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The work started by V.M. Maksimov (1970, Theory Probab. Appl. 15,
604-618], and continued by A.Mukherjea [1980, Trans. Amer. Math. Soc. 263,
505-520], is extended, and completed with respect to certain aspects. Infinite-
dimensional stochastic chains are considered in the framework of Mukherjea |loc.
cit.]; backward products of stochastic matrices and their convergence are also
considered. The main theme centers around understanding how the convergence of
products (backward and forward, finite and infinite dimensional) takes place and
what it means in terms of various types of asymptotic behavior of the individual
stochastic matrices in the chain. The study is based on establishing the existence of
a basis for convergent chains. The basis then makes it possible to describe properly
various aspects of convergence. All results are new; they are also complete at least
in the sense they have been presented and suitable examples (or counter-examples)
are presented to justify the assumptions involved.  © 1985 Academic Press. Inc.

INTRODUCTION

Let (P,) be a sequence of finite or infinite-dimensional stochastic matrices
with the same number of states such that for each positive integer k, the
sequence Py , =P, P, - P, (k <n) converges to a stochastic matric Q,.
In this case, we call (P,) a convergent forward stochastic chain (or briefly,
an f.s.c.). If instead of P, , we consider convergence of P, ,=P,P, | ---
P, (n>k), then we call (P,) a convergent backward stochastic chain
(b.s.c.).
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Two stochastic chains (P,) and (P}) are called equivalent if the series
201 [(Pr)ij — (Pp)yj| is convergent for every i, j in the state space. In the
finite-dimensional case, it is well-known that in the “forward” as well as in
the “backward” case, two equivalent chains are either both convergent or
both nonconvergent; when convergent, they have the same basis. For the
definition of the basis in the finite and f.s.c. case, we refer the reader to [6].
Extension of the concept of the basis to the infinite-dimensional or the b.s.c.
case is not immediate. We have considered this extension in Sections 1 and
2. Regarding equivalence of chains, we have shown that there are infinite
chains, though equivalent, where one is convergent and the other one is not
(Remark 3.8(c)). However, results that are expected of equivalent finite
chains can be obtained for infinite chains under a uniformity condition (see
Theorem 3.9). Also, results that are typical of equivalent chains can
sometimes be obtained under conditions other than equivalence. This we
show in Theorem 4.5.

A substantial portion of the paper is devoted to establishing results of the
type D nry (P,); < o for i,j in different classes of states in the basis and
generalization of such results. These are useful in understanding the general
problem of classifying the states of a nonhomogeneous Markov chain; they
also help us to assess quickly the asymptotic behavior of the matrix products
by replacing the chain by a simpler equivalent chain. The main results here
are Theorems 3.3, 3.4, 3.6, 3.9, 4.4, 4.5, 4.6, and 4.7.

Throughout the paper, we have indicated differences and similarities in the
“forward” and “backward” cases. The resuits have obvious implications in
the study of general nonhomogeneous Markov chains. They also have
applications in other apparently nonrelated areas such as the study of
measures on semigroups; this will be taken up elsewhere. All our results are
new. However, some of our resuits in the “forward” and finite-dimensional
case can also be obtained using martingale convergence theorems and tail
sigma-field considerations as followed in papers of Cohn. Our methods,
however, are simpler and our results are best possible at least in the sense
they have been presented. More importantly, our methods can be adapted, as
we have shown in this paper, to the “backward’ as well as the infinite-
dimensional situation, and even fo the case of infinite nonnegative matrices
as is shown in Lemma 3.1. Detailed considerations of infinite nonnegative
matrices and their products will be treated elsewhere.*

* Note added in proof. Finally, it should be pointed out that some of the results here
including Theorems 3.3 and 3.6 were presented by the authors in the Proceedings of a 1981
conference in Oberwolfach [10}; later, Theorem 3.3 and other related results were tackled in
[1] under tail-sigma field considerations.
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1. Basis OF A CONVERGENT FORWARD STOCHASTIC CHAIN

Establishing the existence of a basis for infinite-dimensional convergent
f.s.c. is not immediate. The reason is, of course, that the pointwise limit of a
sequence of stochastic matrices need not be a stochastic matrix; also, in this
case, the joint continuity of matrix multiplication is no longer true. To
establish our basis, let us first present a few simple (but necessary) lemmas.

LemMA 1.1. Suppose that (4,) and (B,) are two sequences of stochastic
matrices converging pointwise to, respectively, the matrices A and B. Suppose
that A is stochastic. Then B is substochastic, and the sequence (A,B,)
converges pointwise to the matrix AB. Unless B is stochastic, the sequence
(B,A,) need not converge to the limit BA.

Proof. The first part of the lemma is straightforward: We omit its proof.
Let us illustrate the last assertion by the following example: Let A, =A4Vn,
where each row of 4 is (1/2, 1/2%,...); let B, be defined by

1
(B,); = — for 1 <i,j< s (
1)

=1 fori=j> n.

Then lim,_, B,=0,but B,4,=A4Yn. 1

n—-wo
LemMa 1.2. Suppose that for each positive integer k
limpP, ,=Q, (pointwise)
n
where each P, as well as each Q, is a stochastic matrix. Let Q be a limit

point of the Q,’s with respect to pointwise convergence. Then for each k, we
have

Q' =0, 2)
Progf. Fork<n<m,P,,=P,,P,, ByLemmal.l,
Qk=Pk,nQn'

Using Lemma 1.1 again, (2) follows. #

LEMMA 1.3. In Lemma 1.2 let k and t be such that (Q,); > 0 for some i.
Then we have

i(g'),,: L
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Progf. The lemma follows immediately from the following equality that
follows from (2):

@y- i S (@ QY

j=1 s=

- f @[ 0]

II
e

8

LEMMA 1.4. Let Q' be as in Lemma 1.2. Then the entries in the jth row
of Q' add up to 1, provided that the jth column of Q' is not a zero column.

Proof. Immediate from Lemma 1.3. 1

LEMMA 1.5. Let Q' be as in Lemma 1.2. Let
T={j: Q;;=0 for each i};

that is, T is the set of zero columns of Q'. Then the matrix (Q')*, defined as
the restriction of Q' to the complement of T, is a stochastic idempotent
matrix with no zero columns. (By Lemma 1.3, the complement of T is
nonempty.)

Proof. Note that because of Eq. (2), the ith column of each Q,, for i in
T, is a zero column. Also, note that for j& T and k & T, we have

(Qp)jk - (QpQ )jk - Z (Qp)}tth 2 (Qp)jt th

so that for each positive integer p,
(@)F - (@) =(Qy)".

Now notice that for any given ¢ & T, there is a Q, (for some p) such that the
tth column of @, is not a zero column. It follows from (3), as in Lemma 1.3,
that for each t € T,

Z (Q,)ts =L

S¢T

Then it follows from Eq. (3) and Lemma 1.1 that (Q’)* is a stochastic idem-
potent matrix. Finally, we show that this matrix has no zero columns. To
this end, let T" be the set of zero columns of (Q’)*. Of course, 7' < T° (the
complement of T). For j € T’ and for every i and £,

(Qk)lj= (Qxk Q')u Z (Qk)uQu }: (Qk)xt Qtj— 0,

since j € T’. This means that Q;, =0 for each i so that j&€ 7. This is a
contradiction. 1l
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LEMMA 1.6, Let the Q,’s be as in Lemma 1.2. Let Q' and Q" be any two
(pointwise) limit points of the Q,’s. Then, the sets
{J: @}; =0 for each i} and {J: Qf; =0 for each i}

are the same. If we denote these sets by T, then Q' and Q", when restricted
to the complement of T, coincide. Each of these restrictions is a stochastic
idempotent matrix with no zero columns.

