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is introduced in this research to investigate linear and non-linear singular two-point BVPs.
The effectiveness of the proposed approach is verified by several linear and non-linear
examples.
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1. Introduction

Many problems in applied mathematics, such as gas dynamics, nuclear physics, chemical reaction, studies of atomic
structures and atomic calculations lead to singular boundary value problems of the form:

u′′(x) + p(x)u′(x) + q(x)f (u(x)) = r(x), x ∈ (a, b), (1)

subject to the boundary conditions

u(a) = α and u(b) = β, (2)

where at least one of the functions p(x), q(x) and r(x)has a singular point and a, b,α andβ are finite constants.When p(x) = 0
and f (u(x)) = [u(x)]−σ , Eq. (1) is known as the generalized Emden–Fowler equation with a negative exponent and arises
frequently in applied mathematics (see [1,2] and the references cited therein). Also when p(x) = r(x) = 0, q(x) = −x−1/2

and f (u(x)) = [u(x)]
3
2 , Eq. (1) is known as the Thomas–Fermi equation [3], given by the singular equation

u′′
= x−1/2u3/2, (3)

which arises in the study of the electrical potential in an atom. Another example is given by the singular equation:

u′′
+

p
x
u′

+ g(u) = 0, (4)

which results from an analysis of heat conduction through a solid with heat generation. The function g(u) represents the
heat generation within the solid, u is the temperature and the constant p is equal to 0, 1 or 2 depending on whether the
solid is a plate, a cylinder or a sphere [4]. In recent years, an increasing interest has been observed in investigating singular
two-point boundary value problems and a number of methods have been proposed, see [4–20]. Although these numerical
methods have many advantages, a huge amount of computational work is required for getting accurate approximations,
especially for nonlinear problems. So, we hope in this research to introduce a direct and a unified approach to deal with
these singular two-point BVPs.
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Over the last 25 years, the Adomian decomposition method (ADM) and its modification (MADM) [21–36] have been
used to solve effectively and easily a large class of linear and nonlinear ordinary and partial differential equations. However,
little attention was devoted to their applications in solving the singular two-point boundary value problems. Recently, an
attempt has been done in [37]. Very recently, approximate solutions of linear singular two-point BVPs were obtained in [38]
using the modified homotopy analysis method. Also in [39] Ravi and Aruna used another analytical method, the differential
transformation method to obtain the exact solutions for some linear singular two-point BVPs. Although these analytical
methods [38,39] are effective in the linear case, their applicability for non-linear problems was not examined. In this work,
the ADM is improved to dealwith linear and non-linear singular two-point BVPs. This improvement is based on the ADMand
a modification of Lesnic’s work [40]. It might seem reasonable before launching into the main idea of this paper to present
a brief outline of Lesnic’s work.

2. Lesnic’s work

In [40] Lesnic proposed the operators

L−1
xx (.) =

∫ x

x0
dx′

∫ x′′

x0
(.)dx′′

−
x − x0
1 − x0

∫ 1

x0
dx′

∫ x′′

x0
(.)dx′′, L−1

t (.) =

∫ t

0
(.)dt ′, (5)

to solve the Dirichlet problem for the heat equation ut = uxx, x0 < x < 1, t > 0 under the boundary conditions

u(x0, t) = f0(t), u(1, t) = f1(t), (6)

and the initial condition

u(x, 0) = p(x). (7)

Using the definition in (5) we note that

L−1
xx (uxx) = u(x, t) − u(x0, t) −

x − x0
1 − x0

[u(1, t) − u(x0, t)], (8)

i.e., the boundary conditions can be used directly. However, from (5) we note that the lower bound of all integrations is
restricted to the initial point x0. In fact we can avoid this restriction by using a new definition of L−1

xx which gives the same
result as in Eq. (8) and given by

L−1
xx (.) =

∫ x

x0
dx′

∫ x′′

c
(.)dx′′

−
x − x0
1 − x0

∫ 1

x0
dx′

∫ x′′

c
(.)dx′′, (9)

where c is free lower point. This free point plays an important role if the equation being solved has a singular point.
Consequently, we propose the following operator to solve the singular two-point BVPs (1) and (2):

L−1
xx (.) =

∫ x

a
dx′

∫ x′

c
(.)dx′′

−
x − a
b − a

∫ b

a
dx′

∫ x′

c
(.)dx′′, a ≠ b, c is arbitrary. (10)

In the next section, we introduce a theoretical derivation of the operator given by Eq. (10).

