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Abstract—The celebrated Banach fixed point theorem provides conditions which assure that the
method of successive substitution is convergent; the convergence, however, may take place very
slowly so that it may be desirable to use a Newton-like method for the computation of the fixed
point. If Newton’s method itself is applied one ignores the additional information that the
problem arises from a fixed point problem with a contraction mapping. In the present note some
variants of Newton’s method are discussed which make use of this contraction information; it
turns out that the convergence of Newton’s method can be accelerated without any relevant
additional computational labour.

1. INTRODUCTION
Let X be a Banach space, XX a fixed point of the mapping F: X —X,

% = F(%). 1)

The particular form of this equation immediately suggests the method of successive
substitution for the iterative computation of x:
Given a starting point x,€ X; compute x;,; by

X, i=F(x) i=0123,.... )

The classical fixed point theorem of Banach gives conditions which assure the convergence
of the sequence {x,} defined in (2). The convergence may be quite slow however if the
contraction constant of F is close to 1; more rapid convergence can be achieved, e.g. by
the application of a Newton-like method to the nonlinear equation

0=x—F(x)
if F is, say, twice continuously differentiable. In the sequel we investigate the following

iterative method:
Given a starting point x,€ X, y €[0, 1], compute x,,:

yi=F(x)
X =X— [ = F@yx;+ 0 =y)y)] '(x;,— F(x)) (3)
i=0,1,2,3,....

Obviously (3) corresponds to Newton’s method if y = 1; the choice y = 0 leads to the
largely unknown method of Stirling (see Rall[3]). Note that (3) requires one evaluation
of F and one evaluation of F'per step independent of y. It is therefore reasonable to ask
for an optimal choice of the parameter y, i.e. a parameter which maximizes the speed of
convergence: it turns out that the choice y = 1/2 is quite appropriate.

2. CONVERGENCE RESULTS

Let us first give a motivation which gives reasoning to the choice y = 1/2.
If F is a contraction on X then, according to Banach’s fixed point principle, F(x,) is
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a better approximation for X than x, was. Let us now assume that F is continuously
differentiable (in the Fréchet sense); then

so that

x

I

[ Y -1
X, — ;J [ — F/(% + t(x,— X))} dr } (x, — F(x,)) @)

(note that the contraction property implies the existence of the inverse in (4)). Approxi-
mation of the integral by

(1) I, yields the method of succesive substitutions,

(i) I — F'(x,), yields Newton’s method,

(iit) { — F’(F(x,)), yields Stirling’s method.
If we replace x in j'O[I F'(x + t(x — x))] ds by the best known approx1mat10n (Wthh is
after uavmg Comp‘dwu the residual Xy — ['\.L,,), r\x,,)} and if we choose the Upuludl one
point quadrature rule, namely the mid-point rule, then we are led to the suggestion that
y = 1/2 is the appropriate choice of the free parameter y in (3).

The followmg result contains theorem 2 and theorem 4 of Rall[3] as a special case:

PRrROPOSITION 1
Let FeC"'(X) be such that |[F'(x)| <« <1,

|IF(x)—F@)|<L|x—y| forall xyeX;

w
a
-

ki=L(12+a—(1+a)y +y)/(1—a), :=x|x

where X is the unique solution of the equation x = F(x) in X (whose existence is assured
by Banach’s fixed point principle).
If 8 <1 then the iterative method (3) converges to X with Q-order 2 at least:

[y = 21 < el = £ <07y 5], ®
Proof. Let A,(t). = F'(Xx + t(x, — X)), B,(t): = F'(F(x,) + t(x, — F(x,))), t €[0, 1}: then

(3) implies that
Xy 1 — X =[I = B, '[F(x,) — F(X) — B,(y)(x, — X)].

