NEWTON-LIKE METHODS FOR THE COMPUTATION OF FIXED POINTS

Wilhelm Werner
Fachbereich Mathematik der Johannes Gutenberg-Universität Mainz, 65 Mainz, West Germany

(Received October 1982; revised April 1983)
Communicated by Ervin Y. Rodin

Abstract

The celebrated Banach fixed point theorem provides conditions which assure that the method of successive substitution is convergent; the convergence, however, may take place very slowly so that it may be desirable to use a Newton-like method for the computation of the fixed point. If Newton's method itself is applied one ignores the additional information that the problem arises from a fixed point problem with a contraction mapping. In the present note some variants of Newton's method are discussed which make use of this contraction information; it turns out that the convergence of Newton's method can be accelerated without any relevant additional computational labour.

1. INTRODUCTION

Let X be a Banach space, $\bar{x} \in X$ a fixed point of the mapping $F: X \rightarrow X$,

$$
\begin{equation*}
\bar{x}=F(\bar{x}) \tag{1}
\end{equation*}
$$

The particular form of this equation immediately suggests the method of successive substitution for the iterative computation of \bar{x} :

Given a starting point $x_{0} \in X$; compute x_{i+1} by

$$
\begin{equation*}
x_{i+1}:=F\left(x_{i}\right) \quad i=0,1,2,3, \ldots \tag{2}
\end{equation*}
$$

The classical fixed point theorem of Banach gives conditions which assure the convergence of the sequence $\left\{x_{i}\right\}$ defined in (2). The convergence may be quite slow however if the contraction constant of F is close to 1 ; more rapid convergence can be achieved, e.g. by the application of a Newton-like method to the nonlinear equation

$$
0=x-F(x)
$$

if F is, say, twice continuously differentiable. In the sequel we investigate the following iterative method:

Given a starting point $x_{0} \in X, \gamma \in[0,1]$, compute x_{i+1} :

$$
\begin{align*}
y_{i} & =F\left(x_{i}\right) \\
x_{i+1} & :=x_{i}-\left[I-F^{\prime}\left(\gamma x_{i}+(1-\gamma) y_{i}\right)\right]^{-1}\left(x_{i}-F\left(x_{i}\right)\right) \tag{3}\\
i & =0,1,2,3, \ldots
\end{align*}
$$

Obviously (3) corresponds to Newton's method if $\gamma=1$; the choice $\gamma=0$ leads to the largely unknown method of Stirling (see Rall[3]). Note that (3) requires one evaluation of F and one evaluation of F^{\prime} per step independent of γ. It is therefore reasonable to ask for an optimal choice of the parameter γ, i.e. a parameter which maximizes the speed of convergence; it turns out that the choice $\gamma=1 / 2$ is quite appropriate.

2. CONVERGENCERESULTS

Let us first give a motivation which gives reasoning to the choice $\gamma=1 / 2$.
If F is a contraction on X then, according to Banach's fixed point principle, $F\left(x_{n}\right)$ is
a better approximation for \bar{x} than x_{n} was. Let us now assume that F is continuously differentiable (in the Fréchet sense); then

$$
x_{n}-F\left(x_{n}\right)=\bar{x}-F(\bar{x})+\int_{0}^{1}\left[I-F^{\prime}\left(\bar{x}+t\left(x_{n}-\bar{x}\right)\right)\right] \mathrm{d} t\left(x_{n}-\bar{x}\right)
$$

so that

$$
\begin{equation*}
\bar{x}=x_{n}-\left\{\int_{0}^{1}\left[I-F^{\prime}\left(\bar{x}+t\left(x_{n}-\bar{x}\right)\right)\right] \mathrm{d} t\right\}^{-1}\left(x_{n}-F\left(x_{n}\right)\right) \tag{4}
\end{equation*}
$$

(note that the contraction property implies the existence of the inverse in (4)). Approximation of the integral by
(i) I, yields the method of succesive substitutions,
(ii) $I-F^{\prime}\left(x_{n}\right)$, yields Newton's method,
(iii) $I-F^{\prime}\left(F\left(x_{n}\right)\right)$, yields Stirling's method.

If we replace \bar{x} in $\int_{0}^{1}\left[I-F^{\prime}\left(\bar{x}+t\left(x_{n}-\bar{x}\right)\right)\right] \mathrm{d} t$ by the best known approximation (which is after having computed the residual $x_{n}-F\left(x_{n}\right), F\left(x_{n}\right)$) and if we choose the optimal one point quadrature rule, namely the mid-point rule, then we are led to the suggestion that $\gamma=1 / 2$ is the appropriate choice of the free parameter γ in (3).

