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BACKGROUND Obesity and atrial fibrillation (AF) are public health issues with significant consequences.

OBJECTIVES This study sought to delineate the development of global electrophysiological and structural substrate

for AF in sustained obesity.

METHODS Ten sheep fed ad libitum calorie-dense diet to induce obesity over 36 weeks were maintained in this state for

another 36 weeks; 10 lean sheep with carefully controlled weight served as controls. All sheep underwent electro-

physiological and electroanatomic mapping; hemodynamic and imaging assessment (echocardiography and dual-energy

x-ray absorptiometry); and histology and molecular evaluation. Evaluation included atrial voltage, conduction velocity

(CV), and refractoriness (7 sites, 2 cycle lengths), vulnerability for AF, fatty infiltration, atrial fibrosis, and atrial trans-

forming growth factor (TGF)-b1 expression.

RESULTS Compared with age-matched controls, chronically obese sheep demonstrated greater total body fat

(p < 0.001); LA volume (p < 0.001); LA pressure (p < 0.001), and PA pressures (p < 0.001); reduced atrial CV

(LA p < 0.001) with increased conduction heterogeneity (p < 0.001); increased fractionated electrograms (p < 0.001);

decreased posterior LA voltage (p < 0.001) and increased voltage heterogeneity (p < 0.001); no change in the effective

refractory period (ERP) (p > 0.8) or ERP heterogeneity (p > 0.3). Obesity was associated with more episodes (p ¼ 0.02),

prolongation (p ¼ 0.01), and greater cumulative duration (p ¼ 0.02) of AF. Epicardial fat infiltrated the posterior LA

in the obese group (p < 0.001), consistent with reduced endocardial voltage in this region. Atrial fibrosis (p ¼ 0.03)

and TGF-b1 protein (p ¼ 0.002) were increased in the obese group.

CONCLUSIONS Sustained obesity results in global biatrial endocardial remodeling characterized by LA enlargement,

conduction abnormalities, fractionated electrograms, increased profibrotic TGF-b1 expression, interstitial atrial fibrosis,

and increased propensity for AF. Obesity was associated with reduced posterior LA endocardial voltage and

infiltration of contiguous posterior LA muscle by epicardial fat, representing a unique substrate for AF.
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AF = atrial fibrillation

BP = blood pressure

CL = cycle length

CoV = coefficient of variation

CS = coronary sinus

ERP = effective refractory

period

HE = hematoxylin and eosin

IQR = interquartile range

LA = left atrium/atrial

LAA = left atrial appendage

LV = left ventricular

OSA = obstructive sleep apnea

PA = pulmonary artery

RA = right atrium/atrial

TGF = transforming growth

factor
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A trial fibrillation (AF) is an important
health problem, with 2010 global
estimates suggesting that it affects

33.5 million individuals (1). This prevalence
is projected to increase 2.5-fold by 2050 (2).
Emerging evidence suggests that aging alone
does not account for the exponential rise in
AF prevalence (2). It is in this setting that
new risk factors, such as obesity, have
been proposed as important contributors to
this epidemic (3). Obesity is a rampant
epidemic, with more than one-third of the
population being overweight or obese. Anal-
ysis of population-based studies suggests
that obesity is associated with long-term
increased risk of AF, independent of other
risk factors (4–6). In a meta-analysis by
Wanahita et al. (7), there was a graded dose-
response relationship between obesity and
AF in the general population.
SEE PAGE 12
The mechanisms by which obesity predisposes to
AF are confounded by the coexistence of obstructive
sleep apnea (OSA), hypertension, diabetes, and cor-
onary artery disease, all well-established precursors
for the development of AF. Using limited, open-chest,
direct contact mapping, we have previously shown
conduction slowing and atrial fibrosis with short-term
weight gain in an ovine model (8). In the present
study, we investigate the global endocardial elec-
trophysiological, electroanatomic, and structural
substrate with sustained obesity, a state more com-
parable with humans.