Progf. Notice that by Eq. (2),
Qi;=0 for each { iff (Q4);; =0 for each i and k

for any limit point Q' of the Q,’s. This means that the “7” set is the same
for both @' and Q". It follows from Eq. (3), Lemma 1.1, and Lemma 1.5 that
when restricted to the complement of T,

QIIQ/ — QU and QIQN — Ql.
By using the structure theorem for stochastic idempotent matrices, it can be

easily verified that Q' = Q", when restricted to 7°. [

Because of Lemma 1.6, we can now define the basis of a convergent
nonhomogeneous stochastic chain.

DerFiniTION 1.7.  Suppose that (P,) is a convergent stochastic chain and
that each Q,, where @, =lim, P, , (pointwise limit), is stochastic. Let Q' be
a (pointwise) limit point of the Q,’s and let

T={j: Q=0 for each i}.
Then @', restricted to T~, is a stochastic idempotent matrix with no zero
columns. By the structure theorem for stochastic idempotent matrices (see
[5]), there exists a partition {C,, C,,...} of T* such that
0,=0 for i, j in different C-classes;
=Q,(>0) for i, f, and k in the same C-class.

The partition {7, C,, C,,...} remains the same for all limit points Q' of the
Q/’s. This will be called the basis of the convergent chain (P,) as well as the
basis of Q'.

Remark 1.8. The pointwise convergence considered above is certainly
weaker than the usual norm convergence, where

[e o]
||P—Q||=Sup Z |Ptj—Qij|a
I j:l
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even when the pointwise limit is a stochastic matrix. For example, consider
(P,) defined by

(Pp)=1—(1/n'") forj=i<gn

=1/n"" forj=i+1<n+1;
=1 forj=i>n;
=0 otherwise.

Then P, converges to the identity matrix / pointwise, but P, I in norm as n
tends to infinity.

Remark 1.9. There are a number of interesting differences in the
convergence behavior of forward and backward chains. Here we point out
only one. Consider the chain (P,) defined by

(Pn);=0 forj=1,2,.,nand alli > 1;
=1/2 forj=n+kandalli>l.

For n > k, define P, ,=P,P, ,--- Py, ,. Then, P, , =P, for all n> k. In
this case, unlike the forward chain case,

limlim P, , = 0.
k n ’

2. Basis oF A CONVERGENT BACKWARD STOCHASTIC CHAIN

Here we consider the basis of a convergent b.s.c.. This case, as has been
already pointed out in Remark 1.9, is somewhat different. The following
example will clarify this even more.

ExaMPLE., Consider infinite-dimensional stochastic matrices A and (B,)
such that the first row of 4 is (100 -.. ), all other rows of 4 are (010 --.),
and every entry in the first » columns of B, is 1/n. Then 4B, =B, and
B,B,=B, (for any m,n). Also, B,4=C,, where each row in C, is (I/n
1—1/n0 .-.). Define the sequence (P,) such that for each positive integer &,

Py =4, Pyiy1 = By.

Then P,P, ,--- Py =C, and P,P,_, -+ Py, =B, (for each n>2k + 1).
In this case then R,, _, = C, and R,, = B, so that one of the limit points of
the R,’s is stochastic whereas the other limit point is the zero matrix. Thus,
the b.s.c. case is quite different from the f.s.c. case. [Here R, =1lim,_, P, ;-]
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Now we present a number of basic results in the b.s.c. case.

Lemma 2.1.  Suppose that for each positive integer k, R, =lim, , P, ,
and each R, is stochastic. If R' is a (pointwise) limit point of the R,’s and R’
is stochastic, then for each positive integer k

R’Rk=Rk' (4)

If R” is another limit point of the R,’s, then R’'R” =R". (R", of course, need
not be stochastic.)

Proof. The proof is immediate from Lemma 1.1 and the observation that
for k<m,Ry,=R,P, .. 1

PROPOSITION 2.2. Let A and B be two infinite-dimensional stochastic
idempotent matrices such that the bases of A and B are respectively

A:{T,C,,C,,.} and  B:{T",C},Ci,.}

Then, AB = B and BA = A iff the following hold:

(i) Foreachi(l <i< o), there exist j and k (1 <j, k < o0) such that
C,cCUT and C;<cC,UT;

(i) A;=0=B; whenever i and j belong to two different C-
components in the basis of A or in the basis of B;

(iii) if ieC,(1<k<®) and t€T', then A, > 0= for each j,
A;=4,, and B;;= B,;. A similar result also holds for B.

Proof. First we assume that AB = B and B4 = A. This means that 4 has
two rows identical iff the corresponding two rows of B are also identical.
Hence, if {a,b} = C,, then the ath and bth rows of A4 (and therefore, also of
B) must be identical. This means that there is a j such that {a,b} = C; U T".
It is now clear that (i) holds. To establish (ii) and (iii), let {i,j} < C}. Then
AB = B implies

O<Bij= Z A, B ot Z AllBt_l
ceC, teT’
Slnce Bu _Bu ZteT’ it + Bu ZCEC Au: + Bu Zc¢C UT’Atc and smce
B;=B for c€ C; and B,;< By, for fe T', it follows easﬂy that (ii) and
(111) hold
Now we prove the converse part. Let us then assume (i), (ii), and (iii). It
is enough to show that AB=B. Let t € T’. Then

(4B),, =Y A,B,=0=B8,,.

ij 0 jt
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Now let i € C; and j € Cy, (k, # k,). Then

(AB),;= > A,B;+ > A,B;=0  (by (i) and (iii))
teT'

seC;
5]

=B,
Finally, let {i,j} < C},. Then

(AB);= > AuB,;+ > AB
teT’ seC,:l
=B;- 3 Ay+By- Y Ay=B,;-> A,=8; 1
teT’ seC,;1 s

Now we consider a convergent b.s.c. where lim,_, P, ,=R, and all the
limit points of the R,’s are stochastic. By Lemma 2.1, these limit points then
satisfy the equation R’R” = R” and, therefore, each such limit point is also
idempotent. If, furthermore, none of them has a zero column, then they all
have the same basis by Proposition 2.2. In case some of these limit points
have zero columns, then we define the basis of the chain in the following
manner.

DErFINITION 2.3. A partition {S,, S,,...} of the positive integers is called
an S-basis of a b.s.c. when i and j are in the same S-class iff the ith and jth
rows of any limit point of the R,’s are identical. (Recall that whenever any
two rows of such a limit point are identical, the corresponding two rows are
also identical for all other limit points.)

It is clear that any C-component in the basis of a limit point is completely
contained in some S-class and, also, at most one such component can be
contained by an S-class. We now present a nonobvious property of an S-
basis.

PROPOSITION 2.4. Let {S,,S,,..,} be an S-basis of a connvergent b.s.c.
(P,), where R, =lim,_ P, , and each limit point of the R,’s is stochastic.
Let R’ and R" be two such limit points with bases respectively

R':{T,C,,Cyt  and  R":{T",C}, Chour}

Then the following holds: S, c T= S, c T'.