As |B,(y)| < « the inverse (I — B,(y))~' exists and satisfies the estimate

-8B =<

furthermore
|Fx) — FE) = Bo)x— D) = | j () — By, — %) d
<| j (A8) = A, — ) de | + [(4,6) = BLGNEx, — D]
<L o= latm - 217 L]0 -6 = P s~ 2]

X — | )

L(yz—v + )Hx —x|*+ La(l —y)
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so that |x,,, — % | < x |x,— X||. A sufficient condition for the convergence of (3) thus is
KX — x| < 1;

the second inequality in (5) then follows by induction. d

Remark

(a) If no additional information concerning the location
one can use
1) - NHoare N
flxo — £{X)||/(} — )
instead of |x,— x| in the above proposition.
(b) Some typical values for the quantity x = x(y) are:

y K
L
0 (Stirling’s method) (1 +20)
21 —a)
! (1ia)—t
2 PR T
! N
(1 +a) : _ i
2 27 72% ) —e)
L
1 (Newton’s method) 21 —a)

Note that k is minimal for y = (1 + «)/2, i.e. this choice minimizes the error estimates of
proposition 1 (but not necessarily the actual error!). O

The asymptotical behaviour of (3) is described in the following.

PROPOSITION 2

If, in addition to the assumptions of propositionl, Fis twice continuously differentiable
then

- 1
limsup Y _i‘.“ <7 = FFGE)- N IF @] I =) F () + (,~ N\ 0
moron © ”x _tz 1A AP N I LN \l 2/ i
(" P opner lan emealonad e, 7 _ /1 € 'V __ MDY
<" cail o¢ repiacea oy " =" it 4 = i),

F(x,) = F(X) — F'(yx, + (1 = 7)F(x,))(x, — X)

which is different from (6):

1
F(x,) = F(X) = F'(yx, + (1 = p)F(x,))(x, — X) = {J( [l""(JE + 1(x, — X))
0

_ (2 a4+ [ P () - Fom+ 0 - nFe) b - )
N < /] L \ < / A

Note that the integral-term Al mndas A1l U2 gimps E Antintaelh
NULWLC  Lal e g lLUsl Il S B I 08 lb Ul vldgel ”_}\, — A ” ) 1YL iy lD LWI\-C bUllLllluUubl)’
differentiable; it may be therefore neglected in our asymptotic considerations. From

F(x,, ;— X> — F'(x, + (1 — )F(x,)) = Jl F'(yx,+ (1 =y)F(x,) + (x,, ; f)
0

— yx,— (1=)F(x) dr("" +x

—yx,—(1 -—v)F(xn))
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and

(x" 2 7%, — (1 = ’/)F(xn)> = G - V)(xn —X) = (1 =9)F(x,) — F(x))

2
={G_~,>1_(1 _-,)f F/(% + 1(x, — £)) dr}(xn—f)
0

one easily concludes the validity of the estimate (7). O

Remark

The asymptotic estimate (7) suggests the following strategy: choose y €[0, 1] such that
[(1 =y)F'(%)+ (y — /21| is minimal. This minimization problem is easily solvable if
X =R" and | -| is the Frobenius norm of a matrix: |M |} =10 M™M. If we set
M:=1 - F’(x) then

1
Vopt: = max{l -3 tr Mjtr MTM, O}.

Note that, due to the contraction property of F, tr M >0, so that y,, < 1. This strategy
thus prefers Stirling’s method if tr M <2 tr M7M which is the case, e.g. if F'(X) is a
symmetric matrix whose spectrum is contained in the interval [1/2, 1). In practice we
replace the unknown matrix F’(X) by the last Jacobian of F which was computed in the
course of the iteration, i.e. we use a variable parameter y instead of a fixed one. Later we
refer to this variant of (3) as the variable y method. For other norms or in the infinite
dimensional case the choice y = 1/2 seems to be an adequate compromise. ]

The global contraction property of F and the global Lipschitz continuity of F’ are too
restrictive in applications; the above results remain true however if the assumption are
fulfilled in a ball

B(xr):={xeX|[x — x| <r}
which contains the sequence of iterates generated by (3):

