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Abstract-The celebrated Banach fixed point theorem provides conditions which assure that the 
method of successive substitution is convergent; the convergence, however, may take place very 
slowly so that it may be desirable to use a Newton-like method for the computation of the fixed 
point. If Newton’s method itself is applied one ignores the additional information that the 
problem arises from a fixed point problem with a contraction mapping. In the present note some 
variants of Newton’s method are discussed which make use of this contraction information; it 
turns out that the convergence of Newton’s method can be accelerated without any relevant 
additional computational labour. 

1. INTRODUCTION 

Let X be a Banach space, X EX a fixed point of the mapping F : X+X, 

x = F(f). (1) 

The particular form of this equation immediately suggests the method of successive 
substitution for the iterative computation of X: 

Given a starting point x0 E X; compute xi+, by 

xi+ 1: = F(xi) i = 0,1,2,3,. . . . (2) 

The classical fixed point theorem of Banach gives conditions which assure the convergence 
of the sequence {x,> defined in (2). The convergence may be quite slow however if the 
contraction constant of F is close to 1; more rapid convergence can be achieved, e.g. by 
the application of a Newton-like method to the nonlinear equation 

0=x-F(x) 

if F is, say, twice continuously differentiable. In the sequel we investigate the following 
iterative method: 

Given a starting point x~EX, y E[O, 11, compute xi+ ,: 

y,: = F(x;) 

xi+ I: = X, - [I - F’(yXi + (1 - 7 )yi)] - ‘(Xi - F(Xi)) (3) 

i=O,1,2,3 ,... . 

Obviously (3) corresponds to Newton’s method if y = 1; the choice y = 0 leads to the 
largely unknown method of Stirling (see Ra11[3]). Note that (3) requires one evaluation 
of F and one evaluation of F’per step independent of y. It is therefore reasonable to ask 
for an optimal choice of the parameter y, i.e. a parameter which maximizes the speed of 
convergence: it turns out that the choice 7 = l/2 is quite appropriate. 

2. CONVERGENCE RESULTS 

Let us first give a motivation which gives reasoning to the choice 7 = l/2. 
If F is a contraction on X then, according to Banach’s fixed point principle, F(x,J is 
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a better approximation for -? than x, was. Let us now assume that F is continuously 
differentiable (in the Frechet sense); then 

’ x, - F(x,) = X - F(Z) f 
s 

[I - F’(d + t(x, - Z))] dt(x, - -3) 
0 

so that 

IS 
1 

2=xX,- [I - F’(f + t(x, - .?))I dt -‘(x,, - F(x,)) (4) 
0 

(note that the contraction property implies the existence of the inverse in (4)). Approxi- 
mation of the integral by 

(i) Z, yields the method of succesive substitutions, 
(ii) Z - F’(x,), yields Newton’s method, 
(iii) Z - F’(F(x,)), yields Stirling’s method. 

If we replace 2 in jA[Z - F’(_f + t(x, - X))] dt by the best known approximation (which is 
after having computed the residual x, - F(x,), F(x,)) and if we choose the optimal one 
point quadrature rule, namely the mid-point rule, then we are led to the suggestion that 
y = l/2 is the appropriate choice of the free parameter y in (3). 

The following result contains theorem 2 and theorem 4 of Rall[3] as a special case: 

PROWSITION 1 

Let FE C’*‘(X) be such that IIF’(x)ll I c( < 1, 

IIF’ - F’(y)11 I L /Ix - y 11 for all x,y EX; 
set 

K: = L(1/2 + tx - (1 + a)y + y’)/(l -a), 8: = xllxo - I/I, 

where X is the unique solution of the equation x = F(x) in X (whose existence is assured 
by Banach’s fixed point principle). 

