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Abstract 

In this paper., we study the semantics for the logics of preference based on possibility 
theory. Possibility distributions representing the preference between worlds are associ- 
ated with the possible world models for dynamic logics. Then the preference between 
actions are determined by comparing some measures of their consequences. We define 
different logics of preference by considering the comparisons of possibility measures and 
guaranteed possibility measures. Some properties of the proposed logics are studied and 
their relationships with deontic logics are also considered. Q 1999 Elsevier Science Inc. 
All rights reserved. 
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1. Introduction 

Deontic logic is the logic for reasoning about normative concepts. Deontic 
reasoning has been extensively exploited in ethics and legal philosophy since 
the ancient times. However, the first modern formal system for deontic logic is 
not established until the fifties [2]. Though the system is influential on the later 
work, there are arising many paradoxes when it is applied to practical deontic 

’ This is an expanded and revised version of Ref. [ 11. 
’ Fax: +886 2 Z17824814; e-mail: liaucj@iis.sinica.edu.tw. 

0888-6 13X/99/% - see front matter 0 1999 Elsevier Science Inc. All rights reserved. 
PILSOSSS-613X(98)10027-0 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82176199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


174 C.-J. Liau I Internat. J. Approx. Reason. 20 (1999) 173-1’90 

reasoning, so alternative systems have also been proposed since then for the 
resolution of paradoxes [3]. Among them, the Meyer’s approach is one of the 
most: interesting ones [4]. His system is based on the reduction to dynamic logic 
[5], so actions and propositions can be both represented and the distinction 
between “ought-to-do” and “ought-to-be” can be made clearly. This also 
clarifies much confusion caused by the inappropriate translation of practical 
deon tic reasoning to formal systems. 

On the other hand, while the different formal systems are mainly the con- 
sequence of foundational studies of deontic reasoning, the applications of 
deon tic logics to computer science and artificial intelligence has received more 
and more attention recently [6]. The applications include automated legal 
reasoning, electronic commerce, system specifcation, and so on. Since Meyer’s 
system is strongly based on dynamic logic and the latter is the logic for rea- 
soning about computer program, it is in particular suitable for the potential 
applications. 

In addition to the reduction to dynamic logic, another important feature of 
Meyer‘s logic is the use of a special propositional atom V, meaning the vio- 
lation of law (or something like sanction, punishment, etc.). This special atom 
is originally introduced by Anderson [7] for reducing deontic logic to alethic 
modal logic. By using the special atom, an action is forbidden if the execution 
of it will necessarily lead to states in which I’ holds, and it is permitted if not 
forbidden. Moreover, an action is obligatory if failing to executing it will result 
in violation of law. 

Though Meyer’s logic is successful in reasoning about normative actions, 
it is inadequate in the representation of action preference. However, the 
norms are usually relative and conflict with other ones, so we may have to 
make some decision choices between conflicting actions. For example, the 
violation of constitution is considered more serious than that of regulation 
laws, so we will try to obey the former instead of the latter provided that it 
is impossible to enforce both in the same time. Under the situations, we will 
need the capability of reasoning about action preference. In this paper, we 
will show that by extending Meyer‘s semantics with possibility theory con- 
structs, we can achieve the purpose. Intuitively, the possibility distribution 
will model the degrees of satisfaction of norms, and an action will be pre- 
ferred to another one if it satisfies the norms to a higher degree than the 
other. 

The rest of the paper is organized as follows. First, Meyer’s deontic logic 
and possibility theory are reviewed in Section 2. Then a logic for deontic degree 
is proposed and its semantics is presented. In Section 4, we consider a logic of 
action preference. Its relationship with deontic logics will also be studied. Then 
an alternative logic based on the minimal semantics (neighborhood semantics) 
of modal logics [S] is considered. Finally, we discuss some related works and 
further generalization in the concluding section. 
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2. Review of deontic logic and possibility theory 

2. I. Deontic logic as dynamic logic 

The system of Meyer’s logic is called PD,L. The elementary symbols of the 
PD,L language consist of 
1. A set of propositional letters, PV = b, q, Y, . . .} and a special propositional 

letter V not in PV. 
2. A set of atomic actions, A = {a, b, c, . . . } and three distinguished action sym- 

bols 0, u, and i 3. 
The set of well-formed formulas (@) and the set of action expressions (Z) are 
defined inductively in the following way. 