The following result contains theorem 2 and theorem 4 of Rall[3] as a special case:

Proposition 1

Let $F \in C^{1,1}(X)$ be such that $\left\|F^{\prime}(x)\right\| \leq \alpha<1$,

$$
\left\|F^{\prime}(x)-F^{\prime}(y)\right\| \leq L\|x-y\| \quad \text { for all } x, y \in X
$$

set

$$
\kappa:=L\left(1 / 2+\alpha-(1+\alpha) \gamma+\gamma^{2}\right) /(1-\alpha), \theta:=\kappa\left\|x_{0}-\tilde{x}\right\|,
$$

where \bar{x} is the unique solution of the equation $x=F(x)$ in X (whose existence is assured by Banach's fixed point principle).

If $\theta<1$ then the iterative method (3) converges to \bar{x} with Q-order 2 at least:

$$
\begin{equation*}
\left\|x_{n+1}-\bar{x}\right\| \leq \kappa\left\|x_{n}-\bar{x}\right\|^{2} \leq \theta^{2 n+1}-1\left\|x_{0}-\bar{x}\right\| . \tag{5}
\end{equation*}
$$

Proof. Let $A_{n}(t):=F^{\prime}\left(\bar{x}+t\left(x_{n}-\bar{x}\right)\right), B_{n}(t):=F^{\prime}\left(F\left(x_{n}\right)+t\left(x_{n}-F\left(x_{n}\right)\right)\right), t \in[0,1]$: then (3) implies that

$$
x_{n+1}-\bar{x}=\left[I-B_{n}(\gamma)\right]^{-1}\left[F\left(x_{n}\right)-F(\bar{x})-B_{n}(\gamma)\left(x_{n}-\bar{x}\right)\right] .
$$

As $\left\|B_{n}(\gamma)\right\| \leq \alpha$ the inverse $\left(I-B_{n}(\gamma)\right)^{-1}$ exists and satisfies the estimate

$$
\left\|\left(I-B_{n}(\gamma)\right)^{-1}\right\| \leq \frac{1}{1-\alpha} ;
$$

furthermore

$$
\begin{align*}
& \left\|F\left(x_{n}\right)-F(\bar{x})-B_{n}(\gamma)\left(x_{n}-\bar{x}\right)\right\|=\left\|\int_{0}^{1}\left(A_{n}(t)-B_{n}(\gamma)\right)\left(x_{n}-\bar{x}\right) \mathrm{d} t\right\| \\
& \quad \leq\left\|\int_{0}^{1}\left(A_{n}(t)-A_{n}(\gamma)\right)\left(x_{n}-\bar{x}\right) \mathrm{d} t\right\|+\left\|\left(A_{n}(\gamma)-B_{n}(\gamma)\right)\left(x_{n}-\bar{x}\right)\right\| \\
& \quad \leq L \int_{0}^{1}|t-\gamma| \mathrm{d} t\left\|x_{n}-\bar{x}\right\|^{2}+L\left\|(1-\gamma)\left(\bar{x}-F\left(x_{n}\right)\right)\right\|\left\|x_{n}-\bar{x}\right\| \\
& \quad \leq L\left(\gamma^{2}-\gamma+\frac{1}{2}\right)\left\|x_{n}-\bar{x}\right\|^{2}+L \alpha(1-\gamma)\left\|x_{n}-\bar{x}\right\|^{2} \tag{6}
\end{align*}
$$

so that $\left\|x_{n+1}-\bar{x}\right\| \leq \kappa\left\|x_{n}-\bar{x}\right\|^{2}$. A sufficient condition for the convergence of (3) thus is

$$
\kappa\left\|x_{0}-\bar{x}\right\|<1 ;
$$

the second inequality in (5) then follows by induction.

Remark

(a) If no additional information concerning the location of the exact solution is known one can use

$$
\left\|x_{0}-F\left(x_{0}\right)\right\| /(1-\alpha)
$$

instead of $\left\|x_{0}-\bar{x}\right\|$ in the above proposition.
(b) Some typical values for the quantity $\kappa=\kappa(\gamma)$ are:

γ	κ
0 (Stirling's method)	$(1+2 \alpha) \frac{L}{2(1-\alpha)}$
$\frac{1}{2}$	$\left(\frac{1}{2}+\alpha\right) \frac{L}{2(1-\alpha)}$
$\frac{1}{2}(1+\alpha)$	$\left(\frac{1}{2}+\alpha-\frac{1}{2} \alpha^{2}\right) \frac{L}{2(1-\alpha)}$
1 (Newton's method)	$\frac{L}{2(1-\alpha)}$

Note that κ is minimal for $\gamma=(1+\alpha) / 2$, i.e. this choice minimizes the error estimates of proposition 1 (but not necessarily the actual error!).

The asymptotical behaviour of (3) is described in the following.