Proof. Suppose that S, T and S; < T". Then, S;N C/ is nonempty for
some j. But this means that C; c S; c T. Let {a, b} = C;. (If C; has only one
element, then a = b.) Since R” =R'R",

Ryp= Y RuRiG=> RyuRi,  (since C;cT)

keT'UC! keT’
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so that

1= Z ab= Z szk'[ Z be]-
beC; keT’ bec;

This equation shows that there is a k€ T such that R/, > 0 and also for

this &, Zbec;R x»= 1. Since a € Cj, it immediately follows from the structure

of an idempotent stochastic matrix that the kth and ath rows of R” are iden-

tical. Since a € C; < §;, k also must be in §;. Since §;c T, k€ T. This is a

contradiction since R/, > 0. The proposition now follows. 1

We now make another useful definition.

DEFINITION 2.5. Let Ry =lim,_, P, ,. Assume that the limit points of
the R,’s are all stochastic. A state i is called strongly recurrent for the
convergent b.s.c. if Rj; > 0 for each limit point R’ of the R,’s. If this holds
for at least one limit point, then i is called weakly recurrent.

One of the main themes of this paper is to decide when results like }"%
(P,);; < oo hold for convergent stochastic chains. As will be shown in the
next section, such a result holds for any f.s.c. whenever i and j belong to two
different C-components in its basis (i.e. the basis of any limit point of the
Qys, Qy=lim, P, ). The situation is again somewhat different in the
b.s.c. case even for finite-dimensional chains. The following example
illustrates this.

ExampLE 2.6. Let (u,,v,, W,, X,, Y, 2Z,) be a sequence of 6-tuples such
that v, +v,+w,-1 and x,+y,+2z,-0 as n— oo, all these entries are
nonnegative, and Y, x, =3, y,=2,z,=00. Now consider the following
stochastic matrices:

(0 g 1—a A (aO l1-a R
Oal—a ZETros a0 l-a Zeros
0al—a a0 l-—a
4= 0di1-al BT d 0 1—df
Zeros 0d1—-d Zeros d 0 1-d
L 0d 1—dJ L d0 1—dJ
(u,, v, W, X, V. Zp O (a 01-a 0 0 0 N
0 al—-a00 O Uy Uy W, X, V. 2,
A=Oa1——a000 B=a01—a000
"le,fo & hopn ot | "loo 0 d401-4]
00 0 04d1-d e, fu & h,D, T,
L0 0 0 0d1—dl L0 0 0 d 0 1—dJ
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where the 6-tuples (e,, f,> &5 ".> Dn> ') have the same properties as the
sequence (U,, U,, Wy, X, ¥y 2,0 a0d 0 < g, d < 1.
For all nonnegative integers n, let us define

P2n=Av P2n+I:B’ P£n=An’ and P£n+1=B"'

Then it can be verified easily that

PnP;1=Pn, PnPk=Pk’ andli’I'nP;,Pk::Pk.

Now we consider the stochastic chain (L,) defined by
L, =P, and L,,_,=P].
After some easy computations, it follows that for every k,
li:n L, , exists and = P;.
Notice that each P, is either A or B and, therefore, the limit points of the
P.’s are only A and B with bases, respectively,
A4:T={1,4},C,={2,3},C,={5,6};
B:T=1{2,5},C,=1{1,3},C,= {4, 6}.
The S-basis of this convergent backward chain (L,) is
{§,=11,2,3},8,=14,5,6}}.

Clearly each of {1, 2, 4, 5} is weakly recurrent, and both 3 and 6 are
strongly recurrent. It is evident that here for i weakly recurrent,

[e0]
> (L,);= o for each j.
n=1

We now present our last result in this section.

ProposiTiON 2.7. Let (P,) be a convergent b.s.c. such that lim,_
P,«=R, and the limit points of the R/s are all stochastic. Let i be a
strongly recurrent state such that i € S,, a member of the S-basis of the
chain. Then lim,, ,, 3¢5 (P,); =0.

Proof. Since form<n, P, ,P,=P,, ,, we have

(Pn,m)ii . Z (Pm)ij< Z (Pn,mfl)ij‘

j#5, €5,
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The proposition now follows from the observation that

koo |

lim > (R);=0 and l!im inf(R,);; > 0.
€S, oo

3. MAIN RESULTS

First, we establish a basic inequality that will be crucial in the discussions
to follow. We present the inequality in a general form.

LeEMMA 3.1. Let (P,) be a sequence of infinite-dimensional nonnegative
matrices. Let i, j, k, n,, n,, n be fixed positive integers such that
k< n, <n,<n. Suppose that the matrix products P, ; are all well-defined
Jor r < s. Then the following holds:

ny
(Pk,n)ij> Z (Pk,m)ii (Pm+1)ij (Pm+l.n)jj

m=n

- Z (Pk,m)ii (Pm+l)ij (Pm+ l.m')ji

n<m<m'<n,

X (Pm’+1)ij (Pm'+l.n)jj' (5)

A similar inequality also holds for backward products.

Proof. For each n—k — l-tuple of positive integers (S;, 8§55 Sy_k— 1)
consider an element x(s,, $;,.., S,_,_,) and let all such elements (distinct
elements correspond to distinct tuples) form some set 4. We define a discrete
measure £ on 4 such that

B({x(515 g5 Sp_z)}) = (Pk+1)isl (Pk+2)s|sz (Pn)s,,_k_,j'
For k < m < n, define the sets 4, by
A, ={x(8,, 8700 Sy_y_)EA: S, _,=1and 5, _,,.,=j}

Notice that B(4) = (P ,); and 4 > Uz, A4, also,
ny ny
(0 4.)> S - S s
m=n, m=n mEm<m'<ny

The inequality (5) now follows easily from this inequality. It is also clear
that a similar inequality also holds for backward products and can be
derived similarly. NI

683/16/1-7
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LEMMA 3.2. Let f be a real-valued function on [0, ) and (a,) be a
sequence of nonnnegative reals such that lim, . a,=0. Consider the
JSollowing assertions:

(i) 22lia, < oo;
(it) given ¢ > O, there exists a positive integer N(€) such that for any
positive integers ny, n, with n, > n, > N(¢), f(v) <&, wherev= 3732, a,.

If £(0)=0 and f is upper semi-continuous, then (i)= (ii). If f(u) > 0 for
some positive u and [ is lower semi-continuous, then (ii) = (i).

Progf. The first part of the lemma is obvious. For the second part,
assume (ii) and suppose that > | a,= 0. Let 0 <& < f(u). Let N(¢) be
any positive integer. By lower semi-continuity of f at u, there is a ¢ > 0 such
that

u—t<x<u+t=>f(x)>e

Choose n,> N(e) such that a,<t for n>n,. Let n,>n;. By our
assumption, 3 7 , a, = co. Let n, be the smallest positive integer such that

ny

D a,>u

n=n,

Then it is clear that u <332, a,<u+¢ This means that f(v)> ¢ if
v=>r . a, This contradicts the assumption of (ii). The lemma

follows. i

Now we present our first theorem which proves the conjecture in [5].