METHODS

The animal research ethics committees of the Uni-
versity of Adelaide and the South Australian Health
and Medical Research Institute, Adelaide, Australia,
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OBESE OVINE MODEL. A total of 10 sheep had obesity
induced through a previously described protocol
using an ad libitum regimen of hay and high-energy
pellets (9). At baseline, healthy sheep were com-
menced on a high-calorie diet of energy-dense soy-
bean oil (2.2%) and molasses–fortified grain and
maintenance hay with weekly weight measurement.
Excess voluntary intake was predominantly of grass
alfalfa silage and hay. For the obese sheep, pellets
were gradually introduced at 8% excess basal
energy requirements, and rationed to $70% of
total dry-matter intake. Blood samples were periodi-
cally collected to ensure electrolyte and acid-base
homeostasis. The sheep gradually gained weight,
reaching maximal obesity at 36 weeks and were
subsequently maintained in this state for a further
36 weeks.

CONTROL GROUP. Ten age-matched sheep were
maintained as controls at their baseline weight. To do
this, high-quality hay was provided ad libitum, while
energy-dense pellets were rationed at 0.75% of body
weight. The nutritional content of food and housing
conditions were identical for both groups, with only
the amount of food intake varying.

STUDY PREPARATION. Animals were pre-acclimatized
for at least 1 week before any surgery. Shorn weight
was recorded immediately before surgery.

BODY COMPOSITION. Dual-energy x-ray absorpti-
ometry scans were performed to determine total body
fat in the animals.

TRANSTHORACIC ECHOCARDIOGRAPHY. An echo-
cardiogram (Acuson Aspen, Siemens Healthcare,
Malvern, Pennsylvania) was performed under general
anesthesia before the electrophysiology study. The
left atrial (LA) dimensions were measured in the
RC). Drs. Brooks and Sanders are supported by the

HMRC Senior Research Fellowship. Dr. Twomey is

ersity of Adelaide. Dr. Thanigaimani is supported by

elaide. Dr. Kalman is supported by a Practitioner

e Medical, Biosense Webster, Medtronic, and Boston

MRC; has served on the advisory boards of Biosense

e; has received lecture and/or consulting fees from

Sharpe and Dohme, Biotronik, and Sanofi; and has

ntific, Biotronik, and Sorin. All other authors have

per to disclose. Previously presented at the Annual

setts, and published in abstract form (Heart Rhythm

lentin Fuster.

9, 2015, accepted April 24, 2015.

https://s3.amazonaws.com/ADFJACC/JACC6601/JACC6601_fustersummary_01


TABLE 1 Structural and Hemodynamic Characteristics of the Control and

Obese Groups

Controls Obese p Value

Weight, kg 60 � 7 110 � 9 <0.001

Total body fat, kg 9 � 6 35 � 6 <0.001

Total body fat/total soft tissue (DEXA) 15.2 � 7.8 36.9 � 4.3 <0.001

LA major axis, mm 36.2 � 1.3 38.3 � 1.9 0.01

LA minor axis, mm 27.7 � 1.1 30.1 � 1.4 <0.001

LV posterior wall, mm 7.1 � 0.6 8.8 � 1.2 0.001

LVEF, % 67 � 5 70 � 6 0.8

LA pressure, mm Hg 3.7 � 1.4 8.1 � 1.6 <0.001

RA pressure, mm Hg 1.8 � 1.1 4.6 � 1.2 <0.001

PA pressure, mm Hg 9.8 � 2.6 15.0 � 0.9 <0.001

Systemic mean BP, mm Hg 71 � 12 86 � 13 0.02

Values are mean � SD.

BP ¼ blood pressure; DEXA ¼ dual-energy x-ray absorptiometry; LA ¼ left atrial; LV ¼ left
ventricle/ventricular; LVEF ¼ left ventricular ejection fraction; PA ¼ pulmonary artery; RA ¼ right
atrium.
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apical 4-chamber view. The left ventricular (LV)
dimensions were measured in M-mode in parasternal
long-axis view at the level of mitral leaflet tips. The
LV dimensions were utilized for determination of
global LV function by the Teicholz formula.