Proposition 2

If, in addition to the assumptions of proposition 1, F is twice continuously differentiable then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left\|x_{n+1}-\bar{x}\right\|}{\left\|x_{n}-\bar{x}\right\|^{2}} \leq\left\|\left(I-F^{\prime}(\bar{x})\right)^{-1}\right\|\left\|F^{\prime \prime}(\bar{x})\right\|\left\|(1-\gamma) F^{\prime}(\bar{x})+\left(\gamma-\frac{1}{2}\right) I\right\| \tag{7}
\end{equation*}
$$

(" $\leq "$ can be replaced by " $="$ if $X=\mathbb{R}$).
Proof. We prove an asymptotic estimate for

$$
F\left(x_{n}\right)-F(\bar{x})-F^{\prime}\left(\gamma x_{n}+(1-\gamma) F\left(x_{n}\right)\right)\left(x_{n}-\bar{x}\right)
$$

which is different from (6):

$$
\begin{aligned}
F\left(x_{n}\right)-F(\bar{x}) & -F^{\prime}\left(\gamma x_{n}+(1-\gamma) F\left(x_{n}\right)\right)\left(x_{n}-\bar{x}\right)=\left\{\int _ { 0 } ^ { 1 } \left[F^{\prime}\left(\bar{x}+t\left(x_{n}-\bar{x}\right)\right)\right.\right. \\
& \left.\left.-F^{\prime}\left(\frac{x_{n}+\bar{x}}{2}\right)\right] \mathrm{d} t+\left[F^{\prime}\left(\frac{x_{n}+\bar{x}}{2}\right)-F^{\prime}\left(\gamma x_{n}+(1-\gamma) F\left(x_{n}\right)\right)\right]\right\}\left(x_{n}-\bar{x}\right)
\end{aligned}
$$

Note that the integral-term is of order $o\left(\left\|x_{n}-\bar{x}\right\|^{2}\right)$ since F is twice continuously differentiable; it may be therefore neglected in our asymptotic considerations. From

$$
\begin{gathered}
F^{\prime}\left(\frac{x_{n}+x}{2}\right)-F^{\prime}\left(\gamma x_{n}+(1-\gamma) F\left(x_{n}\right)\right)=\int_{0}^{1} F^{\prime \prime}\left(\gamma x_{n}+(1-\gamma) F\left(x_{n}\right)+\tau\left(\frac{x_{n}+\bar{x}}{2}\right)\right. \\
\left.\left.-\gamma x_{n}-(1-\gamma) F\left(x_{n}\right)\right)\right) \mathrm{d} \tau\left(\frac{x_{n}+\bar{x}}{2}-\gamma x_{n}-(1-\gamma) F\left(x_{n}\right)\right)
\end{gathered}
$$

and

$$
\begin{aligned}
\left(\frac{x_{n}+\bar{x}}{2}-\gamma x_{n}-(1-\gamma) F\left(x_{n}\right)\right) & =\left(\frac{1}{2}-\gamma\right)\left(x_{n}-\bar{x}\right)-(1-\gamma)\left(F\left(x_{n}\right)-F(\bar{x})\right) \\
& =\left\{\left(\frac{1}{2}-\gamma\right) I-(1-\gamma) \int_{0}^{1} F^{\prime}\left(\bar{x}+t\left(x_{n}-\bar{x}\right)\right) \mathrm{d} t\right\}\left(x_{n}-\bar{x}\right)
\end{aligned}
$$

one easily concludes the validity of the estimate (7).

Remark

The asymptotic estimate (7) suggests the following strategy: choose $\gamma \in[0,1]$ such that $\left\|(1-\gamma) F^{\prime}(\bar{x})+(\gamma-1 / 2) I\right\|$ is minimal. This minimization problem is easily solvable if $X=\mathbb{R}^{m}$ and $\|\cdot\|$ is the Frobenius norm of a matrix: $\|M\|_{F}^{2}:=\operatorname{tr} M^{T} M$. If we set $M:=I-F^{\prime}(\bar{x})$ then

$$
\gamma_{\mathrm{opt}}:=\max \left\{1-\frac{1}{2} \operatorname{tr} M / \operatorname{tr} M^{T} M, 0\right\} .
$$

Note that, due to the contraction property of $F, \operatorname{tr} M>0$, so that $\gamma_{\mathrm{opt}}<1$. This strategy thus prefers Stirling's method if $\operatorname{tr} M \leq 2 \operatorname{tr} M^{T} M$ which is the case, e.g. if $F^{\prime}(\bar{x})$ is a symmetric matrix whose spectrum is contained in the interval $[1 / 2,1)$. In practice we replace the unknown matrix $F^{\prime}(\bar{x})$ by the last Jacobian of F which was computed in the course of the iteration, i.e. we use a variable parameter γ instead of a fixed one. Later we refer to this variant of (3) as the variable γ method. For other norms or in the infinite dimensional case the choice $\gamma=1 / 2$ seems to be an adequate compromise.