THEOREM 3.3. Let (P,) be a convergent f.s.c. with basis {T,C,, Cy,...}.
Then if i and j belong to two different C-components of the basis, the series
2onz1 (P,),; must converge.

Proof. Let lim, P, ,=Q,. Let i and j belong to two different C-
components of the basis. Then for any two limit points Q' and Q" of the
sequence (@), we have

0;=04=0,0,=0;>0 and  Qy=0}>0.

Notice that there exist d >0 and positive integers k, and n(k) such that
k> ko and n > n(k) = (Py ,); > d, (Py,,);; > d. Then given € > 0, there exist
integers N(¢) > k, and N(k) > n(k) such that (P, ,); < ¢ whenever k > N(g)
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and n> N(k). Now let k> N(e) and n > n, > n, > N(k). Then by (5) in
Lemma 3.1,

"2
e>d . Z Prs)y— Z Pos 1)y P 1)y
m=n, m<m<m'<n,
ny ny 2
>d2' Z (Pm+1)ij—-%'|: Z (Pm+l)ij] . (6)
m=n, m=n,

Observe that lim,, , (P,); = 0. (This can be easily shown by a proof similar
to that of Proposition 2.7.) Then the theorem follows immediately from
Lemma 3.2 by taking f(v) =d*v — (1/2)v*. 1

A similar result holds for convergent b.s.c. Let us state such a result. We
will omit its proof since the proof is almost identical to that of Theorem 3.3.

THEOREM 3.4. Let (P,) be a convergent b.s.c. such that for each positive
integer k, lim, . P, , =R, and all (pointwise) limit points of the R,’s are
stochastic. Let {S,, S,,...} be the S-basis of the chain. Then for i and j not in
the same S-class, such that i is strongly recurrent and j weakly recurrent,

[v o]

=1 (Po)y < 00

Proof. The proof can be given as in Theorem 3.3 using the backward
analog of (5), Proposition 2.7, and Lemma 3.2. I

Though Theorem 3.3 is interesting, a stronger version of this result is
desirable especially when there are an infinite number of C-classes in the
basis of the convergent f.s.c.. We would like to have for i € C, (a C-class),

e o]

DD (P)y< oo @)

n=1 j¢CUT
If we assume some kind of uniformity in convergence, then (7) is possible.
That some condition is surely needed to obtain (7) follows from the

following example.

ExampLE 3(a). Consider the following sequence of infinite-dimensional
stochastic matrices given by

1 1
P =Py =1 T Puhinsr= (Pn)z,n+2=7;

1
(Ppy=1for2 <ign (Pn)11=(Pn)rz=7f0fi>n-
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Then we show that lim,,, P,,=Q, and lim, ., Q,=Q, where the
matrices @, and Q are given by

() (Q)n=(Q2= (0= (Q)n=1 (@u=1for 2<i<k+ 1
(Q)n=(Qn=1fori>k+ 1

(i) Q@ =0,=0, =Q22='12'; Qu=1fori>2.

Before we prove the convergence of the chain, notice that the basis of the
chain is here the basis of @, which is

{Ci=1{1,2}, C,= {3}, Cy = {4},...}.

Note that here 1 € C,, but 3o, 3¢
hold.

Now to prove its convergence, we first notice that for 2 <i<k+1,
Pen)ii 2 Prsr)ii o+ (Pp)y=1 so that lim,_ . (P, ,); = 1. Also, for n >k,
i>2 (buti#n+2),and s>2,

(P,):; = o, so that (7) does not

ntl

(Pk,n)li =0= (Pk.n)k+s,i' (8)
Moreover, '
1 1
B = Cuis (1= 557) 7 Cednes ©)
and
1 1
Prnd=@eae- (1= 577) 7 Pendiwz (1O

Now (Pyn)ins2= 2 (Pk,n—l)li Pins2= (1/n) - [(Pk,n—l)ll + (Pk,n—l)12]
- 0; also,

1

(Pk,n+1)ll - (Pk,n+l)l2 = (1 _T) [(Pk n)ll (Pk,n)IZ]' (11)

It follows from the above equations that
lim (P, ), = lim (P )= 3
n-—o0 n—oo
Slmllarly’ for S 2 hmn—voo (Pk n)k+s 1= 11rnn—vcxo(Pk n)k+s 2= 2

We will now show that (7) is guaranteed by the following uniformity
condition, which holds trivially for finite-dimensional matrices.
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ConprtioN (U). A convergent f.s.c. (P,) is said to satisfy condition (U),
if for each j in each C-class in the basis

lim sup |(Q,); — Q| =0 (12)

k—o0 igT

where, as usual, Q' is a limit point of the @,’s and @, =lim,_ P, ,.

Note that the chain in Example 3(a) does not satisfy (12). We are now
ready to prove that (12) implies (7). First, a lemma.

LEMMA 3.5. Let (P,) be a convergent f.s.c. with basis {T, C,, C,,...}. Let
D, =J{C;:j# s}. Then the following results hold:
(@) Leti€ C,. Thenlim, 3 cp ur (Pr);=0.

(b) Suppose condition (U) holds. Then given ¢ > 0, there exists a
positive integer k(e) such that for n > k > k(g), Vd € D,

Y Pedg>1—e |

JED T

Proof. (a) For i€ C, given € > 0, it is clear that there is a § > 0 and
k(e) such that for k > k(e),

(@Qu>Band D (Q,)y; <Pfe (13)

JjeD T

Since P, , ,P,= P, , (for k <n—1), we also have

(Pk,n—l)ii ' Z (Pn)ijg Z (Pk,n)ij‘ (14)

jeDuT jeD UT

Now the assertion in (a) follows immediately from (13) and (14) by taking n
sufficiently large.

(b) Fork<n, Q=P ,0,. Leti€ C,. Then for any d€ D,
(Qk)di > Z (Pk,n)dj (Qn)ji' (15)
JjeCyg

Notice that for any limit point Q' of the Q,’s, @}, > 0 and @), =0. Choose
any ¢ such that 0 < € < @};. By (12), there exists k(¢) such that for n > k >
k(e), we have from (15),

%5 : Qf.'?% < Qu- Z (Pk,n)dj'

JEC

Part (b) of the lemma now follows. [
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THEOREM 3.6. For every convergent fs.c., condition (U) implies (7),
where {T, C,, C,,...} is the basis of the chain. 1

Proof. Let i€ C, and D, = (T'U C,)°. Then using the same method as
used in Lemma 3.1, we have for k < n, <n, < n:

ny
(Pk,n)ia > Z (Pk,m)ii (Pm+1)id (Pm+l,n)da
m=n,
deD

- Z (Pk,m)ii (Pm+l)id (Pm+1,m’)di

mEm<m’'<n,
dd’eDg

X (Pm’+l)id’ (Pm’+1,n)d’a‘

It is now clear that there is a ¢ > O such that given ¢ > 0, there is a k(¢) so
that for any n,, n, with & <n, < n, and n sufficiently large,

€> Z (Pk.n)ia
aeDd T
ny
>C . Z (Pm+1)id : [ Z (Pm+1,n)da]
m=n; aeD UT
deDg

- 2 (Pm+l)id(Pm’+l)id"

n<m<m’'<ny
d,d’eD
Now we use condition (U). By Lemma 3.5(b), we now have: given ¢ > 0,
there exists a positive integer N(¢) such that for any n, > n, > N(e),

¢ n, 1 ny 2
82—2—' Z (Pm+1)id_“2—'[ 2 (Pm+1)id]-

m=n, m=n
deDg deDg

It follows from Lemma3.2 (by taking a,=}ycp (Pni1)is there so that
lim,, a,=0 by Lemma 3.5(a), and by choosing f(x) = (¢/2) x — (1/2) x*
that the inequality (7) holds.

