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DITORIAL COMMENT

DMAring
ndothelial Progenitor Cells
ccident, Association, or Antecedent*
ajen Kanaganayagam, BSC,
ichael S. Marber, PHD, FACC

ondon, United Kingdom

espite embryonic stem cell research capturing the imagi-
ation and $3 billion in California, adult progenitor cell
esearch continues to generate interest. Why? It bypasses
he ethical issues and consequent regulatory hurdles of
mbryonic stem cell research while maintaining much of the
ovelty and promise. During the last five years, attention
as focussed on the contribution of adult progenitors, and

n particular circulating endothelial progenitor cells
EPCs), to vascular health and disease. The EPCs,
nitially identified as circulating in the peripheral blood of
dults (1), are now known to originate from the bone
arrow and maintain a greater proliferative capacity (2)

han mature endothelial cells within the vasculature.

See page 1693

unctionally, these sentinels play a role in repairing ongoing
ascular damage (3), promoting vascular growth (4), and in
ndothelialization (5). However, to perform their function,
PCs produced by the bone marrow must be competent

nd mobilized specifically to areas of injury or growth before
ifferentiating into mature endothelial and, perhaps other,
ell types.

ONTROL OF MOBILIZATION AND DIFFERENTIATION

population of EPCs can be found circulating in the
eripheral blood of healthy individuals. Studies show that
he population can increase dramatically at times of acute
athophysiologic stress, such as myocardial infarction (6),
nd physiological stress such as exercise (7). In addition to
hese intra-individual variations by circumstance, consider-
ble interindividual variation also exists. The cause for
ariation between subjects is not fully understood but may in
art relate to ongoing vascular injury because those with
iabetes (8) and coronary artery disease (9) have a smaller
irculating population of EPCs with diminished function.
urthermore, in patients with risk factors but without overt
ascular disease, the size of the EPC population is inversely

*Editorials published in the Journal of the American College of Cardiology reflect the
iews of the authors and do not necessarily represent the views of JACC or the
merican College of Cardiology.
f
From the Cardiovascular Division, King’s College London, Department of
ardiology, The Rayne Institute, St. Thomas’ Hospital, London, United Kingdom.
elated to the cardiovascular risk score and capacity for
ndothelium-dependent vasodilation (3). These observa-
ions can be interpreted variously. The most obvious possi-
ility is that the number and reparative capacity of EPCs is
mpaired by the factors that predispose to atherosclerosis.

iven the sentinel function of EPCs, it is then tempting to
peculate that subclinical or overt atherosclerosis is a con-
equence of the EPC deficit rather than vice versa. The
cenario of EPC deficiency causing, rather than being a
anifestation of, vascular disease has fuelled research into

he mechanisms responsible for EPC differentiation and
obilization in the hope they can be recapitulated to

mprove vascular health.
A principal stimulus behind EPC mobilization is isch-

mia (10), which results in an increase in the concentration
nd gradient of cytokines responsible for release and matu-
ation. The levels of cytokines have been shown to increase
ith age, perhaps reflecting amplification of a paracrine loop

s the bone marrow becomes less able to release functional
PCs (11). The cause for down-regulation of function is

argely unknown, although recent studies suggest activation
f an intracellular signaling pathway involving p38 mitogen-
ctivated protein kinase, which impairs EPC as well as
yocyte proliferation and differentiation (12,13). Another

actor influencing mobilization is endothelial nitric oxide
ynthase (eNOS) activity, which is demonstrated most
legantly by the restoration of neovascularization in the
NOS�/� mouse by the intravenous infusion of wild-type
rogenitor cells (14). Because eNOS activity is influenced
y various factors, is there evidence that these thereby
nfluence EPC function?

SYMMETRIC DIMETHYARGININE (ADMA)

n 1992, ADMA was first recognized as an endogenous
nhibitor of eNOS by Patrick Vallance (15). It is formed by
he methylation of arginine residues within proteins and is
eleased during subsequent proteolysis to produce the free
alse substrate. When administered systemically, it increases
lood pressure and decreases cardiac output and heart rate
16). Concentrations of ADMA have been shown to in-
rease with renal impairment (15), heart failure (17), dia-
etes (18), and other cardiovascular risk factors (19). Thus
DMA levels increase in many of the circumstances asso-

iated with a decrease in EPCs. In common with EPC
eficiency, an excess of ADMA has been proposed to cause,
ather than be an index of, cardiovascular disease.

DMA AND EPCS

hum et al. (20) in this issue of the Journal tie together these
wo potential mediators of cardiovascular disease. They note
hat plasma concentrations of ADMA and the severity of
oronary artery disease are inversely correlated with measures of
PC number by expression of surface markers and number/
unction by endothelial cell outgrowth colonies. The potential
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echanism for this relationship is indicated by complementary
n vitro findings in which ADMA, in a concentration-
ependent manner, represses EPC proliferation, differentia-
ion, NO production, and tube formation. These effects, most
pparent at an ADMA concentration of 10 �mol/l, are
eversed by rosuvastatin. The measured plasma ADMA con-
entration varied from 0.47 �mol/l in control patients to 0.58
mol/l in those with triple vessel disease.
The issues raised by the current article are complicated by

he circumstantial nature of the evidence linking ADMA
nd vascular disease (21). In common with Thum et al. (20),
ost investigators find the concentrations of ADMA re-

uired to see biological effects in vitro are far higher than
hose circulating (22). A further difficulty is that ADMA
oncentrations may merely reflect active vascular remodel-
ng and/or decreased renal clearance, both of which are
ikely to occur in patients at risk of, or with established,
therosclerosis.

THEROSCLEROSIS, ADMA, AND EPCS:
IFFERENTIATING ASSOCIATION FROM CAUSATION

urrently a wealth of clinical studies exist showing an
ssociation between EPCs and vascular health. Inherent to
ost is the issue of co-correlation. This problem is exem-

lified by our observation of a relationship between myo-
ardial collateral flow index (CFI) and EPCs (23). How-
ver, we also found patients with high CFIs had more severe
oronary stenoses and likely more severe myocardial isch-
mia. It is thus difficult to be certain whether EPCs relate to
FI or ischemia (23). Similar issues complicate the inter-
retation of the study by Thum et al. (20). Both ADMA
oncentration and EPC number/function may be per-
urbed by the atherosclerotic burden, which causes the
o-correlation between these factors. Put more simply,
he atherosclerotic burden is the “horse” pulling along the
carts” of EPCs and ADMA. Thum et al. (20) are to be
ongratulated in their attempts to differentiate cart from
orse. Despite the caveats of the concentration disparity,

t seems possible increases in ADMA concentration are
he antecedent causing damage to EPCs, which in turn
re unable to maintain vascular integrity leading to
therosclerosis. It is within this framework the authors
mphasize the unique ADMA-lowering abilities of rosu-
astatin. However, it is unlikely such properties are
nique to this statin because atorvastatin, (24) simvasta-
in (25), mevastatin (26), and almost certainly others are
nown to increase EPC number and function. Nonethe-
ess, this study and the in vitro observations within it help
ddress the scarcity of mechanistic detail in this exciting
eld.

eprint requests and correspondence: Prof. Michael S. Marber,
ardiovascular Division, KCL, The Rayne Institute, St. Thomas’
ospital, London SE1 7EH, United Kingdom. E-mail: mike.
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