The global contraction property of F and the global Lipschitz continuity of F^{\prime} are too restrictive in applications; the above results remain true however if the assumption are fulfilled in a ball

$$
B\left(x_{0} ; r\right):=\left\{x \in X \mid\left\|x-x_{0}\right\| \leq r\right\}
$$

which contains the sequence of iterates generated by (3):

Proposition 3

$$
\begin{aligned}
& \text { Let } D \subseteq X, F \in C^{1,1}(D), x_{0} \in D, \\
& \qquad \alpha(r):=\sup \left\{\left\|F^{\prime}(x)\right\| \mid x \in B\left(x_{0} ; r\right) \cap D\right\}, \\
& \left\|F^{\prime}(x)-F^{\prime}(y)\right\| \leq L(r)\|x-y\| \text { for all } x, y \in B\left(x_{0} ; r\right) \cap D,
\end{aligned}
$$

with a nondecreasing function L. Assume that there are real numbers r_{0}, s_{0} such that: (i) $F\left(B\left(x_{0} ; r_{0}\right)\right) \subseteq B\left(x_{0} ; r_{0}\right) ;$ (ii) $r_{0}<s_{0}<2 r_{0} ;$ (iii) $\alpha\left(s_{0}\right)<1 ;$ (iv) $B\left(x_{0} ; s_{0}\right) \subseteq D$; (v) $\left(1+\theta\left(s_{0}\right)\right) r_{0} \leq s_{0}$
where

$$
\theta(s):=L(s)\left\{\frac{1}{2}+\alpha(s)-(1+\alpha(s)) \gamma+\gamma^{2}\right\} \frac{r_{0}}{1-\alpha(s)} .
$$

Then the sequence generated by (3) remains in $B\left(x_{0} ; s_{0}\right)$ and converges with Q-order 2 at least to a fixed point $\bar{x} \in B\left(x_{0} ; r_{0}\right)$ of F. \bar{x} is the unique fixed point of F in $B\left(x_{0} ; s_{0}\right)$.

Proof. Banach's fixed point principle implies the existence of a fixed point $\bar{x} \in B\left(x_{0} ; r_{0}\right)$ which is unique in $B\left(x_{0} ; s_{0}\right)$. Assume that $x_{n}, F\left(x_{n}\right) \in B\left(x_{0} ; s_{0}\right)$; then (compare the proof of proposition 1 and observe, that θ is nondecreasing)

$$
\begin{aligned}
\left\|_{n+1}-x_{0}\right\| & \leq\left\|x_{n+1}-\bar{x}\right\|+\left\|\bar{x}-x_{0}\right\| \\
& \leq\left(1+\theta\left(s_{0}\right)\right) r_{0} \\
& \leq s_{0}, \text { i.e. } x_{n+1} \in B\left(x_{0} ; s_{0}\right),
\end{aligned}
$$

$$
\begin{aligned}
\left\|F\left(x_{n+1}\right)-x_{0}\right\| & \leq\left\|F\left(x_{n+1}\right)-F(\bar{x})\right\|+\left\|\bar{x}-x_{0}\right\| \\
& \leq \alpha\left(s_{0}\right)\left\|x_{n+1}-\bar{x}\right\|+\left\|\bar{x}-x_{0}\right\| \\
& \leq\left(1+\alpha\left(s_{0}\right) \theta\left(s_{0}\right)\right) r_{0} \\
& <s_{0} .
\end{aligned}
$$

Hence $x_{n+1}, F\left(x_{n+1}\right), \gamma x_{n+1}+(1-\gamma) F\left(x_{n+1}\right) \in B\left(x_{0} ; s_{0}\right)$; from (ii) and (v) one easily derives that $\theta\left(s_{0}\right)<1$. The assertion then follows similar as in proposition 1.

3. STEFFENSEN'S METHOD

The motivation for the choice $\gamma=1 / 2$ was stimulated by two approximations in (4); \bar{x} was approximated by $F\left(x_{n}\right)$ and the integral was replaced by a quadrature formula, namely the midpoint rule. In the scalar case, however, the approximation of the integral can be avoided since

$$
\begin{equation*}
\int_{0}^{1} F^{\prime}\left(F\left(x_{n}\right)+t\left(x_{n}-F\left(x_{n}\right)\right)\right) \mathrm{d} t=\frac{F\left(F\left(x_{n}\right)\right)-F\left(x_{n}\right)}{F\left(x_{n}\right)-x_{n}} ; \tag{8}
\end{equation*}
$$

the resulting iterative method then is the well-known Steffensen method (see [6]):

$$
x_{n+1}:=x_{n}-\frac{x_{n}-F\left(x_{n}\right)}{1-\frac{F\left(F\left(x_{n}\right)\right)-F\left(x_{n}\right)}{F\left(x_{n}\right)-x_{n}}}
$$

$$
n=0,1,2,3, \ldots
$$

For this method one can improve the estimates of proposition 1:
Proposition 4
Let $F \in C^{1.1}(\mathbb{R})$ be such that $\left|F^{\prime}(x)\right| \leq \alpha<1$,

$$
\left|F^{\prime}(x)-F^{\prime}(y)\right| \leq L|x-y| \text { for all } x, y \in \mathbb{R} .
$$