HEMODYNAMIC ASSESSMENT. Invasive blood pres-
sure (BP) monitoring was performed during the
electrophysiology study. LA, right atrial (RA), and
pulmonary artery (PA) pressures were recorded.

ELECTROPHYSIOLOGICAL STUDY. Details of the
electrophysiological study are presented in the
Online Appendix and are based on previously pub-
lished methodology (10). Briefly, venous access was
obtained through the right femoral and left internal
jugular veins. A 10-pole catheter was advanced to the
coronary sinus (CS). A conventional trans-septal
puncture was performed using a BRK1 needle and
SL0 sheath to access the left atrium. A 3.5-mm tip
catheter (Navistar, Biosense Webster, Diamond Bar,
California) was used to create electroanatomic maps
of the RA and LA in sinus rhythm with the CARTO XP
mapping system (Biosense Webster). The following
were determined:

Effect ive refractory per iod . The effective re-
fractory period (ERP) was measured from the
following 7 sites: 1) RA appendage; 2) RA lateral wall,
upper; 3) RA free wall, lower; 4) proximal CS; 5) distal
CS; 6) LA appendage (LAA); and 7) LA posterior wall.
ERP heterogeneity was determined by the coefficient
of variation (CoV) of ERP variation at each cycle
length (CL) (CoV ¼ SD/mean � 100%).

AF vulnerab i l i ty and durat ion . AF vulnerability
was assessed during ERP testing. AF was defined as
rapid, irregular atrial activity lasting $2 s. AF lasting
more than 10 min was considered sustained; when
this occurred, no further data were acquired.

Elect roanatomic mapping . Electroanatomic maps
of the LA/RA were created in sinus rhythm using the
CARTO (Biosense Webster) mapping system. Details
of the electroanatomic mapping and analysis are
presented in the Online Appendix and are based on
previously published methodology (10). Each point
was binned according to location (region), fraction-
ation (presence or absence), scar (presence or
absence), and bipolar voltage amplitude to allow
analysis in a mixed-effects model. Regional atrial
bipolar voltage and conduction velocity were
analyzed off-line. The LA/RA maps were segmented
for analysis, and the following parameters were
assessed as previously described (11):

1. Atrial conduction velocity: Conduction velocity for
each segment was determined by averaging the
conduction velocity between 3 to 5 pairs of points.
An index of heterogeneity was determined by
calculating the CoV of the different regions in each
chamber.

2. Electrograms with a duration $50 ms and 3 or more
deflections crossing baseline were considered
complex fractionated electrograms; and double
potentials were potentials separated by an isoelec-
tric interval and with a total electrogram dura-
tion $50 ms. For analysis, a fraction of the total
number of fractionated/double points was utilized.

3. Atrial voltage: Low-voltage areas were defined as
3 contiguous points with a bipolar voltage <0.5
mV. Electrically silent areas (scar) were defined as
3 contiguous points with an absence of recordable
activity or bipolar voltage amplitude <0.05 mV.
An index of heterogeneity was determined by
calculating the CoV of the different regions in each
chamber.

HISTOLOGICAL ASSESSMENT. Isolated atrial tissues
from the LA posterior wall and LAA were perfusion-
fixed with 4% paraformaldehyde and immersed in
10% buffered formalin. Sections were processed and
embedded in paraffin. For each site, 5-mm serial sec-
tions were then taken at 1-cm intervals from each
block and stained with hematoxylin and eosin (HE)
and Masson’s trichrome, respectively. Additional
samples were frozen at �70�C.
Fatty infi l t rat ion of atr ia l musc le by epicard ia l
fat . Fat infiltration of the atrial muscle from the
epicardial fat was evaluated in low-power (1.25�)
magnification with hematoxylin and eosin staining
and confirmed with Oil Red O staining of frozen sec-
tions. Fatty infiltration of the atrium by the overlying