If 0 < 1 then the iterative method (3) converges to X with Q-order 2 at least: 

I/x”+, -.u(I IKI~x”-~~~*Ie*“+‘-‘IIXO-XI). (5) 

Proof. Let .4,,(r): = F’(f + t(x, - .f)), B,(t): = F’(F(x,) + t(x,, - F(x,))), t E[O, 11: then 
(3) implies that 

As II~,(y)ll I a the inverse (I - B,(y))-’ exists and satisfies the estimate 

furthermore 

IIF - FG) - R(Y)( xn - 3/I = ” j (An(t) - W)k - 2) dt 11 
0 

I 11 s ’ (A(t) - MY )Xx, - 2) dt 11 + /I (MJ I- MY >)(xn - X)/l 
0 

(6) 



Newton-like methods for the computation of fixed points 19 

so that 11x,+, - x /I I K 11x, - X I(‘. A sufficient condition for the convergence of (3) thus is 

K(\Xg-XI( < 1; 

the second inequality in (5) then follows by induction. 0 

Remark 
(a) If no additional information concerning the location of the exact solution is known 

one can use 

/x0 - F(x~)(\/(l - a) 

instead of (Ix0 - 2 (I in the above proposition, 
(b) Some typical values for the quantity K = K(Y) are: 

Y K 

0 (Stirling’s method) 

1 

2 

1 (Newton’s method) 

(1+2a)& 

( > ;+a __ 
2(1 -a) 

(:+a -ia2) L 
L 

2(1 -a) 

L 

2(1-a) 

Note that K is minimal for y = (1 + a)/2, i.e. this choice minimizes the error estimates of 
proposition 1 (but not necessarily the actual error!). 0 

The asymptotical behaviour of (3) is described in the following. 

PROPOSITION 2 

If, in addition to the assumptions of propositionl, F is twice continuously differentiable 
then 

limsup ‘I x,+1 --z/l 
< /I(1 - F’(z))-‘11 (IF”(Z)j) I\(1 - r)F’G) + n-m I/x,--x/I2 - 

111 (7) 

(” I ” can be replaced by ” = ’ if X = R). 

Proof. We prove an asymptotic estimate for 

FM - FCf) - F’(Yx, + (1 - Y )F(x,Mx, - 3 

which is different from (6): 

F(x,) - F(f) - F’(yx, + (1 - y)F(x,))(x, - 2) = 

Note that the integral-term is of order 0(11x, - X )I*) since F is twice continuously 
differentiable; it may be therefore neglected in our asymptotic considerations. From 

- F’(yx, + (1 - y )F(x,)) = + (1 - y )F(x,) + T 
( -1 

F 

- yx,-(1 -y)F(x,)))dr 

CAMWA L’ol. IO. No I-F 
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.Y, + .u 
--_-x,-(1 -y)F(x,) 

2 
(X,-.Y)-(1 -;,)(F(.u,)-F(Y)) 

one easily concludes the validity of the estimate (7). 0 

Remark 

The asymptotic estimate (7) suggests the following strategy: choose ‘/ E [0, l] such that 
/I(1 -v)F’G)+(Y - 1/2)Zi( IS minimal. This minimization problem is easily solvable if 
X = R” and 11 ’ 11 is the Frobenius norm of a matrix: /I M 11:: = tr M*M. If we set 
M: = I - F’(Z) then 

Y .=max opt- 
i 

1 -_trM/trWM, 0 
i 

Note that, due to the contraction property of F, tr M > 0, so that yopt < 1. This strategy 
thus prefers Stirling’s method if tr M I 2 tr MrM which is the case, e.g. if F’(Z) is a 
symmetric matrix whose spectrum is contained in the interval [l/2, 1). In practice we 
replace the unknown matrix P’(_f) by the last Jacobian of F which was computed in the 
course of the iteration, i.e. we use a variable parameter y instead of a fixed one. Later we 
refer to this variant of (3) as the variable y method. For other norms or in the infinite 
dimensional case the choice y = l/2 seems to be an adequate compromise. 0 

The global contraction property of F and the global Lipschitz continuity of F’ are too 
restrictive in applications; the above results remain true however if the assumption are 
fulfilled in a ball 

B(x,; r) : = {x EX/ 11x -x,/l I r} 

which contains the sequence of iterates generated by (3): 

PROPOSITION 3 
Let D E X, FE C’-‘(D), X~E D, 

u(r): = sup { ~]F’(x)[~ Ix EB(+,; r)n D}, 

IIF’(x)--F’(~)II sL(r)llx -y]I for all x,y~B(x~;r)nD, 

with a nondecreasing function L. Assume that there are real numbers rO, sO such that: 
(i) F(B(x,; rO)) E B(x,; r,,); (ii) r,, < s, < 2r,,; (iii) r*(sO) < 1; (iv) B(x,; sO) c D; 

(VI (1 + W.W-o I so 

where 

O(s): = L(s) 
i 

;+1(s)-(l +cr(s))y +y2 
1 

&. 