PROPOSITION 3
Let D € X, FeC'"(D), x,eD,

2(r): = sup {|F'(0)] [x € Bx; DN D},

|F'x)= F)|l < L(r)|x —y| forall x,yeB(xu;r)ND,

with a nondecreasing function L. Assume that there are real numbers #y, s, such that:
() F(B(xpro)) € Blxgro); (i) ro<so<2r (i) als) <l (iv) B(xy8) < D;
(v) (1 + 0(so))ro < 5

where

1 r
0(s): = L(s){5+a(s) — (1 + a(s))y + 9> ———.
2 1 —als)
Then the sequence generated by (3) remains in B(x,; s,) and converges with Q-order 2 at
least to a fixed point x € B(x,; ry) of F. X is the unique fixed point of F in B(x,; s;).
Proof. Banach’s fixed point principle implies the existence of a fixed point X € B(xy; ro)

which is unique in B(xy; 5,). Assume that x,, F(x,)e B(x,; s,); then (compare the proof of
proposition 1 and observe, that ¢ is nondecreasing)

s = o] < [0t = 2] + [ £ — xo
< (1 +8(so)ry

< Sp, 1.€. X, 4 | € B(xg; So)s
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< 8
Hence x, ., F(x,. 1), X, + (1 —9)F(x,. ) € B(xy; s,); from (ii) and (v) one easily derives
that 8(s,) < . The assertion then follows similar as in proposition 1. O

3. STEFFENSEN'S METHOD
The motivation for the choice y = 1/2 was stimulated by two approximations in (4);
X was approximated by F(x,) and the integral was replaced by a quadrature formula,
namely the midpoint rule. In the scalar case, however, the approximation of the integral
can be avoided since

F(F(x,) — F (X.,)

(8)
F(x,) —

1
Jf F'(F(x,) + t(x, — F(x,)))dt =
0

x, — F(x,)
X X,
" | _ FF(x) — F(x,)
F(x,)—x
n=0123,...

For this method one can improve the estimates of proposition 1:

PropPosITION 4
Let FeC"(R) be such that [F'(x)|<a <1,

|F'(x)— F'(»)| < L|x —y| forall x,yeR.
Set

al

6: =

2 o= 7|

[T

1
1

where X is the unique fixed point of Fin R. If § < 1 then Steffensen’s method converges
to X with Q-order 2 at least:

_ 1 al
Ixn+l_x\sil_

p |x, — %[ < 077~ |x, — x|.

If furthermore F is twice continuously differentiable then

Xpo1—% 1 FU(F)
l n+1 —
—a (x.— %P 21<F(%)

F'(x).

Proof. Use (8) to replace (6) by

o

|F(x,) — F(¥)— J[‘ F'(F(x,) + t(x, — F(x,))) dt(x,— %)| =’ f {F'(Xx + t(x,— X))

- F/(F(xn) + t(xn - F(xﬁ)))} dt (xn l



82 W. WERNER

The assertion then follows by arguments similar to those used in proposition 1 and
proposition 2. O

Remark

(a) Note that under the above assumptions Steffensen’s method locally converges
faster than Newton’s method.

(b) Obviously proposition 3 is valid for Steffensen’s method, too, if the definition of
8 is modified appropriately.

4. FIXED POINTS OF NONCONTRACTIVE MAPPINGS

If a fixed point of a noncontractive mapping F is to be computed it is near at hand
to apply the previously introduced method (3) to

F(x):=x — (I — F'(x)) " '(x = F(x));

it is well known that F locally is a contraction if x, is a sufficiently good approximation
of the solution. In this case (3) can be written as follows:

given x,,),; compute x, ., ¥,,, according to

Xpp1o = Xy = {I_F/(yxn+(1 _y)yn)}_l(xn_F(xn)) (9)
Varti =Xpi1— {I—F’(xo)}_l(x,,H — F(x,.1)
n=0,1,2,3,....