3. Derivation of the proposed operator

First, we define L−1
xx as

L−1
xx (.) =

∫ x

a
dx′

∫ x′

c
(.)dx′′

− z(x)
∫ b

d
dx′

∫ x′

e
(.)dx′′, (11)

where z(x) is to be determined such that L−1
xx (u′′(x)) can be expressed only in terms of the boundary conditions given in (2).

With this definition we can easily get

L−1
xx (u′′(x)) = u(x) − u(a) − (x − a)u′(c) − z(x)[u(b) − u(d) − (b − d)u′(e)]

= u(x) − u(a) − z(x)[u(b) − u(d)] − (x − a)u′(c) + z(x)[(b − d)u′(e)]. (12)

Setting d = a and e = c we obtain

L−1
xx (u′′(x)) = u(x) − u(a) − z(x)[u(b) − u(a)] − (x − a)u′(c) + z(x)[(b − a)u′(c)]. (13)

In order to express L−1
xx (u′′(x)) in terms of the two boundary conditions only, we have to eliminate the coefficientmultiplying

u′(c) by setting

−(x − a)u′(c) + z(x)(b − a)u′(c) = 0. (14)
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Solving this equation for z(x) assuming that u′(c) ≠ 0, we get

z(x) =
x − a
b − a

. (15)

Substituting (15) into (11) and (13) respectively, we obtain

L−1
xx (u′′(x)) = u(x) − u(a) −

x − a
b − a

[u(b) − u(a)], (16)

and Eq. (10). From Eq. (16), we note that L−1
xx (u′′(x)) is already expressed in terms of the given boundary conditions without

any restrictions on c . So, the choice of the value that c can be take depends properly on the singular point of the equation
under consideration. For example, if the equation has a singular point at x = x0, say, we will choose c to be any real value
except the value of x0. Moreover, if the equation has two singular points at x = x1 and x = x2, then we choose c to be any
real value except these values of x1 and x2. In general, if the equation has n-singular points x1, x2, . . . , xn, then c takes any
real value except the values of these singular points. In the next section, we use Eq. (10) with the standard ADM to establish
the improved ADM (IADM) for solving linear and non-linear singular two-point boundary value problems.

4. Analysis of the improved ADM (IADM) for solving singular two-point BVPs

In this section, the Adomian decomposition method with the modification of Lesnic’s work developed in the previous
section are used to construct algorithms for solving Eq. (1) under the Dirichlet boundary conditions (2). First, we rewrite
Eq. (1) in the form:

u′′(x) = r(x) − p(x)u′(x) − q(x)f (u(x)). (17)

Now, applying the operator L−1
xx (.) presented in the previous section and given by Eq. (10) on both sides of Eq. (17), we obtain

u(x) = u(a) +
x − a
b − a

[u(b) − u(a)] + L−1
xx [r(x)] − L−1

xx [p(x)u′(x)] − L−1
xx [q(x)f (u(x))]. (18)

The Adomian decomposition method (ADM) is based on decomposing u and the non-linear term f (u) as

u =

∞−
n=0

un and f (u) =

∞−
n=0

An, (19)

where An are Adomian’s polynomials for the non-linear term f (u(x)) and can be found from the formula

An =
1
n!


dn

dλn
f


∞−
i=0

λiui


λ=0

, n ≥ 0. (20)