Then the sequence generated by (3) remains in B(x,; so) and converges with Q-order 2 at 
least to a fixed point X EB(x”; ro) of F. X is the unique fixed point of F in B(x,; so). 

Proof. Banach’s fixed point principle implies the existence of a fixed point X E B(x,; ro) 

which is unique in B(x,; so). Assume that x,,, F(x,) E B(x,; s,); then (compare the proof of 
proposition 1 and observe, that f3 is nondecreasing) 

IIn+, -x01] s II.%+, -x/l + l/x -x0/I 

I ( 1 + 0 (so))rO 

5 so, i.e. IC, + , E B(x,; so). 
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lIF(x,+ I> - XII/I S jl%+,) - JWll + IIx - %I/ 

~~(%)l~x~+r~ll+ /Ii -x0/l 

s (1 + ~(~,)~(%))~, 

Hence x, + , , wG+,h YX”,, +(I -Y)mn+, ) E B(x,; s,); from (ii) and (v) one easily derives 
that @(s,,) < 1. The assertion then follows similar as in proposition 1. c3 

3. STEFFENSEN'SMETHOD 

The motivation for the choice y = l/2 was stimulated by two approximations in (4); 
S was approximated by F(x,) and the integral was replaced by a quadrature formula, 
namely the midpoint rule. In the scalar case, however, the approximation of the integral 
can be avoided since 

s 1 

F’(F(x,) + t(x, - F(x,))) dt = 
W(x,)) - F(A). 

0 WJ-xn ' 
(8) 

the resulting iterative method then is the well-known Steffensen method (see [6]): 

X X” - WJ 
n+l. 

.=x,- 

1 _ fwxn)) - F(X”) 
F(xn) - X” 

n = 0,1,2,3,. . . . 

For this method one can improve the estimates of proposition 1: 

PROPOSITION 4 

Let FEC’.‘(R) be such that IF’(X)/ I c1 < 1, 

IF’(x) - F’Ot)( I Llx -yl for all x,y ER. 

Set 

where _? is the unique fixed point of F in R. If 0 < 1 then Steffensen’s method converges 
to .U with Q-order 2 at least: 

If furthermore F is twice continuously differentiable then 

lim xn+l-x =_ - 1 F’(B) 

n-cc (x, - Q2 2 1 - F’(2) F”(x)’ 

Proqf. Use (8) to replace (6) by 

’ lF(s,) - F(s) - 
s 

F’(F(s,) + t(x, - F(x,))) dt(x, - Z)I = 
0 IS 

o’ {F’(T + t(x, - 2)) 

- F'(F(x,)+ t(x, - F(x,)))} dt( x, - a) < g Ix - F(X”)I lx, - x( 5 ; crL(x, - xl*. 
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The assertion then follows by arguments similar to those used in proposition 1 and 
proposition 2. c 

Remark 

(a) Note that under the above assumptions Steffensen’s method locally converges 
faster than Newton’s method. 

(b) Obviously proposition 3 is valid for Steffensen’s method, too, if the definition of 
19 is modified appropriately. 

4.FIXEDPOINTSOFNONCONTRACTIVEMAPPINGS 

If a fixed point of a noncontractive mapping F is to be computed it is near at hand 
to apply the previously introduced method (3) to 

[F(x): = x - (I - F’(x,)) - ‘(x - F(x)); 

it is well known that IF locally is a contraction if x,, is a sufficiently good approximation 
of the solution. In this case (3) can be written as follows: 

given x,,y,; compute x, + ,, yn+ , according to 

X . = x,, - (I - F’(yx, + (1 - v>y,>} - ‘(x, - F(A)) n+ I’ 

Y”fl. ‘CX “+I-{Z-F’(xo))-‘(x,+1-F(x,+I)) 

n = 0,1,2,3,. . . . 