It is not clear how a result like Theorem 3.6 can be obtained for a
convergent b.s.c. The main difficulty here lies in obtaining a suitable analog
of Lemma 3.5(b). Under a different condition, we have the following
proposition.

ProposiTION 3.7. Let (P,) be a convergent b.s.c. such that lim,
P, =Ry and lim,_ . R, =R, where the R,’s and R are all stochastic. Let
the basis of R be {T, C,, C,,...}. Let C; be a C-class such that inf,.c R; >0



NONHOMOGENEOUS STOCHASTIC CHAINS 101

for i€ C,. Then, given € > 0, there is a positive integer k(¢) such that for
n>k>k), Yd& C,

> Puu<e

JeCy

Proof. Let A,=(P,)", B,=(R,)" and B=R". Then for n>k,
B,=A4,,B, Leti€ C; and d € C,. Then,

Biai> 2 Ay n)a B

JjeCy

Notice that lim, ., > 2%, |(Ry)i,—R;,|=0 and Ry;;=0. Since infjc
B, > 0, the proposition now follows easily.

Now we present several important remarks and a few necessary examples.

Remark 3.8. (a) In the finite-dimensional case, one important result for
convergent chains where the “T” set in its basis is empty is that each
subchain obtained by normalizing the restriction of the original chain to any
C-class in its basis is strongly ergodic. See Theorem 8 in [5]. This result is
false in the infinite dimensional situation. This is illustrated by Example 3(a),
where the restriction of P, to C,, after being normalized, is (§ }).

(b) Theorem 2 in [6] is false in the infinite-dimensional case. This is
illustrated by the following example. Consider the chain (P,) where the first
n rows of P, are (0, 1/2, 1/2%,...) and the remaining rows are all (1,0,0,...).
Then it is easily verified that for each positive integer &, lim, ., P, , = Q,
where Q has identical rows and each row of Q is (0, 1/2, 1/2%,...). Notice
that P, , acutally converges as n— oo to Q in the norm. The basis of the
chain is, of course, {T'= {1}, C={2,3,...}}. For i € C and j € T, the series

ne1 (P,);; < co. But we cannot get a stochastic matrix by normalizing the
restriction of P, to the C-class.

(c) An important property for finite-dimensional stochastic chains is
that two such chains, when equivalent, are either both convergent or both
divergent, and in case of convergence, they have the same basis. This
property fails to be true in the infinite-dimensional case. As an example,
consider the chain (P,) defined as follows: For k > 1, let @, = 2**~"; then if
G SN <Gy

(Pan_p)y=1/2/ ifi=0andj=1,2,3,.;
=1-(1/2%  ifi=j=1,2,.,k;
=1 fi=j=k+ Lk+2,.;

=1/2*% iff=nandi=1,2,.,k,
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(Pyn_1)y=1 ifi=j=0,1,2..k
=1 ifj=nandi>k,
and
(Pyp)y=1 ifi=nandj=0;
=1 ifi=j+#n.

Here our state space is {0, 1,2,...}. We write P, =P,,_,P;,_P;,. Let us
first show that the stochastic chain (P}) is strongly ergodic. To that end, let
u= (uy, u,, u,,..) be any probability vector. We claim that for each positive
integer m,

lim uPi, ,=x=(0,1/2,1/2%..). (16)
n-owo
To prove (16), let us write u, = uP,, , for n > m (m fixed). Let k be such that
a,<n<ay,, Thensince u,=u,_,P,, we have
(u,);=0forj> k;
= @noi)o (/2) + (- [1-(1/29]  forj=1,2,..k

Summing both sides of (u,); over j= 1,2,.., k, we see that (u,), = 1/2* It
then follows immediately that for a, <n <a,,, and 1 j<k,

wy=5=(1=3) [ ta-0r -5 a7

When n=a,,, and 1 <j <k, we have

-5 (1-51) |5+ () | 0®

Also it can be verified easily that

S BN S Rl
(1——) < exp

2k ___.23k

16

12 § (19)

Now it follows from (17), (18), and (19) that lim,,_,, u, = x. This establishes
our claim (16).

Now we redefine P,, as simply the identity matrix. Write P} =
Pi,_,P;,_ I Then it easily follows from (19) that (P%,,);; converges to
zero as n— oo, for large m. This means that the chain (P¥) cannot be
convergent, since, as we have seen in Section 1, for j in a C-class, lim,
Pk ) > 0 for large m.
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The above example establishes the following: Suppose we define the chains
(S,) and (S¥) as

S, =8¥=P;,_, if n=3m-—2;
=Py, ifn=3m-—1.

Sym=P;p, and St, =1

Then the two chains are clearly equivalent. But the chain (S%) is not
convergent, whereas the chain (S,) is convergent. (Notice that lim,
P,,_,=ITand x- (lim,,  P,, ,)=x,x as in (16).

In the finite-dimensional case for a convergent chain (P,), when we
replace (P,);;, for each n, by zero for all i, j belonging to different C-classes
in the basis of the chain, the resulting chain (after being normalized) remains
convergent with the same basis as a consequence of equivalence. Though the
property of finite equivalent chains does not extend to the infinite case as our
example 3.8(c) shows, a similar result on convergence exists under condition
(U) in the infinite case. Our next theorem illustrates this.

THEOREM 3.9. Let (P,) be a convergent chain with condition (U) (as
described in (12)). Define for each n the nonnegative matrix P (not
necessarily stochastic) by

P, =0 if i, f belong to two different C-
classes in the basis of the chain;

=(P,); otherwise.

Then for every positive integer k, P}, = P¥, P}, , --- P¥ converges to some
QO as n— oo, and for every i,

’Ei_{l;) [(Q)y — (@&l =0.

Furthermore, if C; is a C-class in the basis of (P,) and if 4 =TU C,U {a}
is the state space of a new stochastic chain (B,) such that a is an absorbing
state and B,|; ¢, = P,|ruc,, then the chain (B,) is also convergent with
basis {T, C,, {a}}.

Progf. Let (X,) be the Markov chain induced by (P,). Now for any i, j,
0 < (PF,)iy < (Py,n)ij so that for jE€ T, lim, (P¥,),;=0. Assume now that j
belongs to some C-class C and let D = (CU T)°. Notice that for any i, we
can write
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Prn)y=PrX, =j| X, =)
=Pr(X,=j,X,ED forsomes,k<s<nlX,=i
+Pr(X,=j, X, &€ D foreachswithk <s<n|X,=i)

= (Pk,n)le + Z (Pk+1)isl (Pk+2)s1s2 T (Pn)s,,_k_l,j’

where the first term represents the probability of transition from i to j
through a state in D and the summation in the second term is over all
81> Sppees Sp_p_y in CUT. It follows that

(i) forieCUT,
Py — PERy < Picn)iys (20)
(i) for i€ D, Qf;=0 so that

lim (P¢ ), < lim (P, )~ 0 ask— 0.
n n

Now it can be verified that

n—1

(Pk,n)€-< z (Pk,m){D : glelg (Prn)as (21)

m=k+1
where

Py mYp=Pr(X,€D,X,&D for k <t<m|X,=i).
Since 3501 Pinm)p < 1, given & > 0, there exists N such that
N
(Pk,n)g'g Z (Pk,m)'lfD - Sup (Pm.n)dj +¢e (fOl‘ all n)'
m=k+1 deD

It follows by condition (U) that if k is sufficiently large, then there exists a
positive integer n(k) such that for n > n(k),

(Pr.)5 < 2e. (22)

]
From (20) and (22), and from Theorem 3.6, we now have

Given ¢ > 0, there exists k, such that for k > k, and n > n(k),
(Pr,n)ij— (PEL)y; < & The integers k, and n(k)'s depend on i
and j.