Substituting (19) into (18) and according to the ADM, the solution u(x) can be elegantly computed by using the recurrence
relation

u0(x) = u(a) +
x − a
b − a

[u(b) − u(a)] + L−1
xx [r(x)],

un+1(x) = −L−1
xx [p(x)u′

n(x) + q(x)An(x)], n ≥ 0.
(21)

If f (u) = u, i.e., linear function, then the solution u(x) can be computed by using the recurrence relation

u0(x) = u(a) +
x − a
b − a

[u(b) − u(a)] + L−1
xx [r(x)],

un+1(x) = −L−1
xx [p(x)u′

n(x) + q(x)un(x)], n ≥ 0,
(22)

where algorithms (21) and (10), (22) and (10) improve the standard ADM, (IADM) and can be used to solve linear and non-
linear singular two-point BVPs as shown in the next section.

5. Numerical examples

Example 5.1. Consider the inhomogeneous Bessel equation [15]:

u′′(x) +
1
x
u′(x) + u(x) = 4 − 9x + x2 − x3, x ∈ (0, 1) (23)

with the boundary conditions

u(0) = 0 and u(1) = 0. (24)
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Fig. 1. The truncated ADM series solutions and the exact solution of Example 5.1.

Table 1
Numerical results for Example 5.1.

x |u(x) − u26| [15] |u(x)−Φ10(x)|

0.0 0 0
0.1 2.3E−05 2.2418E−05
0.2 1.1E−05 2.5259E−05
0.3 5.5E−05 3.0855E−05
0.4 2.3E−04 2.4171E−05
0.5 1.1E−04 1.6781E−05
0.6 1.2E−04 1.1127E−05
0.7 1.6E−04 7.0442E−06
0.8 1.5E−04 4.0377E−06
0.9 4.1E−05 1.7590E−06
1.0 0 0

In this problem, Eq. (23) has a singular point at x = 0. So, we choose c to be any real value except zero. Using the IADM for
this linear boundary value problem, we obtain

u0(x) = −
8
15

x + 2x2 −
3
2
x3 +

1
12

x4 −
1
20

x5,

un+1(x) = −L−1
xx

[
1
x
u′

n(x) + un(x)
]

, n ≥ 0,

L−1
xx (.) =

∫ x

0
dx′

∫ x′

c
(.)dx′′

− x
∫ 1

0
dx′

∫ x′

c
(.)dx′′, c ≠ 0.

(25)

Using this recurrence relation, we obtain the approximate solution as

Φn(x) =

n−1−
i=0

ui(x). (26)

In order to verify numerically whether the proposed approach (IADM) leads to accurate solutions, we use MATHEMATICA
to evaluate the decomposition series solutions using the n-terms approximation (26). Then we compare the approximate
solutions Φ3(x), Φ5(x) and Φ10(x) with the exact solution u = x2 − x3 in Fig. 1. The numerical results show that a good
approximation is achieved using small values of n-terms of the decomposition series solution. It is also important to note
that the approach proposed by Lesnic in [40] fails to overcome the singularity at x = 0, for this singular problem. Moreover,
a comparison of the numerical results for the absolute errors |u(x) − Φ10(x)| with those of Ref. [15] are shown in Table 1.
This shows that our approach not only more accurate but also used in more easier way.

Example 5.2. In this example we discuss the advantage of the IADM over other analytical methods [39] for solving the
following linear singular BVP of Cauchy–Euler type:

u′′(x) +
2
x
u′(x) −

2
x2

u(x) =
sin[ln(x)]

x2
, 1 ≤ x ≤ 2,

y(1) = 1, y(2) = 2.
(27)
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Table 2
Numerical results for Example 5.3.

x |u(x) − Φ7(x)|

0.0 0
0.1 3.0047E−05
0.2 1.7524E−04
0.3 9.3554E−06
0.4 4.3842E−05
0.5 9.3002E−05
0.6 1.9170E−04
0.7 3.1501E−04
0.8 3.9364E−04
0.9 3.1680E−04
1.0 0

First, we apply the IADM for this problem to get

u0 = x +
1
2
[x − 2 + cos(ln x) − sin(ln x) + (1 − x)(cos(ln 2)−) sin(ln 2)],

un+1 = −L−1
xx

[
2
x
y′

n(x) −
2
x2

yn(x)
]

, n ≥ 0,

L−1
xx (.) =

∫ x

1
dx
∫ x

c
(.)dx − (x − 1)

∫ 2

1
dx
∫ x

c
(.)dx, c ≠ 0.