(9) 

AsY,,, should be as good an approximation for the solution as can be computed without 
additional function evaluations it is reasonable to replace (I - F’(x,))- ’ by 

(I - F’(yxn + (1 - Y)Y,)) - ‘. 

Note that one must solve two linear equations with the same linear mapping then; this 
can be done economically if X = KY’: in this case one computes a LR-decomposition of 
the Jacobian so that both linear systems can be solved by back substitution. If ‘/ = l/2 the 
resulting method is of R-order 1 + ,f? if F is sufficiently smooth: 

PROFWITION 5 
Let FE C’,‘(X), F(2) = X, Z - F’(2) nonsingular; then the iterative method given x0, yo; 

compute x,+ ,, y, + , according to 

x~+,:=x~-[Z-F’(~)]-~(,_F(XJ) 

y.+,:=x.+,-[I-F'(~)]-'(x"+,--F(x.,,)) 

(10) 

n=0,1,2,3 ,... 

locally converges Q-quadratically to 2. If furthermore FE C’(X) then the convergence is 
superquadratic; if FE C*.‘(X) then (10) converges locally with R-order 1 + $ at least. 

For a proof we refer to [7]. 

Remark 

If F is contractive then our previous considerations show that the choice _v,: = F(.r,J 

is appropriate; otherwise use y,: = x0. cl 

Now we restrict our interest to the case X = Iw”; the quality of y, +, depends on how 
good Z-F/(x, + y,)/2 approximates I- F’(x, + X)/2. We therefore apply a rank one 
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correction: 
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where u,, C,,E R”’ are determined such that 

\ \ i / 1 

u, and C, are chosen according to Broyden’s method (see 
Broyden 123): 

% = &+I - Jxx,+,) 

X 
v,: = 

“+I -x, 
(x,+1 - XJT(X” + , - X”)’ 

Using the Sherman-Morrison inversion formula we then get 
method, 

given x0, y,; compute x, + ,, yn + , as follows: 

Schwetlick[5], p. 139 ff., 

the updated 1 + fi order 

where 

(11) 

pLn: = (u,’ I - F’ [ (?)I-‘Cxn+, -F(x,+,))+ I)-‘. 

The following result justifies this modification: 

LEMMA 6 

Let An:=I--F’(v), Bn:=~O’[l--F’(x,,+t(xn+,-x,,))]dt, F(x,+~)$x,+~; 

ProoJ If 2: = A + (JJ - As)s ‘/s’s, A E R”“.“, y, s E KY’, s i 0, then for any B E [w”? 

(see Schwetlick[5], p. 142; Broyden[2], lemma 4). Set A: = A,, 

4’: =(x n + I - f-(x, + 1)) - (x, - F(x,)), 

B: = B,,, s : = s,, + , - _xn; then Y-As=.%+,-F(x,+,), ~=A+u,v;, y-Bs=O, 
(A - B)s = - (s,, _ , - F(.Y,, + ,)) $0, so that 
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In the scalar case, i.e. X = R, the variable y method introduced previously coincides 
with the above 1 + $ order method as long as the parameters 7 which are used remain 
positive. The updated 1 + ,,6 order method reads in this case: 

-?I + I = x, - 
X” - F(xJ 

x72 + Y” 
l-F’- ( > 2 

X 
Y 

ntl -W,+,) 
n+l =%+I - 

(A + 1 - W” + I)) - (&I - F(&)) 

Xn+l - XII 

n = 0,1,2,3,. . . . 

The order of convergence of the 1 + $ order method is not affected by the updating 
procedure. 

5. AN APPLICATION 

Consider the nonlinear integral equation 

x(s)= 1 -fA s I 

A--!- dl, s E[O, 11, A E[O, l] fixed, 
0 t +xX(t) 

(12) 

in the space C([O, I]) of continuous functions equipped with the sup-norm ij . /I. Note that 
(12) is a version of the so called H-equation which arises in the theory of radiative transfer 
(see Ra11[4], p. 74 ff. and the references given there). In the sequel we use the following 
notations: 

(i) F: D+C([O, l]), D: = ( x E C([O, I]), x positive) 

(iii) 

[F(x)](s): = 1 -iA 
s 

i$&dt 
0 

r:=kAln(2) 

1 1 

r,: = -- 2 /-- -- P. 4 

(iv> x0(s) = 1 for s E [0, I]. 