TABLE 2 Electrophysiological and Structural Characteristics of the

Control and Obese Groups

Controls Obese p Value

LA CARTO volume, ml 74 � 13 86 � 15 <0.001

RA CARTO volume, ml 75 � 15 89 � 16 <0.001

FP/DP LA, % 10.8 � 4.4 53.3 � 13.6 <0.001

FP/DP RA, % 8.2 � 2.8 36.0 � 12.3 <0.001

CV, LA, m/s 1.58 � 0.22 1.18 � 0.28 <0.001

CV, RA, m/s 1.43 � 0.16 1.02 � 0.24 <0.001

Conduction heterogeneity, % 9.1 � 4.9 22.0 � 6.1 <0.001

Voltage LA, mV 4.4 � 1.4 4.5 � 1.7 0.3

Voltage RA, mV 3.6 � 0.9 4.1 � 1.6 0.3

Voltage heterogeneity, % 24.6 � 7.5 32.1 � 8.8 <0.001

ERP mean, ms, CL 300 ms 182 � 18 180 � 19 0.8

ERP heterogeneity at CL 300 ms, % 10.0 � 4.2 10.5 � 3.3 0.7

ERP mean, ms, CL 450 ms 190 � 20 191 � 26 1.0

ERP heterogeneity at CL 450 ms, % 10.3 � 3.3 13.6 � 5.4 0.3

AF episodes, total 1 (0–2) 4.5 (2–7) 0.02

Cumulative AF duration, s 4.1 (3–15) 46 (10–112) 0.02

Atrial fibrosis, % 5.31 � 0.95 8.14 � 2.39 0.03

Atrial TGF-b1 protein 0.35 � 0.23 2.07 � 1.24 0.002

Fatty infiltration grade* posterior LA 1.0 � 0.0 2.5 � 0.7 <0.001

Fatty infiltration grade* LAA 1.0 � 0.0 1.2 � 0.4 0.18

Values are mean � SD or median (interquartile range). *See text under histological assessment.

AF ¼ atrial fibrillation; CARTO ¼ CARTO XP mapping system (Biosense Webster); CL ¼ cycle
length; CV ¼ conduction velocity; DP ¼ double potentials; ERP ¼ effective refractory period;
FP ¼ fractionated potentials; IQR ¼ interquartile range; LAA ¼ left atrial appendage; TGF ¼
transforming growth factor; other abbreviations as in Table 1.

FIGURE 1 Distribution of ERP in Obese and Control Groups
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epicardial adipose tissue was graded 1 to 3 on the
basis of severity as follows:

1. None or focal infiltration of the adjacent outer third
of the atrial muscle layer by the overlying epicar-
dial adipose tissue.

2. Coalescent infiltration of the outer third and/or
focal infiltration up to the middle third of the atrial
muscle layer.

3. Coalescent infiltration extending from the epicar-
dial adipose tissue to the middle or inner third of
the atrial muscle layer.

F ibros i s assessment . Morphometric analysis of
Masson’s trichrome–stained sections to obtain a
quantitative estimate of collagen within the tissue
(described in the Online Appendix).
Atr ia l TGF-b1 assessment . Western blotting was
used to assess changes in transforming growth factor
(TGF)-b1 tissue expression in LA myocardium
(described in the Online Appendix).

STATISTICAL ANALYSIS. Normally distributed con-
tinuous data were expressed as mean � SD and tested
with unpaired Student t tests between groups.
Skewed distributions were expressed as median and
interquartile range (IQR) and means tested using
Mann-Whitney U tests. Mixed-effect models were
fitted to the data in order to compare voltage, con-
duction velocity, fractionation, and atrial refractory
period across regions, chambers, and groups (obese
and control). Fixed effects included combinations of
group (obese, control), region, and chamber (LA/RA)
with a maximum of 2 fixed effects entered into the
statistical model at a time. Main effects and their
interaction were tested. Random effects of sheep
identity were fitted to all models to account for
dependence on observations from the same animal.
To investigate LA regional patterns in both ap-
proaches, region (posterior LA, anterior LA, septal LA,
inferior LA, lateral LA, and LA roof) and group (obese
and control) were modeled as fixed effects with an
interaction term (region $ group). If a significant
interaction was present, mixed-effects post-hoc test
p values were reported (with Sidak adjustment of
alpha level). In the case of skewed distribution (i.e.,
for fibrosis assessment with Masson’s trichrome
staining), data were log-transformed before further
analysis. Two-sided p values <0.05 were considered
statistically significant. All analyses were performed
using SPSS/PASW version18 (SPSS, Chicago, Illinois).