As y, ., should be as good an approximation for the solution as can be computed without
additional function evaluations it is reasonable to replace (I — F'(x,)) ™' by

(= F'@yx,+(1=yy) "

Note that one must solve two linear equations with the same linear mapping then; this
can be done economically if X = R™ in this case one computes a LR-decomposition of
the Jacobian so that both linear systems can be solved by back substitution. If y = 1/2 the
resulting method is of R-order 1 + ﬁ if F is sufficiently smooth:

PROPOSITION 5
Let Fe C'(X), F(x) = x, I — F’(x) nonsingular; then the iterative method given x;, y,;
compute x, ., V,, according to

= [1 _ F(i—;i)] (5= Fx)

EAIAYE
yn+1:=xn+1—'l:1—F<T>:| Xy 11— F(x, 1))

(10)

n=0,1,2,3,...

locally converges Q-quadratically to %. If furthermore F e C*(X) then the convergence is
superquadratic; if FeC*'(X) then (10) converges locally with R-order 1+ ﬁ at least.
For a proof we refer to [7].

Remark
If F is contractive then our previous considerations show that the choice yy: = F(x,)
is appropriate; otherwise use y,: = X,. |

Now we restrict our interest to the case X = R™; the quality of y,,, depends on how
good [ —F’(x,+ y,)/2 approximates [—F'(x,+ x)/2. We therefore apply a rank one
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correction:
X0t Y -
}’n+13=xn+1‘[1—F< 2 >+unvr{il (xn+l"_F(xn+1))

where u,, v,€ R" are determined such that

(1 - F (“2”> + )(xH. Xp) = (X ay = Fpy 1)) = (x, — FX,));

u, and v, are chosen according to Broyden’s method (see Schwetlick[S], p. 139 fI.,
Broyden|[2)):

U, =X, 01— F(x,,))
Xpa1— Xy

v, = .
(xn+l - xn)T(xn+l - xn)

n-

Using the Sherman—Morrison inversion formula we then get the updated 1 + \/5 order
method,

given x,, yo; compute x,_.,, v, as foliows:

Xy = %y~ [1 - F(i‘—%iﬂ (%, — F(x)

X, + -1 (an
Yne1= Xpq _M"[I—F’<J-2—&‘>j| (X1 — F(x,41))

where

= (! [1 F(x ;y">:| (Xps1 = F(xap )+ 170

The following result justifies this modification:

LEMMA 6

X, + V,

1
Let An:=[_F,< 2 - )7 Bn:=J‘ [I_"F/(xn'*'t(xn-#l—xn))]dta F(xn-#]):#xn-#—l;
0

then |4, + u] — B,|-< |4, — B,||s.

Proof. If A:=A +(y — As)s7/s7s, AeR™, y, seR", s +0, then for any B eR™™

4~

Bli=|4-B|i-

¢4 = B)s | I ~ Bsi

(sec Schwetlick [5], p. 142; Broyden(2], lemma 4). Set 4: = 4,
yi= (xn+1 - F(xn+l)) - (xn - F(xn))s

B:=B,. S:'—\n+l x,, then y—As=x,,,—F(x,,)), A=A4+uy!, y—Bs=0,
(A '—'B)S——_ Xyt F(Y,,+1))4:O 80 that

_lx

Xn 41 F(xn+1)}l
S S

‘{An+ unl.rir—- B\

< |4, = Bi%
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Remark

In the scalar case, i.e. X = R, the variable y method introduced previously coincides
with the above | + \/5 order method as long as the parameters 7 which are used remain
positive. The updated 1 +./2 order method reads in this case:

x,— F(x,)

xn+1=xn_————;Ty——

I_Fl n n

(5]
xn+] _F(xn+l)

Y = Xy -
T (e = F(x,,0) — (%, — F(x)
Xny1 = Xn
n=0,123,....

The order of convergence of the 1 + \/5 order method is not affected by the updating
procedure.