The first part of the theorem will be proved once we show that for each k,
lim, Pk, = Q¥ exists. To this end, notice that

(Pltn _Pl’tk,n‘)ij= Z (Pltm)is [P;nk,n _P:,n’]sj (23)
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Given ¢ > 0, there exists m, and N such that m > m; =

Z (Pk,m)is >1- (6/2)a

which means

S PE)s <62 (24)

s=N+1

By the assertion following (18), there also exists m,; > m, such that for
m > m, and n > n(m), we have

(Pm.n)sj - (P:,n)sj < 8/2N (25)

fors=1,2,.,N.
From (23), (24), (25), and the fact that lim, P, , exists, the convergence of
P, as n— oo follows.

Now for the last part of the theorem, notice that as in (20), forie C,U T
and je C,,

(Pk,n)ij - (Bk,n)ij < (Pk.n)li;"
Then by the same argument as before, the convergence of the chain (B,)
follows. 1

Now we present another result similar to that of Theorem 3.6 using a
condition different from condition (U).

THEOREM 3.10. Let (P,) be a convergent f.s.c. with basis {T,C,, C,,...}.
Suppose that there is a t€ T and some C; such that lim,__, inf ZWC;
(@) > 0. Then for each i€ C;, Y5, (P,);; < 0. If the “lim inf” condition
is strengthened by

iminf |1t 3% @0 >0,
then for each i in C,,

S 3 (B < oo

n=1 ter

Proof. The proof follows easily from the fact that for any i in C,, lim,
2 ier (Pn)iy="0 and from an argument similar to the one used in the proof of
Theorem 3.6. We omit the details. &
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We remark that an analog of Theorem 3.10 can also be given for
convergent b.s.c. However, a similar analog of Theorem 3.9 is not
immediately clear; but it will not be difficult to find out what type of results
for b.s.c. are available along the lines of Theorem 3.9 since the general
method is already available in the proof of this theorem. We will not. discuss
these things any further in this paper; instead, we go to the next section to
present some interesting results concerning the basis of a finite-dimensional
convergent f.s.c. or b.s.c. All these results are new.

4. CONVERGENT STOCHASTIC CHAINS WITH A FINITE NUMBER OF STATES

Let us first state an interesting result on convergent b.s.c. similar to
Theorem 8 in 5] given for convergent f.s.c.

THEOREM 4.1. Suppose that lim,_, P,,=R, and lim,,, R,=R,
where (P,) is a convergent b.s.c. with finite number of states. Suppose that R
has the basis {T,C,,C,,..,C,} and that for i€ T and jET, the series
2oy (Py); < . For 1<i<p, let (P,(C;)) be a new stochastic chain
obtained by considering the normalized restriction of the P,’s to the C block.

Then the b.s.c. (P,(C,)) is strongly ergodic.

Proof. The proof is based on the concept of equivalence for finite chains.
It uses Theorem 3.4 and is exactly the same as that of Theorem 8 in [5]. We
omit the proof. N

We now give an example showing that the assumption of convergence of
2ney (Py),for i& T, jE T in Theorem 4.1 cannot be removed.

ExampLE 4(a). Consider the stochastic chain (P,) given by
0 1/2 1/2
P,=| 1/n 0 1—1/n}

1/n 1—1/n 0
Let us write L,, =P, P,,_,. Then Bernstein’s condition for weak ergodicity
(see [9, p. 105]) is easily seen to hold for the chain (L,). It is also known
that weak and strong ergodicity for backward products are equivalent.
Examining a few products, it follows easily that (P,) is a convergent b.s.c.
and lim, _ lim,_ P, ; is a matrix where each row is (0 1/2 1/2). The basis

of the chain is {T'= {1}, C={2, 3}}. But notice that the backward chain
(P,(C)) is not even convergent.

In [6], a converse to Theorem 8 in [5], has been given. A similar converse
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does not exist for backward products as can be verified easily by considering
the chain (P,)

where (a,) is a nonconvergent sequence of reals. Notice that there for n > &,
P, ,=P,. However, a result in the same direction can be given as below.

THEOREM 4.2. Let (P,) be a given finite stochastic chain. Suppose that
there is a partition {T, C,, C,,...,C,} of the state space such that the
Sollowing hold:

(i) 22 (Py<oo for (JET and i€ T) and for i and j in two
different C-classes in the given partition;
(ii) for each i, 1 i< p, the chain (P,(C,)) is strongly ergodic for
backward products with no zero entry in lim, lim, P, ., P, =P,(C)).
(iii) lim(P,); exists for i € T and any j and this limit is O for i€ T,
JET. Then the b.s.c. (P,) is convergent with basis {T,C,,..., C,}.

Proof. Because of (i), we can assume with no loss of generality using
equivalence of chains that each P, is of the form

T |C |G
T

c, | o 0
c,| 0|0

By condition (ii), it follows easily that for i € T, lim,_ (P, ,); = (Ry);
exists and also lim, _,, (R,); exists. Forie T,je T,

(Pn+1,k)ij= 2 (Pn+1)it (Pn.k)tj

teT

and therefore, by (iii), lim,_, (P, ); =0. Now for i€ T and j in a C-class,
we have

(Pn+l.k)lj= Z (Pn+l)it (Pn.k)tj + ;r (Pn+l)ir (Pn,k)rj'

teT

The theorem now follows by condition (iii). 1§
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Before we go into more serious results, it is relevant to point out one more
difference between forward and backward products. The forward products,
we know, correspond to multi-step transition probabilities of some Markov
chain. Also, a Markov chain (X,), when observed in reverse order, is a
Markov chain and if L, is a stochastic matrix so that

PX,_=jlX,=0)=(L,); (26)
whenever the left side is defined, then for n > k
P(Xk =j|Xn = i) = (Ln.k)ij

whenever the left side is defined. So the question is: When does a given
stochastic chain induce such a reversed Markov chain? The following result
answers this. (Though it must be well-known, we have not succeeded in
finding a reference for it. We only state it.)

THEOREM 4.3. Let (L,) be a stochastic chain. Then a necessary and
sufficient condition for the existence of a Markov chain (X,) satisfying (26)
is that there exists a sequence (n,) of probability vectors satisfying
Ry =n,L,for 1 <n< .

A simple example illustrating the above result is the following: Consider
the chain (L,) such that

b, 1—b
L,,:[c" l_c"], ana(l—bn)/(l——a),0<bn<1’a<%.

Then (a, | —a) =7 satisfies =L, = = for each n.