(1) @ is the smallest set such that 
l PVu{V}G@,and 
l if rp, $ E @ and c( E Z:, then TV, q v  Ic/, [cx]q~ E Qi. 

(2) C is the smallest set such that 
l A u (0, u, i} C C, and 
l ifa,PfCandcpEQi,thena;p,aup,cc&8,r.cp--,a/pEC. 

The wff +]lcp is abbreviated as (a)cp and the other classical connectives 
(T, I, A, 3, E) are defined as usual. The wff [cr]cp means that if action M. is done, 
cp will hold. The action expressions a; /?, a U 8, c&/< denote the sequential 
composition, nondeterministic choice, and simultaneous execution of a and p 
respectively, whereas cl means the nonexecution of CI and cp + CX//~ denotes that 
if cp holds then execute c( else execute fi. 

Note that the language of PD,L is not the traditional one for dynamic logic. 
First, the Kleene star a* is not in Z. This is because in the deontic reasoning 
domain, the r’epetition of some actions is not so usual as in computer program. 
On the other hand, the simultaneous execution and nonexecution of actions are 
nonstandard in dynamic logic. In fact, the two constructs significantly com- 
plicate the formal semantics of PD,L. Since the formal semantics is rather 
involved, we will only present the informal one based on the ordinary state 
transition semantics of dynamic logics. 

A Kripke model for PD,L is a quadruple ( W, k, 0 . 0, opt), where I+’ is a set 
of possible wcjrlds and opt is a nonempty subset of IV, meaning the best ele- 
ments of W, whereas kc W x @ and 0 . 0 : Z -+ Y( W’ x W) define the truth 
relation and the action denotation function, respectively. It is required that + 
and 0 . 0 must satisfy the following constraints. 
l For all w  E! W, cp: $ E @ and x E C, 

(I= 0) w  b v * w  e opt, 

3 The last symbol is added by me for later use. 
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(~lb+cpW-4=cpor+~~ 

(t= 4 w I= ‘cp - w F cp? 
(k 3) w I= MSD - vu E bO(WL4= cp, 

where 0~0(w) is defined as {u 1 (w, U) E: ~~0). 
l ForallwEW, a,pEC,andcpE@, 

(0 . 01): oS[ = 0, ou[ = W x W, [ii = { (wl w) 1 w  E W}. 
(0 .P): b u PO = 04 u UBU. 
(0~03): OF80 = 04 O 080 4 
(0.04): bW c 04 n UPU. 
(0 . 05): (Negated actions) 

1. ozo = OUi 

(0 . 06): (Conditional actions) 0~ + U/PO(W) = “‘(w) if w  ’ ” 
M(w) if w  F cp. 

As usual, the denotation of an action is just a state transition relation. How- 
ever, unlike standard compound actions in traditional dynamic logics, the 
denotations of E and c&b are not functionally determined by those of their 
component actions. This makes it impossible to define the denotation function 
only for primitive actions and then extend it to all actions. 

Then the deontic wffs are defined as abbreviations, 

Fmcl = [tl]V, 

P,r = ~F,cc = (a)~V, 

0,~ = F,E = [Z]V, 

for all o! E C. Here we use subscript m to indicate that the deontic operators are 
according to Meyer‘s definitions. 

Let S u {cp} & Qi, then cp is a PI&L-consequence of S, denoted by S kpD,L cp, 
iff for all PD,L models and w, w  + I,+ for all I$ E S implies w  b q. 

To facilitate the comparison between PD,i: and the logics we will develop, 
we use a slight variant of it and still call it PD,:L. In the variant, we assume the 
deontic operators are primitive logical symbols and drop the propositional 
atom V, so the formation rules for the wffs arl: as follows: @ is the smallest set 
such that 
l PV c @, and 
l if v, $ E @ and tl E C, then lcp; cp v $, [a]q O,,,M, P,ol, Fmcl E @. 

4 i.e. the relational composition of 0~0 and I/lo 
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As for the semantics, the clause (k 0) is replaced by three constraints for the 
deontic wffs: 

(k 0.1) w  k F,a w  Vu E ~aO(w),u 9 opt, 

(/= 0.2) w  k Pmol w  324 E ~aO(w),u E opt, 

+ 0.3) w  k o,G1 e vu E OaO(w), u $2 opt 

Although the variant is less expressive than the original PD,L, we assume the 
propositional atom V is mainly used in the definition of deontic operators, so 
the modification will be inessential to PD,L as a kind of deontic logic. The 
important point is that we keep the semantics unchanged. From now on, we 
will refer PD,L only to this variant. 