Set

$$
\theta:=\frac{1}{2} \frac{\alpha L}{1-\alpha}\left|x_{0}-\bar{x}\right|
$$

where \bar{x} is the unique fixed point of F in \mathbb{R}. If $\theta<1$ then Steffensen's method converges to \bar{x} with Q-order 2 at least:

$$
\left|x_{n+1}-\bar{x}\right| \leq \frac{1}{2} \frac{\alpha L}{1-\alpha}\left|x_{n}-\bar{x}\right|^{2} \leq \theta^{2 n+1}-1\left|x_{0}-\bar{x}\right| .
$$

If furthermore F is twice continuously differentiable then

$$
\lim _{n \rightarrow \infty} \frac{x_{n+1}-\bar{x}}{\left(x_{n}-\bar{x}\right)^{2}}=\frac{1}{2} \frac{F^{\prime}(\bar{x})}{1-F^{\prime}(\bar{x})} F^{\prime \prime}(\bar{x})
$$

Proof. Use (8) to replace (6) by

$$
\begin{aligned}
& \left|F\left(x_{n}\right)-F(\bar{x})-\int_{0}^{1} F^{\prime}\left(F\left(x_{n}\right)+t\left(x_{n}-F\left(x_{n}\right)\right)\right) \mathrm{d} t\left(x_{n}-\bar{x}\right)\right|=\mid \int_{0}^{1}\left\{F^{\prime}\left(\bar{x}+t\left(x_{n}-\bar{x}\right)\right)\right. \\
& \left.\quad-F^{\prime}\left(F\left(x_{n}\right)+t\left(x_{n}-F\left(x_{n}\right)\right)\right)\right\} \mathrm{d} t\left(x_{n}-\bar{x}\right)\left|\leq \frac{L}{2}\right| \bar{x}-F\left(x_{n}\right)| | x_{n}-\bar{x}\left|\leq \frac{1}{2} \alpha L\right| x_{n}-\left.\bar{x}\right|^{2} .
\end{aligned}
$$

The assertion then follows by arguments similar to those used in proposition 1 and proposition 2.

Remark

(a) Note that under the above assumptions Steffensen's method locally converges faster than Newton's method.
(b) Obviously proposition 3 is valid for Steffensen's method, too, if the definition of θ is modified appropriately.

4. FIXED POINTS OF NONCONTRACTIVE MAPPINGS

If a fixed point of a noncontractive mapping F is to be computed it is near at hand to apply the previously introduced method (3) to

$$
\mathfrak{F}(x):=x-\left(I-F^{\prime}\left(x_{0}\right)\right)^{-1}(x-F(x)) ;
$$

it is well known that \mathbb{F} locally is a contraction if x_{0} is a sufficiently good approximation of the solution. In this case (3) can be written as follows:

$$
\begin{align*}
& \text { given } x_{0}, y_{0} ; \text { compute } x_{n+1}, y_{n+1} \text { according to } \\
& x_{n+1}:=x_{n}-\left\{I-F^{\prime}\left(\gamma x_{n}+(1-\gamma) y_{n}\right)\right\}^{-1}\left(x_{n}-F\left(x_{n}\right)\right) \tag{9}\\
& y_{n+1}:=x_{n+1}-\left\{I-F^{\prime}\left(x_{0}\right)\right\}^{-1}\left(x_{n+1}-F\left(x_{n+1}\right)\right) \\
& n=0,1,2,3, \ldots .
\end{align*}
$$

As y_{n+1} should be as good an approximation for the solution as can be computed without additional function evaluations it is reasonable to replace $\left(I-F^{\prime}\left(x_{0}\right)\right)^{-1}$ by

$$
\left(I-F^{\prime}\left(\gamma x_{n}+(1-\gamma) y_{n}\right)\right)^{-1}
$$

Note that one must solve two linear equations with the same linear mapping then; this can be done economically if $X=\mathbb{R}^{m}$: in this case one computes a LR-decomposition of the Jacobian so that both linear systems can be solved by back substitution. If $\gamma=1 / 2$ the resulting method is of R-order $1+\sqrt{2}$ if F is sufficiently smooth:

Proposition 5
Let $F \in C^{1,1}(X), F(\bar{x})=\bar{x}, I-F^{\prime}(\bar{x})$ nonsingular; then the iterative method given x_{0}, y_{0}; compute x_{n+1}, y_{n+1} according to

$$
\begin{align*}
x_{n+1} & :=x_{n}-\left[I-F^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right)\right]^{-1}\left(x_{n}-F\left(x_{n}\right)\right) \\
y_{n+1}: & =x_{n+1}-\left[I-F^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right)\right]^{-1}\left(x_{n+1}-F\left(x_{n+1}\right)\right) \tag{10}\\
n & =0,1,2,3, \ldots
\end{align*}
$$

locally converges Q-quadratically to \bar{x}. If furthermore $F \in C^{2}(X)$ then the convergence is superquadratic; if $F \in C^{2.1}(X)$ then (10) converges locally with R-order $1+\sqrt{2}$ at least.

For a proof we refer to [7].

Remark

If F is contractive then our previous considerations show that the choice $y_{0}:=F\left(x_{0}\right)$ is appropriate; otherwise use $y_{0}:=x_{0}$.

Now we restrict our interest to the case $X=\mathbb{R}^{m}$; the quality of y_{n+1} depends on how good $I-F^{\prime}\left(x_{n}+y_{n}\right) / 2$ approximates $I-F^{\prime}\left(x_{n}+\bar{x}\right) / 2$. We therefore apply a rank one
correction:

$$
y_{n+1}:=x_{n+1}-\left[I-F\left(\frac{x_{n}+y_{n}}{2}\right)+u_{n} v_{n}^{T}\right]^{-1}\left(x_{n+1}-F\left(x_{n+1}\right)\right)
$$

where $u_{n}, v_{n} \in \mathbb{R}^{m}$ are determined such that

$$
\left(1-F^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right)+u_{n} v_{n}^{T}\right)\left(x_{n+1}-x_{n}\right)=\left(x_{n+1}-F\left(x_{n+1}\right)\right)-\left(x_{n}-F\left(x_{n}\right)\right) ;
$$

u_{n} and v_{n} are chosen according to Broyden's method (see Schwetlick [5], p. 139 ff ., Broyden [2]):

$$
\begin{aligned}
u_{n} & =x_{n+1}-F\left(x_{n+1}\right) \\
v_{n}: & =\frac{x_{n+1}-x_{n}}{\left(x_{n+1}-x_{n}\right)^{T}\left(x_{n+1}-x_{n}\right)} .
\end{aligned}
$$

Using the Sherman-Morrison inversion formula we then get the updated $1+\sqrt{2}$ order method,

$$
\text { given } x_{0}, y_{0} ; \text { compute } x_{n+1}, y_{n+1} \text { as follows: }
$$

$$
\begin{align*}
& x_{n+1}=x_{n}-\left[I-F^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right)\right]^{-1}\left(x_{n}-F\left(x_{n}\right)\right) \\
& y_{n+1}=x_{n+1}-\mu_{n}\left[I-F^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right)\right]^{-1}\left(x_{n+1}-F\left(x_{n+1}\right)\right) \tag{11}
\end{align*}
$$

where

$$
\mu_{n}:=\left(v_{n}^{T}\left[I-F^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right)\right]^{-1}\left(x_{n+1}-F\left(x_{n+1}\right)\right)+1\right)^{-1} .
$$

The following result justifies this modification:
Lemma 6

$$
\text { Let } A_{n}:=I-F^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right), B_{n}:=\int_{0}^{1}\left[I-F^{\prime}\left(x_{n}+t\left(x_{n+1}-x_{n}\right)\right)\right] \mathrm{d} t, F\left(x_{n+1}\right) \neq x_{n+1}
$$

then $\left\|A_{n}+u_{n} v_{n}^{T}-B_{n}\right\|_{F}<\left\|A_{n}-B_{n}\right\|_{F}$.
Proof. If $\bar{A}:=A+(y-A s) s^{T} / s^{T} s, A \in \mathbb{R}^{m \cdot m}, y, s \in \mathbb{R}^{m}, s \neq 0$, then for any $B \in \mathbb{R}^{m . m}:$

$$
\|\bar{A}-B\|_{F}^{2}=\|A-B\|_{F}^{2}-\frac{\|(A-B) s\|_{2}^{2}}{s^{T} s}+\frac{\|y-B s\|_{2}^{2}}{s^{T} s}
$$

(see Schwetlick [5], p. 142; Broyden [2], lemma 4). Set $A:=A_{n}$,

$$
y:=\left(x_{n+1}-F\left(x_{n+1}\right)\right)-\left(x_{n}-F\left(x_{n}\right)\right),
$$