For the application of proposition 3 we need the quantities a, L, l/x0 - F(,u,)i]; 

LEMMA 7 
If p < l/4 then the following assertions are valid: 

(a) (12) has a solution in the ball B(x,; ro) which is unique in the interior of 

BCr,; 1 - J!J >. 
(b) IIF’(x)l\ I p/(1 - r)‘=:a if x EB(xo; r), r < 1. 

(c) (IF’(x) - F’(v){/ 52~41 - rj3 11x --y/I if X,Y eB(xo; r), r < 

(4 jl-yo - F(xo) 11 = P. 

1. 

Proof: Let x EB(x”; r), r0 5 r I l/2 + ,/G; then x(t) 2 1 

Hence 

- r for t E[O, 11. 

i.e. F maps B(x,,; r) into itself for all r in the indicated range. 
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If h E C([O, I]), then 
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[F’(x)h](s) = - ; h 
s 
’ -& $$ dt 

0 

SO that a(r): = p/(1 - r)*, L(r):= 2p/(l - r)3; F is a contraction for r E[I-~, I - A). 

Numerical example 
(a) Let us apply proposition 3 in the case 1 = l/2; then p = ln(2Y4k0.1733, 

r, s 0.2231. We show that the assumptions of proposition 3 are fulfilled for 

sg: = 1.3 r. G 0.2899: 

as L(s,) G 0.9681, a(q) G 0.3437 we get 

f?(sJ I 0.2777. 

Hence (1 + O(so))ro s 0.2851 <s,,, so that by proposition 3 the iterative method (3) 
converges for any y E [O, l] to a solution of (12). 

(b) For the numerical computations we replaced the integral in (12) by the composite 
trapezoidal rule with mesh size l/m, i.e. (12) is replaced by a finite dimensional fixed point 
problem 

x = F,,,(x) 

whose solution is denoted by (X(O), Z(‘), . . . , 5P))‘. The following tables contain the errors 

for the iterates (XL”. . ,xkm))’ generated by various iterative methods: 

I Stirling’s method 

II 
1 

(3) with y = - 
2 

III Newton’s method 
IV the variable y method 
V the 1 -t $ order method (IO) 
VI the updated 1 + $ order method (11) 

In V, VI we used yO: = F(x,) as an additional starting 
value. 

Table 1. i. =i, M =20, x$‘= 1, i =0 (1) 20 

n I II III IV V VI 

1 4.18,, - 3 9.23 ,0 - 4 4.80,, - 3 9.23,, - 4 9.23,, - 4 9.23,, - 4 
2 1.98,,-6 2.07,, - 8 3.69,, - 6 1.99,, - 8 1.41,,- 8 1.36,, - 8 
3 4.33,, - 13 1.04,, - 17 2.17,,- 12 9.11,,- 18 2.71,,- 18 2.49,,,- 18 

The variable ; method IV started with yO: = 0.5; then y, = 0.4965 and yz = 0.4957 were 
computed. 

For a less accurate initial value x0 we obtained the following results: 

Table 2. i. = l/2, nz = 20, xg’ = 1.2, i = O(l)20 

n I II III IV V VI 

1 1.85,, - 2 4.11,,-3 1.75,” - 2 4.11,,-3 4.111,- 3 4.11 - ,O 3 
, 

; 4.11,“--5 - lo 
- 

1.88,” 4.24,, - 7 15 5.03,” 
- 

4.33,o 4.05,, - 5 10 4.11,,- 7 15 
- 

3.87,,- 3.19,, - 1.41,, 7 15 3.01,,- - 1.25,, 7 15 
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The numerical results do agree quite well with our previous analysis which showed that 
Newton’s method is not optimal for the computation of fixed points of contractive 
mappings. 
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