Two of our results in the previous section were in proving the convergence
of the series .5, (P,);; for convergent f.s.c. and b.s.c. when i and j are in
two different C-classes of the basis. While such a result does not hold for i in
a C-class and j in the T class in the general case, as can be seen easily by
Example 4(a) in both the f.s.c. and b.s.c. cases, we will present below several
interesting results in this direction.

THEOREM 4.4. Let (P,) be a convergent fs.c. with basis {T, C,,..., C,}.
Lett€T,c,€C, and c, € C,, Then we have

i min{(Pn)c,t’ (Pn)czt} < .

Proof. LletQ, =lim, P, . Let k be the number of states and

N;={m: (@n)y > 1/k}.
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Then N = (J%_, N,. Suppose that j € C,. For n, <n, <n-—2,

(Pk,n)clj :’P(Xn =J|Xk = cl)
ny

>P( U {Xn=j’Xm+1=t9Xm=c1}|Xk=cl)

m=n,
m+1eN;

Using (5), we then get
ny

(Pk.n)c,j > Z (Pk.m)clc, (Pm+1)c,t (Pm+ l.n)tj

m=n,
m+1eN;

—Z (Pk.m)clc, (Pm+l)clt (Pm+1‘m*)tc,
X P s 1)eyt Bree 1 1.0)i0
where the second summation is over
{(m,m*):n, <Km<m*ny,m+1EN;,m*+1€EN,}.

Hence, proceeding as in (6), there exist 4 > 0 and a positive integer N(¢)
such that for any n,, n, with N(¢) < n, < n,,

2

ny 1

e>d- Z (Pm+l)clt'—% ' ( Z (Pm+l)c,t) :
m=ny m=n,
m+1eN; m+1eN;

Therefore, as in Theorem 3.3, since lim,_ (P,).,=0, it follows from
Lemma 3.2 that

2 Pu) <o (forjé&cC,).
m=1

meNj
Similarly, we also have

Z (Pm)czt < (fOI‘jE CZ)'

m=1
mENj

Since C, M C, =@, the theorem now follows. [}

We remark that a similar result can also be stated for b.s.c. We also
remark that because of Theorem 4.4, the following is true:
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Let (P,) be a convergent f.s.c. with basis {7, C,,..., C,}. Define (P}) as
follows:

Pr),;=0 if 7, j belong to two different C-classes;
=0 ifj€T,i€ C and (P,),; < (P,),, for somek € TU Cy;
= (P,); otherwise.

If we wish, we can also normalize the P} to make them stochastic. In any
case, by Theorems 3.3 and 4.4, the series

o
2 1P, —Px|
n=1

is convergent. Therefore, the chain (P}) is also convergent with the same
basis. A similar remark also applies for b.s.c.. All these lead to another
interesting question: In Theorem 4.4, is the series }.,7 ;, min{(P,),c , (Pp),}
convergent? An example in [6] immediately gives the answer in the negative.
The situation in the b.s.c. case is the same, as will be evidenced by the
example at the end of this section. However, a result similar to the above
remark holds in this situation. This result is by no means obvious. We
present it below.

THEOREM 4.5. Let (P,) be a convergent [fs.c. with basis
{1,C,,Cys,...,C,}. Let t€T, ¢, €C,, and ¢, €C,. Let A={n:(P,), >
(Py)sc,}- For n € A, define P} such that

®F)y= Py if (4,/) # (¢, ¢,);
=0 if (4,7) = (t, c3).

Let P¥ =P, for n € A. We also assume that an additional absorbing state d
has been introduced so that for n € A, P, and P} look like

t d t d

t 0 t (Po)ecr2
P, 0 P} 0
d |0 01 d| 0 0 1

Then, for each positive integer k, lim, ,,, P¥,= QF exists. Moreover, for
1€ T, limy_ o, (QF)y =lim; o lim, ., (Py.n)is-
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Proof. Clearly, for j # d and any i,

(PER < Prn)y- (27)

Therefore,
lim (Pf,);=0 (for j € T and any i). (28)
We now claim the following: 29)

Let (i,j) & T X C,. Given ¢ > 0, there exists a positive integer k, such that
for each k > k,, there exists a positive integer n(k) such that n > n(k)=

((Pr,)is — (PiEw)yl < e
To prove the claim, first notice that if for some i, (29) holds for all j # d,
then it also holds for j = d. Now we consider the following cases:

(i) (29) is immediate for i =d.
(ii) Let i and j belong to two different C-classes. Then (29) follows
from (27) since then lim,_,, lim,_,,, (P, ,);;=0.

(iii) Letj€ T. Then again (29) is immediate.
(iv) Letj& C,UT. Then

(Pk,n)ij_ (P;(k,n)ij< 2 (Pk,m){cz (Pm,n)czj’

k<m<n
where
(Pk.mXCZZP(Xm = CZ5X3¢ cz fOI' k <s§s< m|XkZ i).

Since Y0041 (Prom)ie, < 1 and lim,, o lim, o, (P, ,)c,; = 0, (29) follows.
(v) LetjeC,and i€ C,UT.

In this case, let us first define
(Pk.m)gszp((Xm—l’Xm)= (t’ S)’ (Xn—I’Xn)#: (t’ S)
fork<n<m|X,=i)

Then for j# d, we have:

(Pk.m)ij - (P;(k.m)u < Z (Pk,n)i'cz (Pn,m)czj' (30)

ned
k<n—1l<ng<m

Also we have

(‘Pk,n)ic1 > 2 (Pk,r)ﬁc‘ (Pr,n)c,c,

red.k<r<n

683/16/1-8
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so that by taking # to oo we see that there is a § > 0 such that for &
sufficiently large,

(Qk)icl >ﬁ ‘ Z (Pk.r);c, >ﬂ ' 2 (Pk.r);cz'

red,r>k red,r>k

Since i € C, U T, it follows that lim, ., (Q4);., =0 and therefore

lim Z (Pk,r)zcz =0.

k- pe gk

Now (29) follows immediately from (30). This completes the proof of our
claim (29). The proof of the theorem will now be complete once we establish
the convergence of P¥,. To this end, we observe that for any i, j, and
k<r<n<m,

1(PI:|<,n)ij_ (P;(k,m)ij| = |(P;k,rP;|fn)ij - (PI:k.rP;’jm)ij|

< Z (P}ik.r)is + Z (szk.r)is . l(P;‘fn)sj - (P;"jm)sj‘

seT s¢T
< Z (Plik,r)is + z |(Pr>‘fn)sj - (Pr,n)sj|
seT s¢T

+ z ‘(Pr.n)sj_ (Pr.m)sj‘ + Z K‘Dr.m)sj - (P;km)wl

seT S¢T

It follows that for each k, the sequence (P},),; is Cauchy. This completes the
proof of the theorem. [

We remark that one can also state and prove a result similar to the above
for b.s.c.’s. Now we will present the last two results in this paper. We will
assume the following condition in our first result:

> (@), <1 (31
Jjec,
for some ¢ € T, for each limit point Q' of the Q,’s, where Q, =lim, . P, ,

and (P,) is a convergent f.s.c. with basis {T, C,,..., C,}.