RESULTS

GROUP CHARACTERISTICS. The obese sheep achieved
peak weight over a period of 36 weeks and remained
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in this state of sustained obesity for another
36 weeks. The control sheep were maintained lean
during this period. The obese sheep were twice the
weight of the control animals and had significantly
greater total body fat. Table 1 presents the charac-
teristics of the 2 groups.

STRUCTURAL AND HEMODYNAMIC REMODELING. Table 1
details the hemodynamic characteristics of the 2
groups. The LA was enlarged (p ¼ 0.01) with increases
in LA pressure (p < 0.001) without a change in LV
FIGURE 2 Atrial Conduction Abnormalities With Chronic Obesity
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were increased in the obese sheep, as compared with
the controls (p < 0.001).

ATRIAL REFRACTORINESS. Atrial ERPs, at CLs of
450 and 300 ms, from the 7 sites did not differ
significantly between the 2 groups (CL 300 ms,
p ¼ 0.8; CL 450 ms, p ¼ 1.0) (Table 2, Figure 1). ERP
heterogeneity at CLs of 450 and 300 ms also did not
oltage Abnormalities With Chronic Obesity

Control

Representative left atrial voltage maps: LAO view

Representative right atrial voltage maps: LAO view
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Control Obese

ative LA and RA voltage (bipolar) maps, respectively, of obese and control g
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1.58 � 0.04 m/s and RA 1.43 � 0.04 m/s; p < 0.001)
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FIGURE 4 Epicardial Fat: Novel Substrate for AF in

Chronic Obesity
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pericardium with pericardial fat. PA view: arrow points to
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LAA, which has very little epicardial fat. (Middle and Bottom)

Representative H&E stained sections (1.25�) of the LAPW and

LAA, respectively, from control and obese groups. Arrow shows

infiltration of atrial musculature with fat cells. AF ¼ atrial

fibrillation; AP ¼ anterior–posterior; ENDO ¼ endocardial;

EPI ¼ epicardial; H&E ¼ hematoxylin and eosin; PA ¼ posterior–

anterior; other abbreviations as in Figure 1.
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(Figure 2). The reduction in conduction velocity was
consistent across different LA segments (interactive
p value [area � group] ¼ 0.6). In addition, conduction
was more heterogeneous in the obese as compared
with the controls (CoV: 22.0 � 6.1% vs. 9.1 � 4.9%;
p < 0.001) (Figure 1). After adjusting for changes in LA
pressure, the differences in conduction velocity
(p < 0.001) and heterogeneity (p < 0.001) persisted in
obese animals compared with controls.
COMPLEX FRACTIONATION. The LA demonstrated
greater fractionation/double potentials, as compared
with the RA in both the obese and control groups
(p < 0.001). During sinus rhythm, 53.2 � 13.6% and
36.0 � 12.3% of LA and RA signals, respectively, were
fractionated/double potentials in the obese group. By
contrast, only 10.8 � 4.4% and 8.2 � 2.8% of all LA
and RA signals, respectively, were fractionated/
double potentials in the control group (p < 0.001).

VOLTAGE. The mean global voltage did not differ
between obese (LA 4.5 � 1.7 mV; RA 4.1 � 1.6 mV) and
control groups (LA 4.4� 1.4 mV, p¼ 0.88; RA 3.6� 0.9,
p¼0.21) (Figure 3). Therewere no areas of scar in either
chamber in control or obese animals. However, the LA
regional voltage patterns were different (interaction
p < 0.001) in the obese and control groups, primarily
due to a significant reduction in the posterior LA
voltage (3.7 � 2.3 mV vs. 5.5 � 2.3 mV; p < 0.001) in the
obese. Regional voltage heterogeneity was elevated in
the obese group, as compared with the controls (CoV:
32.1 � 8.8% vs. 24.6 � 7.5%; p < 0.001).