(28)

Using only two terms of the decomposition series, a good agreement with the exact solution:

u =
1

70x2
[8 + 69x3 + 4(x3 − 1) cos(ln 2) + 12(x3 − 1) sin(ln 2) − 7x2[cos(ln 2) + 3 sin(ln 2)]], (29)

is shown in Fig. 2. In this example we showed the effectiveness of the IADM for achieving good numerical results using only
two terms. On other hand, it may be difficult to handle Eq. (27) by the differential transformation method [39]. We may
indicate this point as follows. As in [39], we first write the equation as x2u′′(x) + 2xu′(x) − 2u(x) = sin(ln x). Here, we note
that the differential transformation for the left-hand side can be easily obtained, however, it is not so for the right-hand side.
This because the differential transformation of sin(ln x) is not known; it is only available for the elementary functions, i.e.,
xm, ex, sin(αx + β), . . ., which may be one of the disadvantages of the differential transformation method.

Example 5.3. Consider the linear singular equation [6,12]:

u′′(x) +
α

x
u′(x) = βxβ−2

[α + β − 1 + βxβ
]u(x), x ∈ (0, 1) (30)

with the boundary conditions

u(0) = 1 and u(1) = e. (31)

Here, the equation has a singular point at x = 0. So, as indicated in the previous examples, we choose c to be any real value
except zero. Consequently, the solution for this singular boundary value problem can be obtained as

u0(x) = 1 + (e − 1)x,

un+1(x) = L−1
xx


−

α

x
u′

n(x) + βxβ−2(α + β − 1 + βxβ)un(x)

, n ≥ 0,

L−1
xx (.) =

∫ x

0
dx′

∫ x′

c
(.)dx′′

− x
∫ 1

0
dx′

∫ x′

c
(.)dx′′, c ≠ 0.

(32)

To verify how close the approximate solution is to the exact one: u(x) = ex
β
, we plot different approximate solutions and

the exact solution in Figs. 3a–3d for various values of α and β . It is shown from these figures that the approximate solution
obtained through the IADM is very close to the exact one using a few terms. Furthermore, the numerical results for the
absolute errors |u(x) − Φ7(x)| are shown in Table 2, at α = 1 and β = 3. In [12] the author used a three-point finite
differencemethod in which a huge amount of computational work is needed to obtain the numerical solution. However, the
absolute error obtained in [12] was ‖E‖ = 2.8 × 10−4 using N = 64.

Example 5.4. Consider the linear singular equation [41]:

x2u′′(x) − xu′(x) + u(x) = 0, 1 ≤ x ≤ 2 (33)
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Fig. 2. The truncated ADM series solutions and the exact solution of Example 5.2.
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Fig. 3a. The truncated ADM series solutions and the exact solution of Example 5.3 for α = 0, β = 1.
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Fig. 3b. The truncated ADM series solutions and the exact solution of Example 5.3 for α = 0.5, β = 1.

with the conditions

u(1) = 1 and u(2) = 1. (34)

In this example, we rewrite Eq. (33) in the form:

u′′(x) −
1
x
u′(x) +

1
x2

u(x) = 0. (35)
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Fig. 3c. The truncated ADM series solutions and the exact solution of Example 5.3 for α = 0, β = 3.
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Fig. 3d. The truncated ADM series solutions and the exact solution of Example 5.3 for α = 0.5, β = 3.

x

u (x)

 
 
 

1.01

1.02

1.03

1.04

1.05

1.06

1.2 1.4 1.6 1.8 2.0

Exact

 2 (x)φ
 3 (x)φ
 7 (x)φ

Fig. 4. The truncated ADM series solutions and the exact solution of Example 5.4.