It may be helpful to remark that the condition (31) is weaker than the
condition )", (P,),; < oo for each s € T and each j € C,. This is because
under the latter condition, due to equivalence, we can assume with no loss of
generality that (P,); =0 whenever i€ T and j€ C, or i, j belong to two
different C-classes. Then, in the products P, , the entries in the 7T X C,
position are all zero, so that the sum in (31) is then zero for each s in 7.
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THEOREM 4.6. Consider a convergent fs.c. (P,) with basis {T, C,,
Cy .., C,}. Suppose that (31) holds for some t € T. Then for each j in C,, we
have: 37, (P,);, < . If (31) holds for each t in T, then the f.s.c. (P,(C,))
is strongly ergodic.

Proof. The proof is similar to that of Theorem 3.3. The inequality to use
in this case is the following: For j€ C, and s € C,,

ny
(Pk.n)js > Z (Pm+l,n)ts (Pm+ l)jt (Pk.m)jj

m=n,

- Z (Pm+1)jt (Pm’+1)jt

nEm<m'n,

so that summing the terms on both sides over all s & C,, we have:

S @ue> 3 (5 ool P Pr

SEC, m=n; ‘s¢C,

—u- z Pms1)it (Pm'+1)jt’

nKm<m'sny

where u is the number of states of the chain.
The rest of the proof now follows as in Theorem 3.3. 1

We now present the backward analog of Theorem 4.6. We will omit its
proof.

THEOREM 4.7. Let (P,) be a convergent b.s.c. with R, =1lim,_ P, ,
and S-basis as {S,, S,,...,S,}. Choose any S in this basis and let t be a
state not in this S,;. Suppose that y"; s Ry < 1 for each limit point R’ of the
R/s. Then if s is a strongly recurrent state (if there is any) in S, it follows
that 37 | (P,)y < 0. Thus, if lim, , R, exists, a result similar to the last
part of Theorem 4.6 also holds for the backward chain.

It is relevant to point out that unless the R,’s converge in Theorem 4.7, the
convergent b.s.c. may not have any strongly recurrent state. For example,
consider the chain where the matrices are alternately (1 §) and (5 1)

We now end this section with the following example. For this example, the
f.s.c. and the b.s.c. are both convergent and have the same basis. This
example shows that in Theorems 4.6 and 4.7, the conditions assumed for the
limit points Q' and R’ cannot be removed. The f.s.c. case of this example
appeared earlier in [6]. Since the proof of convergence in the b.s.c. case is
quite different, we present it below.

683/16/1-8 *
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ExaMpLE 4(b). Let 0<a, <1 and

If X ,a, < oo, then clearly (P,) is a convergent b.s.c. and lim,_ lim,

P, ,is

0 01
010
0 0 1

Suppose now that 3", a, = 0o. Let a,— 0 as n— oo. Then we claim that
the b.s.c. (P,) is convergent; in particular, the b.s.c. is strongly ergodic if
Y%, a,a,,, = . Otherwise, it has basis {T'= {1}, C, = {2}, C, = {3}}.

Proof of the claim. Write

an,k bn,k cn,k
P, = 0 1 0

nk—
dn,k en,k fn,k

Computing the product P, P, , =P, 4, we have
(1) an+l,k=dn,k(1 _an+1)
(ll) dn+l,k=an+lan.k+dn.k(1 ——an+l)
(i) by k=qps+(1—auy1)€ny

(lV) en+1.k=an+1bn,k+ (1 _an+l)en,k'

From (i) and (ii),

an+1,k< dn+1,k < an+ldn.k + dn,k(l - an+l)
=d, Ldy_ 14 < L.

This means that lim, _,, d, . exists. Also, from (iii) and (iv), we have:

by k2 €y 5

en+1,k> Api16n.k + (1 - an+1)en,k =€y k-
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Thus, lim,_, e, , exists. It follows easily that lim
a,— 0, each limit point of the R,’s, R, = lim

n-co Pnx €Xists. Since
P, « is of the form

n—o

0 b ¢
01 0.
0 b ¢

Since this limit point must be idempotent, ¢ = ¢? so that c=0 or 1. In the
ergodic case, b must be 1 and ¢ = 0; otherwise, » =0 and ¢ = 1. In the case
when }°%° | a,a,,,= o, by direct computations it can be verified that
Bernstein’s condition holds for the chain (P, ,P,) and therefore the b.s.c. is
weakly (and therefore strongly, being a b.s.c.) ergodic. Now consider the

case when ' ° , a,a,., < . Notice that from (iii) and (iv) we have:

en+1.k=an+l[an + (1 _an) en-—l.k] + (1 _an+1)en.k

<anan+l + (l _anan+l)en,k (SIDCC en—l.k<en.k)'
Thus, e,,, <X} 4., a;a,,, and therefore lim,_, lim,.,e,,=0. The

claim is now justified.

5. APPLICATIONS

It is always relevant to point out applications. As we already mentioned,
our results can be applied to obtain significant results on measures on
semigroups. Instead of taking up these applications, let us point out a few
applications in the mainstream of probability in the context of classification
of states for nonhomogeneous Markov chains (both discrete and continuous
time). We will present only two theorems (omitting their proofs which follow
rather easily from results in this paper, especially Theorem 3.3). In what
follows, we consider a finite state space only in Proposition 5.1.

Let £ = {1, 2,...,, s} be the state space and i, j be in E. We say i - j iff there
exist j, jy5.nj, in E with j, =i and j,=j such that for each k, 1 <k < n,
2m—1Pmy,j,,, = ©. We say that i is essential iff i — j=> j— i; otherwise, i
will be called nonessential. Note that in the subset F= {i:i o i}, the
relation « is an equivalence relation. If i € F, i is obviously nonessential. In
each equivalence class of F (note that F is always nonempty), either all
states are essential, or none is (It turns out that for convergent chains and
even for more general chains with a basis, the nonessential states are
precisely the transient or nonrecurrent states iff Y 77, (P,);; < o for j& T
and i € T, where T is the “T” class of the basis of the chain.) We also have
the following proposition.
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ProrosiTION 5.1. Let (P,) be a convergent chain with basis
{T, C,, Cy,..., Cp}.

Then the following two statements are equivalent:

(a) Each C-class is an essential class; the T class is a non-essential
class. Moreover, the classes can be identified in the following manner: for
1<ig<p, C,=kEE:j-k} for each jE C,.

® X5, (P,)<ooforeachj&Tand t€T.

It follows from Proposition 5.1 that the basis of the chain can be deter-
mined without computing the products P, , once we come up with a simple
mechanism to determine the T states. Several theorems in this regard are
given along with Proposition 5.1 in [8].

Our second application uncovers an interesting structure of a continuous
parameter nonhomogeneous Markov chain with countable states and
separately continuous transition probability P(s, ¢) such that

(i) P(s,u) P(u,t)=P(s, 1), s<u<t;
(ii} lim,_, P(s, t) =I (the identity matrix).

5t

PROPOSITION 5.2. Lett,<t,, , —~tasn— co. Then for i #}j,

P:‘j(ttﬁ tn+1) < .
1

1M

Also if s, <s,_,— 5 as n— oo, then for i+,

Pi}(sn+17sn) < 0.
1

M8

If lim_, P;y(s, t) = O uniformly in all / (different from j, for each j), then for
t, <t,,;—t we have: for each i,

s 0]
> 2 Pultysty, ) < .
n=1 k#i

The proof follows immediately from Theorems 3.3, 3.4, and 3.6.
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