VULNERABILITY FOR AF. The median number of AF
episodes was greater in the obese group, as compared
with controls (4.5 [IQR: 2 to 7] vs. 1 [IQR: 0 to 2];
p¼0.02). The total AF episode duration per animal was
increased in the obese group as compared with the
controls (46 [IQR: 10 to 112] s vs. 4.1 [IQR: 3 to 15] s;
p¼0.05). Similarly, the average AF episode length was
longer in the obese as compared with control animals
(7.9 [IQR: 5 to 17.7] s vs. 2.7 [IQR: 2 to 5] s; p ¼ 0.01).
ATRIAL MUSCULATURE INFILTRATION BY EPICAR-

DIAL ADIPOSE TISSUE. Dist r ibut ion of ep icard ia l
ad ipose t i ssue . In relation to the atria, epicardial
adipose tissue was distributed adjacent to the LA
posterior wall and atrioventricular groove (Figure 4),
with minimal epicardial adipose tissue adherent to
the appendage. By contrast, paracardial adipose tis-
sue was more diffuse in distribution, with prominent
deposits between the appendage and great arteries.
Fatty infi l t ra t ion by epicard ia l fat . In control
sheep, limited numbers of adipocytes were present
subepicardially, interposed between cardiac myo-
cytes, whereas in obese animals, adipocyte hyper-
plasia resulted in abundant deposition of adipose
tissue in the epicardium and infiltration into the atrial
musculature. Moderate (Grade II) to severe (Grade III)
LA posterior wall infiltration by overlying epicardial
fat was seen significantly more in the obese sheep
(mean grade: obese 2.5 � 0.7, controls 1.0 � 0.0;
p < 0.001). There was minimal fatty infiltration in the
LAA in both groups (p ¼ 0.18; mean grade: 1.2 � 0.4
and 1 � 0 for obese and control groups, respectively).
Grade III fatty infiltration was not seen in the LAA in
either group, where epicardial fat was minimal.
Figure 4 depicts representative HE-stained sections
(1.25�), demonstrating fatty infiltration of the atrial
musculature by epicardial adipose tissue in the obese
and control groups.

FIBROSIS. There was increased interstitial fibrosis
in the obese animals, as compared with the con-
trol animals (p ¼ 0.03; on log-transformed data).



FIGURE 5 Fibrosis and Profibrotic TGFb1 Expression With Chronic Obesity
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Morphometric analysis of the Masson’s trichrome–
stained LA sections demonstrated 8.14 � 2.39%, and
5.31 � 0.95% staining in the obese and control groups,
respectively. Figure 5A shows representative Masson’s
trichrome–stained sections from the 2 groups.

ATRIAL TGF-b1 PROTEIN. Atrial TGF-b1 protein
expression increased 5-fold in the obese group, as
compared with the control group (p ¼ 0.001 on log-
transformed data) (Figure 5B, Table 2).

DISCUSSION

MAJOR FINDINGS. This study presents new informa-
tion on the global endocardial electrophysiological,
electroanatomic remodeling, and fatty infiltration of
the atria as a result of sustained obesity. Animals
gained weight over 36 weeks to achieve stable
obesity and maintained this for another 36 weeks to
replicate a state more comparable with chronic obesity
in humans. The obese group accumulated 5-fold
greater total body fat (34.5 kg), as compared with
controls (8.7 kg). The obese sheep model is unique,
because it does not experience OSA, because of
the typical habitus and sleeping posture, thereby
excluding the confounding effects of OSA. It demon-
strates the following.

Structural and hemodynamic changes
� Biatrial enlargement with diastolic dysfunction,

reflected by elevated LA pressure in the presence
of normal ventricular function

� Elevated right heart pressures and systemic BP
� Increased expression of profibrotic TGF-b1 and

increased interstitial fibrosis
� Fat infiltration of the atrial myocardium

Electrophysiological remodeling
� Slowed and heterogeneous conduction
� Increased complex fractionated electrograms
� Increased voltage heterogeneity without signifi-

cant change in mean voltage or appearance of scar/
low voltage

� No change in ERP and ERP heterogeneity

As a result of these hemodynamic, structural, and
electrophysiological changes, obese animals were
more vulnerable to AF. Importantly, this study pro-
vides causative evidence that links obesity directly
with the development of the AF substrate.