Using the IADM we obtain

u0(x) = 1,

un+1(x) = L−1
xx

[
1
x
u′

n(x) −
1
x2

un(x)
]

, n ≥ 0,

L−1
xx (.) =

∫ x

1
dx′

∫ x′

c
(.)dx′′

− (x − 1)
∫ 2

1
dx′

∫ x′

c
(.)dx′′, c ≠ 0.

(36)

In Fig. 4, we plot the approximate solutions Φ3, Φ5 and Φ7 and the exact solution u(x) =
2x ln(2)−x ln(x)

2 ln(2) . It can be concluded
from this figure that an accurate numerical solution is obtained through the proposed IADM. Also, in order to compare our
approach with another modification of the ADM [41] we present the numerical results for the absolute errors |u(x)−Φ7(x)|
in Table 3. In [41] the authors used the 7-terms of the ADM in indirect way in which a huge amount of computational work
is needed to obtain the numerical solution with absolute errors ≤ 6 × 10−4, see example 2 in [41]. By this, not only is our
approach more accurate but also more simple and direct.
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Table 3
Numerical results for Example 5.4.

x |u(x) − Φ7(x)|

1.0 0
1.1 2.6258E−08
1.2 5.3793E−08
1.3 6.7857E−08
1.4 6.3608E−08
1.5 4.4892E−08
1.6 2.0090E−08
1.7 1.8739E−09
1.8 1.4216E−08
1.9 1.3555E−08
2.0 0

x

1.05

1.10

1.15

1.20

1.25

1.30

  3 (x)φ

  5 (x)φ
  13(x)φ

u (x)

Exact

0.2 0.4 0.6 0.8 1.0

Fig. 5. The truncated ADM series solutions and the exact solution of Example 5.5.

Example 5.5. Consider the Bessel equation of order zero [14,16]:

u′′(x) +
1
x
u′(x) + u(x) = 0, x ∈ (0, 1) (37)

with the boundary conditions

u(0) =
1

J0(1)
and u(1) = 1. (38)

Proceeding as above, we obtain

u0(x) = 1,

un+1(x) = −L−1
xx

[
1
x
u′

n(x) + un(x)
]

, n ≥ 0,

L−1
xx (.) =

∫ x

0
dx′

∫ x′

c
(.)dx′′

− x
∫ 1

0
dx′

∫ x′

c
(.)dx′′, c ≠ 0.

(39)

It can be concluded from Fig. 5 that the approximate solutions converge rapidly to the exact solution u(x) =
J0(x)
J0(1)

. The
numerical results for the absolute errors |u(x) − Φ13(x)| and those of Ref. [16] by using the cubic spline are compared
in Table 4. It is also clear that the overall errors can be made smaller by adding new terms in the decomposition
series (19).

Example 5.6. Consider the Thomas–Fermi equation [3]:

u′′(x) = x−1/2u3/2(x), x ∈ (0, 1) (40)

subject to the boundary conditions

u(0) = 1 and u(1) = 0. (41)
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Table 4
Numerical results for Example 5.5.

x Ref. [16], h =
1
40 |u(x)−Φ13(x)|

0.0 1.16E−04 0
0.1 1.16E−04 1.6729E−06
0.2 1.15E−04 1.8402E−06
0.3 1.13E−04 2.2581E−06
0.4 1.10E−04 1.7706E−06
0.5 1.07E−04 1.2296E−06
0.6 1.02E−04 8.1541E−07
0.7 9.60E−05 5.1621E−07
0.8 9.00E−05 2.9587E−07
0.9 7.20E−05 1.2888E−07
1.0 7.10E−05 0

On applying the IADMwith the modified decomposition method, the solution of this non-linear boundary value problem is
obtained by using the recurrence relation:

u0(x) = 1,

u1(x) = −x + L−1
xx [x−1/2A0(x)],

un+1(x) = L−1
xx (x−1/2An(x)), n ≥ 1,

L−1
xx (.) =

∫ x

0
dx′

∫ x′

c
(.)dx′′

− x
∫ 1

0
dx′

∫ x′

c
(.)dx′′, c ≠ 0.

