that \(\phi(W_1) = T_{m-2,-m}(1)\). By applying \(\phi\) on \([T_{m-1, -m}(1), W_1] = 0\), we have that

\[
[T_{1,m}(a_1) + W_0, T_{m-2,-m}(1)] = T_{1,-(m-2)}(a_1) = 0.
\]

Thus \(a_1 = 0\), as desired.

Step 3: There exists an inner automorphism \(\text{Int}_{t}T_0\) induced by certain \(T_0 = \text{diag}(A, A^{-1})\) with \(A \in t(m, R)\) invertible, such that \(\phi \cdot \text{Int}_{t}T_0^{-1}\) fixes each \(T + w\) for \(T \in t\).

Since \(w\) is stable under \(\phi\), thus \(\phi\) induces an automorphism \(\tilde{\phi}\) of \(l/w\) by \(\tilde{\phi}(X) = \phi(X)/X \in L\). Since \(l/w\) is isomorphic to \(t\), we may directly view \(l/w\) as \(t\). Thus by Theorem 3.1, \(\tilde{\phi}\) can be written in the form

\[
\tilde{\phi} = \phi_{t,\eta_1} \cdot \phi_{t,\epsilon_1} \cdot \text{Int}_{t}T_0,
\]

where \(T_0 = \text{diag}(A, A^{-1})\) with \(A \in t(m, R)\) invertible, \(\epsilon_1\) is an idempotent in \(R\), \(\eta_1 : l \rightarrow R\) is an homomorphism of Lie algebras such that \(1 + \eta_1(\text{diag}(E, -E)) \in R^*\). The fact that \(\phi(T_{1,2}(1)) \equiv T_{1,2}(1) (\text{mod } w)\) shows that \(\epsilon_1 = 1\). It is easy to see that \(\text{Int}_{t}T_0 = \text{Int}_{t}T_0\). Replace \(\phi\) with \(\phi \cdot \text{Int}_{t}T_0^{-1}\). Then \(\tilde{\phi} = \phi_{t,\eta_1}\), thus \(\phi(T_{i,j}(a) + w) = T_{i,j}(a) + w\) for all \(a \in R\) and all \(1 \leq i < j \leq m\).

By \(\phi(T_{1,-2}) = T_{1,-2}\), we may suppose that \(\phi(T_{1,-2}(1)) = T_{1,-2}(c)\). Then \(c \in R^*\), and \(\phi(T_{1,-2}(a)) = T_{1,-2}(ac)\) for any \(a \in R\). For any \(H \in h\), by applying \(\phi\) on \([H, T_{1,-2}(1)] = T_{1,-2}(\chi_1(H) + \chi_2(H)), \chi_i\) denote the map \(h \rightarrow R\), sending \(H \in h\) to its \((i, i)\)-entry, we know that

\[
\left[H + \eta_1(1)(\begin{pmatrix} E & 0 \\ 0 & -E \end{pmatrix}, T_{1,-2}(1)) = T_{1,-2}(c\chi_1(H) + c\chi_2(H)).
\right.
\]

It follows that \(c\chi_1(H) + c\chi_2(H) = c\chi_1(H) + c\chi_2(H) + 2c\eta_1(H)\), leading to \(\eta_1(H) = 0\) for all \(H \in h\). It is easy to see that \(\eta_1(v) = 0\). Thus \(\eta_1(T) = 0\) for all \(T \in t\). Hence \(\phi_{t,\eta_1} = 1\) and \(\phi\) fixes each \(T + w\) for \(T \in t\).
Step 4: There exists certain $W = \begin{pmatrix} E & B \\ 0 & E \end{pmatrix}$, where $B' = -B \in R^{m \times m}$, such that $(Int_l W \cdot \phi)(H) = H$ for any $H \in h$.

Suppose that ϕ sends $H(2)$ to $\begin{pmatrix} 2E & B \\ 0 & -2E \end{pmatrix}$, and suppose that ϕ sends any $H = \begin{pmatrix} A & 0 \\ 0 & -A \end{pmatrix} \in h$ to $\begin{pmatrix} A & D \\ 0 & -A \end{pmatrix}$, where $B, D \in R^{m \times m}$ satisfy $B' + B = 0$, $D' + D = 0$ and $A \in t(m, R)$ is diagonal.