CENTRAL ILLUSTRATION Obesity and the Substrate for AF

Mahajan, R. et al. J Am Coll Cardiol. 2015; 66(1):1–11.

Progressive weight gain has been demonstrated to result in atrial stretch and leads to the development of high-frequency triggers and the substrate for AF. With chronic

obesity, there is greater epicardial adipose tissue, activation of the cytokines, and the development of fibrosis. In addition, there is infiltration of the contiguous

atrial myocardium by fat cells. All of these result in the milieu of slowed and inhomogeneous conduction that forms the substrate for AF. AF ¼ atrial fibrillation;

LA ¼ left atrial; TGF ¼ transforming growth factor.
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ATRIAL SUBSTRATE PRE-DISPOSING TO AF. Over
the last decade, several studies have presented eval-
uations of the atrial substrate in conditions known to
result in AF. Li et al. (12) were the first to distinguish
these abnormalities forming the “second factor” from
the electrical remodeling associated with AF. They
highlighted the importance of conduction abnormal-
ities and structural changes, particularly diffuse atrial
fibrosis in an experimental heart failure model (12).
These findings were subsequently confirmed to be the
unifying feature of structural remodeling in other
conditions, in both pre-clinical studies (13–15) and
clinical studies (10,11,16,17).

AF SUBSTRATE IN OBESITY. Although an epidemio-
logical link has been established between obesity and
AF, the underlying electrophysiological changes and
mechanism still remain to be defined (4–6). OSA is
closely associated with obesity in humans and pre-
disposes to AF by causing hypertension, diastolic
dysfunction, LA stretch, and autonomic imbalance
during sleep. Iwasaki et al. (18) demonstrated that
obesity facilitates AF inducibility in the presence of
acute OSA. However, despite the structural remodel-
ing, AF inducibility was not enhanced in obese rats in
the absence of obstruction. The ovine model allows
evaluation of obesity in the absence of OSA and, in this
study, demonstrated diffuse conduction abnormal-
ities and interstitialfibrosiswith chronic obesity alone.
The Central Illustration summarizes the structural
changes that result in electrical remodeling and pro-
mote AF in obesity.

Global endocardial biatrial conduction slowing and
increased fractionation were demonstrated in chron-
ically obese animals. However, the degree of slowing
varied in different regions, resulting in increased
conduction heterogeneity. This is consistent with the
finding with limited epicardial mapping with short-
term weight gain in an ovine model (8). Munger
et al. (19) have also reported slowed longitudinal
conduction velocities from the LA to the pulmonary
veins in obese patients with AF. However, this human
study did not observe any change in conduction ve-
locity along the coronary sinus. The more pronounced
findings in our animal model may result from extreme
obesity and more detailed mapping. The obese
animals did not demonstrate electrical scars or alter-
ations in global voltage; however, there was reduc-
tion in posterior LA voltage with increased voltage
heterogeneity. Contiguous epicardial fat was
observed to infiltrate the region demonstrating the
voltage reduction. Thus, we hypothesize that fatty
infiltration of the posterior LA by epicardial fat could
potentially represent a unique substrate that could
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predispose to AF in obesity. As with other studies
evaluating clinical substrate for AF, endocardial atrial
refractoriness was not altered with sustained obesity.
This finding differs from that of Munger et al.,
who reported shortened atrial refractoriness in obese
patients undergoing ablation for AF. However,
they acknowledged that AF induced during ERP
testing could potentially affect atrial refractoriness.
In addition, a marked increase in complex frac-
tionated signals was observed with sustained obesity
in our study. This could be a result of conduction
slowing secondary to interstitial fibrosis or fat
infiltration.