2.2. Possibility theory 

Possibility theory is developed by Zadeh from fuzzy set theory [9]. Given a 
universe W, a possibility distribution on W is a function n : W --+ [0, 11. A 
possibility distribution x on W is said to be finite-valued if the set 
{X(W) 1 w  E ,W} is finite. For some technical reasons we will discuss later, we 
assume the possibility distributions used in this paper are finite-v,alued. In 
general, we require the pseudo-normalization condition is satisfied. That is, 
SU~,,+~X(W) > 0 must hold. Obviously, 7c is a characteristic function of a 
nonempty fuzzy subset of W. Two measures on W can be derived frorn n. They 
are called possibility and necessity measures and denoted by l7 and N, re- 
spectively. Formally, II, N: 2w --+ [0, l] are defined as 

J3‘4 =z 2; 4wL 

N(A) =: 1 - lZ(ii), 

where iii is tlhe complement of A with respect to W. Another measure, called 
guaranteed possibility and denoted by A, is defined as 

A(4 = 2; 4~1, 

in Ref. [lo]. For convenience, we assume sup 0 = inf 0 = 0. 

2.3. Two viewpoints of the semantics 

What distinguishes the semantics of PD,L from ordinary dynamic logic is 
the component opt. We can consider this component from two different 
viewpoints. I[n the first one, the possible worlds are divided into two levels by 
opt. The level 1 worlds are those in opt and the level 2 are those not. This 
means that lthe worlds in opt are preferred to those not. A natural general- 
ization of the semantics from this viewpoint is to allow multiple levels of 
division of tlhe possible worlds. This is essentially what we will do in the next 
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two sections. As for the second viewpoint, the set opt can be considered as an 
obligation (or a norm) in the sense that a state is in opt ifl‘ it meets the re- 
quirement of the obligation. In this sense, PD,L is a logic for :single obligation, 
so we can generalize it into one for multiple obligations. However, in the logic 
for multiple obligations, it is inevitable that mutually conflicting obligations 
may (exist in the same time and these obligations may be not equally important, 
so the further generalization is to allow multiple (and possibly conflicting) 
obligations with different degrees of importance in the semantics. This will be 
essentially the main topic of Section 5. The main role the possibility distribu- 
tions will play is to encode the degree of preference of possible worlds or the 
degree of importance of obligations. 

3. A graded deontic logic 

While deontic logics are relevant to reasoning with norms, we may be also 
interested in the more general logic of value concepts. For example, in the 
decision-making context, we may select some actions to do according to our 
preference. Most research on the logics of preference is based on the analysis of 
probability and utility theory. However, since possibility theory models or- 
dering relation in a natural way, it should be suitable to use the theory in the 
analysis of preference relations. In this section, we will first develop a kind of 
graded deontic logic, called GD,L, with semantics based on possibility theory. 
This logic, though does not involve with the Icomparison of action preference 
directly, may represent different degrees of permission, obligation and prohi- 
bition and will serve as a basis of prohairetic logics. 

The alphabet of GD,L is that of PD,L without Meyer’s deontic operators 
but with the addition of six classes of graded deontic operators O$ Pi, P-,, O,“, 
Pi', and q’ for all c E [0, I]. The formation rule for wffs of GD,L (@,) will be 
l PVC:@,,and 
l if VI, $ E @r and CI E Z1, then -lcp, q v $, [cc]cp, q lct E @I, where 0 = o”,,q,F,‘, 

O:', P,", or F,'" for all c E [0, l] 
The set of action expressions for GD,L (Cl) is simultaneously defined with @, 
by the same rules as in PD,L. 

The intuitive meaning of these graded deontic formulas is to represent the 
degree of obligation, permission and prohibition, respectively. For example, 
G”,cl means that doing CI is permitted at least to the degree c. 

A model of GD,L will be a quadruple (FV, ]=, 0 0, rc), where Wand 0 . 0 are 
defined as above, n is a possibility distribution on W, and b is as above except 
that the constraint (FO) is replaced by 

(b 4) w  b $a (resp. PICa) iff n(j~O(+v)) 2 c (resp. > c). 

(k 5) w  k F,"ct (resp. Fz”cr) iff w  /= +‘CI (Iresp. w  b TPR>'o:). 
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(+ 6) w  I= ~CI (resp. O,>“a) iff w  k Fi E (resp. F,>” cl). 