$B:=B_{n}, \quad s:=x_{n+1}-x_{n} ;$ then $y-A s=x_{n+1}-F\left(x_{n+1}\right), \quad \bar{A}=A+u_{n} v_{n}^{T}, \quad y-B s=0$, $(A-B) s=-\left(x_{n+1}-F\left(x_{n+1}\right)\right) \neq 0$, so that

$$
\left\|A_{n}+u_{n} c_{n}^{T}-B_{n}\right\|_{F}^{2}=\left\|A_{n}-B_{n}\right\|_{F}^{2}-\frac{\left\|x_{n+1}-F\left(x_{n+1}\right)\right\|_{2}^{2}}{s^{T} S}<\left\|A_{n}-B_{n}\right\|_{F}^{2} .
$$

Remark

In the scalar case, i.e. $X=\mathbb{R}$, the variable γ method introduced previously coincides with the above $1+\sqrt{2}$ order method as long as the parameters γ which are used remain positive. The updated $1+\sqrt{2}$ order method reads in this case:

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{x_{n}-F\left(x_{n}\right)}{1-F^{\prime}\left(\frac{x_{n}+y_{n}}{2}\right)} \\
y_{n+1} & =x_{n+1}-\frac{x_{n+1}-F\left(x_{n+1}\right)}{\frac{\left(x_{n+1}-F\left(x_{n+1}\right)\right)-\left(x_{n}-F\left(x_{n}\right)\right)}{x_{n+1}-x_{n}}} \\
n & =0,1,2,3, \ldots .
\end{aligned}
$$

The order of convergence of the $1+\sqrt{2}$ order method is not affected by the updating procedure.

5. AN APPLICATION

Consider the nonlinear integral equation

$$
\begin{equation*}
x(s)=1-\frac{1}{2} \lambda \int_{0}^{1} \frac{s}{t+s} \frac{1}{x(t)} \mathrm{d} t, s \in[0,1], \lambda \in[0,1] \text { fixed, } \tag{12}
\end{equation*}
$$

in the space $C([0,1])$ of continuous functions equipped with the sup-norm $\|\cdot\|$. Note that (12) is a version of the so called H-equation which arises in the theory of radiative transfer (see Rall[4], p. 74 ff . and the references given there). In the sequel we use the following notations:
(i)
$F: D \rightarrow C([0,1]), D:=\{x \in C([0,1]), x$ positive $\}$

$$
[F(x)](s):=1-\frac{1}{2} \lambda \int_{0}^{1} \frac{s}{t+s} \frac{1}{x(t)} \mathrm{d} t
$$

(ii)

$$
\mu:=\frac{1}{2} \lambda \ln (2)
$$

(iii)
(iv)

$$
\begin{gathered}
r_{0}:=\frac{1}{2}-\sqrt{\frac{1}{4}-\mu} . \\
x_{0}(s)=1 \quad \text { for } s \in[0,1] .
\end{gathered}
$$

For the application of proposition 3 we need the quantities $\alpha, L,\left\|x_{0}-F\left(x_{0}\right)\right\|$:
Lfmma 7
If $\mu<1 / 4$ then the following assertions are valid:
(a) (12) has a solution in the ball $B\left(x_{0} ; r_{0}\right)$ which is unique in the interior of $B\left(x_{0} ; 1-\sqrt{\mu}\right)$.
(b) $\left\|F^{\prime}(x)\right\| \leq \mu /(1-r)^{2}=: \alpha$ if $x \in B\left(x_{0} ; r\right), r<1$.
(c) $\left\|F^{\prime}(x)-F^{\prime}(y)\right\| \leq 2 \mu /(1-r)^{3}\|x-y\|$ if $x, y \in B\left(x_{0} ; r\right), r<1$.
(d) $\left\|x_{0}-F\left(x_{0}\right)\right\|=\mu$.

Proof. Let $x \in B\left(x_{0} ; r\right), r_{0} \leq r \leq 1 / 2+\sqrt{1 / 4-\mu}$; then $x(t) \geq 1-r$ for $t \in[0,1]$.
Hence

$$
|1-[F(x)](s)|=\frac{1}{2} \lambda \int_{0}^{1} \frac{s}{t+s} \frac{1}{x(t)} \mathrm{d} t \leq \frac{\mu}{1-r} \leq r .
$$

i.e. F maps $B\left(x_{0} ; r\right)$ into itself for all r in the indicated range.