5. AN APPLICATION
Consider the nonlinear integral equation

1 |
=1—xz4 — ——dt, 0, 1], A0, 1] fixed, 12
x(s)=1 24 TS0 s€l0, 1], A1 €[0, 1] fixe (12)
in the space C([0, 1]) of continuous functions equipped with the sup-norm | - ||. Note that

(12) is a version of the so called H-equation which arises in the theory of radiative transfer
(see Rall[4], p. 74 ff. and the references given there). In the sequel we use the following
notations:

(1) F: D~C([0, 1]), D:={xeC([0, 1]), x positive}
7 _— 1/1 s 1
[FO))s): = 24 Trexo

(i1) 1

u: -2,1 In (2)

1 I

(i11) ri=s— fz—H

(1v) xo(s)=1 for s€]0, 1].

For the application of proposition 3 we need the quantities o, L, |x, — F(xp)]:

LEmMMaA 7

If u < 1/4 then the following assertions are valid:

(a) (12) has a solution in the ball B(x;r,) which is unique in the interior of
Bxg; 1 — /1)

®) |[F()) <p/Q—ry¥=aif xeB(xgr), r <l

©) |F(x)=FQ)| <2u/t—r)|x—y| if x,y eBlxyr), r <1

(d) “xo - F(xo)H = H.

Proof. Let xeB(xg;r), ro<r <1/2+4 . /1/4~u; then x(1) =1 —r for 1 [0, 1].
Hence

S 1
—dr <

t+5x(t) 1—r

<r

=1,

l 1
1 = [F))| =34 L

i.e. F maps B(x,y;r) into itself for all r in the indicated range.
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If heC([0, 1]), then

)| Vs h(t)
F'(x)h =— A | —
[ (x) ](S) 2 fo [+Sx(t)2
so that a(r): = pu/(1 —r)% L(r):=2u/(1 —r)* Fis a contraction for r efr,, 1 — \/;).
Numerical example
(a) Let us apply proposition 3 in the case A =1/2; then p =In(2)/4=0.1733,
r,=0.2231. We show that the assumptions of proposition 3 are fulfilled for

so = 1.3 ry = 0.2899:
as L(sy) = 0.9681, a(sy) = 0.3437 we get
0(sp) < 0.2777.
Hence (1 + 8(sy))r, < 0.2851 <5, so that by proposition 3 the iterative method (3)
converges for any y €(0, 1] to a solution of (12).
(b) For the numerical computations we replaced the integral in (12) by the composite

trapezoidal rule with mesh size 1/m, i.e. (12) is replaced by a finite dimensional fixed point
problem

x =F,(x)
whose solution is denoted by (x©@, x®, ..., ). The following tables contain the errors

max |x® — x9|

dgigm

for the iterates (x{, ..., x")7 generated by various iterative methods:

I Stirling’s method
1
i1 (3) with y = 3
11 Newton’s method
v the variable ¥ method
v the 1 + \/5 order method (10)
A the updated 1+ ./2 order method (11)
In V, VI we used y; = F(x,) as an additional starting
value.

Table 1. =4 m=20, x{=1,i=0 (1) 20

n I 11 111 v \Y VI

1 418,~3 923,—4 480,-3 923,-4 923,—4 923,—4
2 198,~6 207,~8 3.69,-6 199,-8 14l,—8 136,—8
3 433,~13 1.04,—17 217,-12 911,,—18 271,—18 2.49,,—18

The variable ; method TV started with y,: =0.5; then y, = 0.4965 and y, = 0.4957 were
computed.

For a less accurate initial value x, we obtained the following results:

Table 2. 7 =1/2, m =20, x{ = 1.2, i = 0(1)20

n 1 | 11 v v 4

I 1850—2  4llg=3 175,~2 41l,~3 4llp,—3 4113
2 4ll,,—5  424,—7  503,~5 4ll,~7  319,~7 3.0l,-7
3 1.88,—10 433,0—15 4.05,~10 387,—~15 141,15 125,—15
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Newton’s method is not Uptuual
mappings.
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