For any world w, the possibility value X(W) denotes the degree of “goodness” of 
w, so the graded deontic formulas reflect the degree of goodness of the states to 
which some action will lead. The GD,L consequence relation kGD,~ is defined 
analogous to + Pg,L, Note that according to the semantics, Fig is true means 
that tl is permrtted to the degree less than c, so the smaller the value of c is, the 
stronger the prohibition is. Since obligation of c1 is defined as prohibition of Cc, 
analogously, the larger the value of c is, the weaker the obligation is. 

A GD,L model can be viewed as a generalization of a PD,L one since the 
characteristic function of the subset opt in the latter can be seen as a (crisp) 
possibility distribution. Hence we can expect that it is more expressive than 
1p c?, t in t’ne rqnlesent<ian ot‘ deontic ?oxmuXas . me G&wing testit u etities 
the expectatio’n. 

Let us fix any c > 0. Define a translation mapping z1 : @ U C ---) @I U 21 

such that T( satisfies the following conditions: 
(1) (Basic condition): zr (p) = p if p E PV and ZI (a) = a if a E A U (0, II, i}, 
(2) (Action morphism): 

l 7h; Bi = 7, (4; 7, (B), 

l 71 (a IJ B) = 7, (~1 U ~1 (I?), 
. 71 (wq = 7I(=)&7l(P), 
l 71(M) = 71(@), 

l 71 (‘p -+ 4P) = 71(v) -+ 71(~)/7l(P) 

(3) (Classical morphism): 
. 71 (-v) = -7, (cp) 
l 71(cpv+) =71(v)v71($) 

l 7l(M) = [71(417l(cp) 

(4) (Deontic translation): ~~ (&or) = q lfcl for any tl E C and q = 0, P or F. 

Theorem 1. Ij’S U {cp} C_ @, then s ~PD,L q iff 71(s) kGL),L 71(P) 

Proof. The proof of the theorem rehes on the foIlowing lemma. 

Lemma 1. 1. For each PDJ model A4 = { W, k, 1.1, opt), we can fznd a GD,L 
model M’ = (W, I=‘, 0 . I’, TC such that for all cp E @, E c C and w E W, w + cp ifs ) 
w k/71(q) and otxj = ~7&)['. 

2. For each GD,L model A4 = (W, f==, 0 . [,7c), we can find u PD,L model 

M’ = (W, I=‘, 0 . I’, opt) such that for all cp E @, IX E C, and w E W, w k’ cp $f 
w k 71(q) and O@O’ = 071(x)0. 

Proof. First, we note that 71 is a l-l mapping, so for each cp E 71(Q) and 
01 E 71 (C), the inverse mapping 7;' is well-defined. 
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1. Given 44, we define M’ by 
l b’: for ~0 E z,(Q), w  t=‘cp iff w  kz;‘(cp), and for other wffs in @I, k’ can be 

defined arbitrarily subject to the constraints( k l)-( /= 6). 
l 0 . 0’: for c1 E 7,(C), iclo’ = o~;‘(oz)~, f or other expressions in Zcl, 0 . 0’ can 

also be defined arbitrarily subject to the constraints (0 ~I>-(0 . 06). 
l rc: z(w) = 1 if w  E opt, otherwise, n(w) = 0. 
Obviously, if A4’ is indeed a GD,L model, then it satisfies our requirement. To 
verify that M’ is a GD,L model, we must show that for all expressions in 
Q1 U C,, the constraints (/= l)<k 6) and (0 . 0 l)-(0 . 06) are satisfied. However, 
since for the expressions outside zl(@ U Z), we have the choic:e of freedom, it 
suffice to do verification for the set zI (@ U Z). The verification work is quite 
routine and we only consider a typical case with deontic formulas. If 
cp = T~(P,E) = Ql(cr), then by definition of M’, w  +’ cp iff w  k P,,,ct iff 
34 E ~mz~(w), t4 E opt iff n( 071 (cx)~‘(w)) = 1 > c (by the definition of rc and 0 I’), 
so (/= 4) is satisfied. 