(42)

The first few terms of Adomian’s polynomials can be evaluated from formula (20) as

A0 = u3/2
0 , A1 =

3
2
u1/2
0 u1, A2 =

3
8
u−1/2
0 (u2

1 + 4u0u2), A3 =
1
16

u−3/2
0 (−u3

1 + 12u0u1u2 + 24u2
0u3). (43)

The approximate solutions Φ2(x), Φ4(x), Φ6(x), Φ8(x) and Φ9(x) are plotted in Fig. 6. It is clear from this figure that the
numerical solutions converge rapidly to a certain function as the number of terms of the decomposition series solution
increases. Also, it should be noted that the differential transformation method [38] and the homotopy analysis method [39]
cannot be applied directly to solve this BVP due to the existence of the nonlinear term u3/2. So, it may be concluded that
the current approach has many advantages over the others, mainly because it can be applied directly to singular two-point
BVPs with complex nonlinearities.

Example 5.7. Consider the non-linear singular BVP [19]:

u′′(x) +
0.5
x

u′(x) = eu(x)(0.5 − eu(x)), x ∈ (0, 1) (44)

subject to the boundary conditions

u(0) = ln(2) and u(1) = 0. (45)

Also, in this example we apply the modified decomposition method. On applying the IADM for this non-linear problem, we
get

u0(x) = 0,

u1(x) = (1 − x) ln(2) + L−1
xx

[
A0(x) −

0.5
x

u′

0(x)
]

,

un+1(x) = L−1
xx

[
An(x) −

0.5
x

u′

n(x)
]

, n ≥ 1,

L−1
xx (.) =

∫ x

0
dx′

∫ x′

c
(.)dx′′

− x
∫ 1

0
dx′

∫ x′

c
(.)dx′′, c ≠ 0.

(46)

The first few terms of Adomian’s polynomials can be evaluated from the formula (20) as

A0 = eu0

1
2

− eu0


, A1 =
1
2
(1 − 4eu0)u1, A2 =

1
4
eu0 [u2

1 + 2u2 − 8eu0(u2
1 + u2)],

A3 =
1
12

eu0 [u3
1 + 6u1u2 + 6u3 − 8eu0(2u3

1 + 6u1u2 + 3u3)].

(47)
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Table 5
Numerical results for Example 5.7.

x |y(x) − Padé[5/5](x)| |y(x) − Φ10(x)|

10−1 4.432E−04 1.734E−17
10−2 1.368E−04 0.000E−00
10−3 1.300E−05 1.602E−17
10−4 1.219E−06 1.077E−17
10−5 2.659E−06 8.279E−18
10−6 2.803E−06 2.212E−17
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Fig. 6. The truncated ADM series solutions and the exact solution of Example 5.6.
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Fig. 7. The truncated ADM series solutions and the exact solution of Example 5.7.

The approximate solutions Φ3(x), Φ5(x) and Φ7(x) are plotted in Fig. 7. It is shown from this figure that the approximate
numerical solution Φ7(x) is very close to the exact one: u(x) = ln( 2

x2+1
). In order to show the efficiency of the IADM in

obtainingmore accurate numerical solutions than the ADM-Padé technique used in [37], we evaluated the numerical results
for the absolute errors |y(x) − Padé[5/5](x)| and |u(x) − Φ10(x)| in Table 5. Obviously, a good approximation is achieved
using 10-terms of our algorithm without any need for the Padé-approximant.

6. Conclusions

In this paper, an efficient approach (IADM) is proposed for solving linear and non-linear singular two-point BVPs.
Moreover, the IADM not only used in a direct way but also requires less computational work in comparison with the other
methods. The IADM is verified by several linear and non-linear singular second-order boundary value problems.
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