Sustained obesity was associated with diffuse
atrial interstitial fibrosis. This is consistent with
changes observed with heart failure (12,20) and
chronic hypertension (14). Spach et al. (21) have
demonstrated elegantly that fibrosis can produce
conduction abnormalities promoting re-entry and AF.
The fibrosis observed in their study was only inter-
stitial in nature, without the areas of replacement
fibrosis usually seen with infarction. Moreover, there
was only a 50% increase in interstitial fibrous tissue,
in comparison to the 16-fold increase observed with
heart failure (12), suggesting a more subtle insult
with obesity.

TGF-b1 has been shown to be a crucial cytokine in
the signal transduction pathways responsible for
fibrosis. It occupies a central position, downstream of
angiotensin and upstream of endothelin pathways,
and acts in a paracrine–autocrine fashion. Verheule
et al. (22) have shown that overexpression of consti-
tutional TGF-b1 in transgenic mice led to selective
atrial fibrosis, conduction heterogeneity, and AF. In
our study, TGF-b1 expression was increased 5-fold
with sustained obesity and could explain the increase
in interstitial fibrosis. We have previously reported
increased endothelin receptor expression with short-
term weight gain (8). There are similar reports of
TGF-b superfamily (23) and endothelin (24) signaling
pathway overexpression in humans.

EPICARDIAL FAT AND AF. There is emerging evi-
dence that localized epicardial fat depots may have
a significant and independent role in development
of AF (25–28). The development of the obese state
has been shown to be associated with hypoxia of
the expanding adipose tissue, resulting in adipose
tissue fibrosis and production of a myriad of adi-
pocytokines, including those in the TGF-b super-
family (29). The absence of fascial barriers between
epicardial fat and the contiguous atrial musculature,
and the common vascular supply may facilitate
paracrine action. Venteclef et al. (30) elegantly
demonstrated paracrine action in an organ-culture
model. They incubated rat atrial tissue in a secre-
tome derived from human epicardial fat and
demonstrated atrial fibrosis mediated by members
of the TGF-b superfamily. We demonstrated several-
fold increased expression of TGF-b1 in atrial tissue;
however, the source was not evaluated. In addition,
a new finding was observed with epicardial fat
infiltrating the underlying myocardium. Epicardial
fat is predominantly deposited on the posterior LA.
The reduction in posterior LA voltage noted on
endocardial mapping was consistent with this
finding. We hypothesize that fat infiltration sepa-
rates myocytes and could result in conduction ab-
normalities in a fashion similar to microfibrosis (21).
Considering the infiltration was observed only
adjacent to epicardial fat deposits, the distribution
of epicardial fat could contribute to conduction
heterogeneity.

STUDY LIMITATIONS. Although the observed elec-
trical and structural abnormalities predispose to AF,
the development of clinical AF is a complex process,
with other factors, such as triggers and perpetuators,
not addressed in the current study. This study
has shown that epicardial fat cells infiltrate the
posterior LA. However, a causal relationship be-
tween fatty infiltration and AF vulnerability could
only be studied to a limited extent in this model.
Furthermore, the profibrotic signal transducing
pathways responsible for AF in obesity were not
fully elucidated.

CONCLUSIONS

Sustained chronic obesity results in chronic stretch,
diffuse interstitial fibrosis, conduction abnormalities,
and increased vulnerability to AF. A TGF-b signaling
pathway may play an important role in mediating
interstitial fibrosis in sustained obesity. Infiltration of
the underlying atrial musculature by epicardial fat
may be a unique feature of the AF substrate in
obesity. This study provides direct evidence for the
role of obesity in development of a unique substrate
predisposing to AF.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE:

Sustained obesity, in the absence of sleep apnea, is

associated with diastolic ventricular dysfunction, eleva-

tion of atrial profibrotic TGF-b1, infiltration of atrial

musculature by contiguous epicardial fat, and atrial

fibrosis. These factors contribute to electrophysiological

remodeling and AF.

TRANSLATIONAL OUTLOOK: Further studies are

needed to determine whether therapies that inhibit fat

cell infiltration from the epicardial depot into the left

atrial wall of obese individuals could reduce their risk of

developing AF.
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