Since H commutes with $H(2)$, by applying ϕ, we see that

$$\begin{pmatrix} 2E & B \\ 0 & -2E \end{pmatrix} \begin{pmatrix} A & D \\ 0 & -A \end{pmatrix} = \begin{pmatrix} A & D \\ 0 & -A \end{pmatrix} \begin{pmatrix} 2E & B \\ 0 & -2E \end{pmatrix}.$$

Thus $D = 4^{-1}(BA + AB)$. Choose $W = \begin{pmatrix} E & 4^{-1}B \\ 0 & E \end{pmatrix} \in w$, we see that $(Int_l W \cdot \phi)(H) = H$.

Replace ϕ with $Int_l W \cdot \phi$. Now $\phi(H) = H$ for any $H \in h$ and $\phi(V + w) = V + w$ for any $V \in v$.

Step 5: $\phi(V) = V$ for all $V \in v$.

Since v is generated by $T_{1,2}(1), T_{2,3}(1), \ldots, T_{m-1,m}(1)$, it suffices to prove that $\phi(T_{i,i+1}(1)) = T_{i,i+1}(1)$ for all $1 \leq i \leq m - 1$. Suppose that

$$\phi(T_{i,i+1}(1)) = T_{i,i+1}(1) + \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix},$$

where $B \in R^{m \times m}$ satisfies $B + B' = 0$. By applying ϕ on $[H(2), T_{i,i+1}(1)] = 0$ we know that

$$\begin{pmatrix} H(2), T_{i,i+1}(1) + \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \end{pmatrix} = 0,$$

which shows that $4B = 0$, thus $B = 0$. Hence ϕ fixes all $V \in v$.

Step 6: $\phi(T_{i,j}) = T_{i,j}$ for all $1 \leq i < j \leq m$.

Notice that w is stable under ϕ. For any $1 \leq i < j \leq m$, suppose that $\phi(T_{i,j}(1)) = \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix}$, where $B = -B' = (b_{i,j})_{m \times m} \in R^{m \times m}$. By applying ϕ on $[H_i(-1), T_{i,j}(1)] = T_{i,j}(-1)$, we have that

$$\begin{pmatrix} H_i(-1), \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 & -B \\ 0 & 0 \end{pmatrix},$$

which shows that all $b_{i,l} = 0$, except for the case that $k = i$ or $l = i$. By applying ϕ on $[H_j(-1), T_{i,j}(1)] = T_{i,j}(-1)$, we have that

$$\begin{pmatrix} H_j(-1), \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 & -B \\ 0 & 0 \end{pmatrix},$$

which shows that $b_{k,l} = 0$, except for the case that $k = j$ or $l = j$. So $\phi(T_{i,j}(1)) \in T_{i,j}$. It follows that $\phi(T_{i,j}) = T_{i,j}$ for all $1 \leq i < j \leq m$.

Step 7: ϕ is an extremal automorphism of l.

We have shown that there exists $c \in R^*$ such that $\phi(T_{1,2}(a)) = T_{1,2}(ac)$ for any $a \in R$. For any $2 < j \leq m$, by applying ϕ on $[T_{2,j}(1), T_{1,j}(a)] = T_{1,j}(a)$, we see that $\phi(T_{1,j}(a)) = T_{1,j}(ac)$ for all $a \in R$. For any $2 \leq i < j \leq m$, $a \in R$, by applying ϕ on $[T_{1,i}(1), T_{i,j}(a)] = T_{1,j}(a)$ we have that $\phi(T_{i,j}(a)) = T_{i,j}(ac)$. These show that ϕ is exactly the extremal automorphism $\phi_{l,c}$ induced by c. Now we see that

$$\phi = \phi_{l,\pi} \cdot Int_l W^{-1} \cdot \phi_{l,c} \cdot Int_l T_0 \cdot Int_l S.$$

By this one can easily obtain the desired expression for ϕ. This completes the proof. \square
Remark. If 2 \notin R^*, Theorem 5.1 may be false. For example, suppose that the annihilator of 2 in R is R itself. Let \(\varphi : l \rightarrow l \), sending any \(X \in l \) to \(X + T_{1,-1}(\eta(X)) \), where \(\eta : l \rightarrow R \) is a homomorphism of Lie algebras such that \(1 + \eta(T_{1,-1}(1)) \in R^* \). Then \(\varphi \) is an automorphism of \(l \) but can’t be written in the desired form.

Acknowledgment

The authors thank the referee for his helpful suggestion. Project supported by the National Natural Science Foundation of China (10071078).

References