If $h \in C([0,1])$, then

$$
\left[F^{\prime}(x) h\right](s)=-\frac{1}{2} \lambda \int_{0}^{1} \frac{s}{t+s} \frac{h(t)}{x(t)^{2}} \mathrm{~d} t
$$

so that $\alpha(r):=\mu /(1-r)^{2}, L(r):=2 \mu /(1-r)^{3} ; F$ is a contraction for $r \in\left[r_{0}, 1-\sqrt{\mu}\right)$.
Numerical example
(a) Let us apply proposition 3 in the case $\lambda=1 / 2$; then $\mu=\ln (2) / 4 \doteq 0.1733$, $r_{0} \div 0.2231$. We show that the assumptions of proposition 3 are fulfilled for

$$
s_{0}:=1.3 r_{0} \doteq 0.2899
$$

as $L\left(s_{0}\right) \doteq 0.9681, \alpha\left(s_{0}\right) \doteq 0.3437$ we get

$$
\theta\left(s_{0}\right) \leq 0.2777
$$

Hence $\left(1+\theta\left(s_{0}\right)\right) r_{0} \leq 0.2851<s_{0}$, so that by proposition 3 the iterative method (3) converges for any $\gamma \in[0,1]$ to a solution of (12).
(b) For the numerical computations we replaced the integral in (12) by the composite trapezoidal rule with mesh size $1 / m$, i.e. (12) is replaced by a finite dimensional fixed point problem

$$
x=F_{m}(x)
$$

whose solution is denoted by $\left(\bar{x}^{(0)}, \bar{x}^{(1)}, \ldots, \bar{x}^{(m)}\right)^{T}$. The following tables contain the errors

$$
\max _{0 \leq i \leq m}\left|x_{n}^{(i)}-\bar{x}^{(i)}\right|
$$

for the iterates $\left(x_{n}^{(0)}, \ldots, x_{n}^{(m)}\right)^{T}$ generated by various iterative methods:

I	Stirling's method
II	(3) with $\gamma=\frac{1}{2}$
III	Newton's method
IV	the variable γ method
V	the $1+\sqrt{2}$ order method (10)
VI	the updated $1+\sqrt{2}$ order method (11)
In V, VI we used $y_{0}:=F\left(x_{0}\right)$ as an additional starting	
value.	

Table 1. $i=\frac{1}{2}, m=20, x_{0}^{(i)}=1, i=0$ (1) 20

n	I	II	III	IV	V	VI
1	$4.18_{10}-3$	$9.23_{10}-4$	$4.80_{10}-3$	$9.23_{10}-4$	$9.23_{10}-4$	$9.23_{10}-4$
2	$1.98_{10}-6$	$2.07_{10}-8$	$3.69_{10}-6$	$1.99_{10}-8$	$1.41_{10}-8$	$1.36_{10}-8$
3	$4.33_{10}-13$	$1.04_{10}-17$	$2.17_{10}-12$	$9.11_{10}-18$	$2.71_{10}-18$	$2.49_{10}-18$

The variable i method IV started with $\gamma_{0}:=0.5$; then $\gamma_{1}=0.4965$ and $\gamma_{2}=0.4957$ were computed.

For a less accurate initial value x_{0} we obtained the following results:
Table 2. $i=1 / 2, m=20, x_{0}^{(i)}=1.2, i=0(1) 20$

n	I	II	III	IV	V	VI
1	$1.85_{10}-2$	$4.11_{10}-3$	$1.75_{10}-2$	$4.11_{10}-3$	$4.11_{10}-3$	$4.11_{10}-3$
2	$4.11_{10}-5$	$4.24_{10}-7$	$5.03_{10}-5$	$4.11_{10}-7$	$3.19_{10}-7$	$3.01_{10}-7$
3	$1.88_{10}-10$	$4.33_{10}-15$	$4.05_{10}-10$	$3.87_{10}-15$	$1.41_{10}-15$	$1.25_{10}-15$

The numerical results do agree quite well with our previous analysis which showed that Newton's method is not optimal for the computation of fixed points of contractive mappings.

REFERENCES

1. R. G. Bartle, Newton's method in Banach spaces. Proc. Am. Math. Soc. 6, $827-831$ (1955).
2. C. G. Broyden, The convergence of single-rank quasi-Newton methods. Math. Comp. 24, 365-382 (1970).
3. L. B. Rall, Convergence of Stirling's method in Banach spaces. Aeq. Math. 12, 12-20 (1975).
4. L. B. Rall, Computational Solution of Nonlinear Operator Equations. Wiley, New York (1969).
5. H. Schwetlick, Numerische Lösung nichtlinearer Gleichungen. Oldenbourg, München (1979).
6. J. F. Steffensen, Remarks on iteration. Skand. Aktuarietidsk. 16, 64-72 (1933).
7. W. Werner, Über ein Verfahren der Ordnung $1+\sqrt{2}$ zur Nullstellenbestimmung. Numer. Math. 32, 333-342 (1979).
8. W. Werner, Some supplementary results on the $1+\sqrt{2}$ order method for the solution of nonlinear equations, Numer. Math. 38, 383-392 (1982).