2. From M, the A# is defined by 
0 b’: wb’cpiffw+z,(cp) 
l 0 . 0’: jja!O’ = ~q(ct)~ 

l opt={w~z(w)>c}. 
To verify that M’ is a PD,L model, we consider another typical case. If 
cp = I;;,,cI, then by definition, w  b’ 9 iff w  k F,‘rl(a) iff ZI(lzl(cr)l(w)) c c iff for 
all u E: OaO’(w), Z(U) < c, i.e. u # opt, so (/= 0.1) is satisfied. Cl 

Now, to prove the main theorem, assume S pmCL cp, then there exists a 
model M and w  E W such that w  I= IJ for all $ E S but w  k cp. By the lemma, 
we can also find a GD,L model which is the witness of ~~ (S) pGDCL zI (cp). The 
converse can be proved analogously, so this completes the proof. Cl 

We remark that if in the definition of 71, we replace Cl; with 0,:’ in the 
deontic translation condition for any c < 1, the result still holds. Therefore, 
each graded deontic operator behaves just like its classical counterpart. So 
what is the advantage of employing GD,L? Why are infinitely many deontic 
operators behaving in the same way not just redundancy? The secret lies on the 
interaction of the class of graded deontic operators. If it is known that QY. and 
P$I both hold where d 6 c, then we can reason that the degree of permission of 
c( is higher than that of /3, so we can compare the degree of permission, obli- 
gation and prohibition of different actions in GD,L. This will be helpful under 
the decision-making environment. 

4. A logic of action preference 

Though GD,L can represent the degree of permission, obligation, and 
prohibition of actions directly, the comparison of preference between actions is 
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not made explicit in the language. To exploit the full generality of our se- 
mantics, we I:an develop logics that include the comparative constructs di- 
rectly. 

To compare the preference between two actions, we will compare the re- 
sultant subsets of worlds after doing them. Now, given a possibility <distribu- 
tion on W and two subsets of W, A and B, there are at least four ways to 
compare them. Namely, we can define 

A >I B +==+ U(A) > n(B) 

A >z B +==+ d(A) > d(B) 

A >3 B +==+ d(A) > U(B) 

A >4 B +==+ II(A) > d(B), 

and we have A >3 B implies A >1 B and A >2 B which in turn imply the 
weakest A >4 B. In this section, we will explore a logic of action preference 
with binary connectives based on the orderings >1 and >2. The resultant logic 
will be called LAP. 

The basic symbols of LAP are those of PD,L without Meyer’s deontic 
operators, but with two binary connectives +l and ~2. Let Q2 and Cz denote 
respectively the set of wffs and action expressions of LAP, the formation rules 
for wffs are 
l PV C Qi,, and 
l if cp, tj E @, and c1 E C2, then ~cp, cp v  $, [a]cp E Q2, 
l IfaandBEC2,thencr~1B,a~zBEQj2, 
and the formlation rules for action expressions remain unchanged. The wff 
0! +i B is also written as p +i a for i = 1,2. 

The semantic models are those for GDJ, with ( j= 4) -(k 6) being replaced by 

(I= 7) w k u +I Biff bO(w) >I 080(w) 

Let +LAP denote the semantic consequence relation of LAP defined in a way 
analogous to PD,L. 

According to the semantics, c1 ~1 /? denotes a comparison of actions based 
on the optimistic view, so a is preferred to B if the execution of CI may lead to 
better worlds than p, whereas c1 +2 B is a comparison based on the pessimistic 
view since CI is preferred to jj’ only when c1 produces better res.ults than B under 
the worst condition. 

The basic properties of LAP are as follows. Most of these properties easily 
follows from possibility theory. For simplicity, we omit the subscript LAP 
from kLAP in the following propositions. 

Proposition 1. 
1. f= (u, Uw.2 :-1 p) = (02 +I 8) v (a2 +I P) 
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2. I:= (a, u o/2 -xl P) = (El +I P) A (M2 41 PI 

3. I:= (a,&az +-1 8) 1 (Ml +I P) A (u2 +-I P) 

4. I:= -(c&p k-1 P) 
5. I:= 1(a k-1 au B) 
6. 1,: c( t, p 3 -(E +I j) 

7. I,= (a;B, +I qP2) 1 @)(Pl +1 82) 

8. 1:: (p + q/u.2 +I p) = (P 3 c1, t1 p) A (-y 1 a2 +I B) 

The action preference wffs can be combined with the conditional action wffs 
to denote a decision choice action. More specifically, define 

a@1B=(a+1 B) + E/(M -il P + P/(0: u 8)). 

Then doing c( @I /I will mean doing c( or /3 selectively according to the optimistic 
preference relation +]. The same definition can be carried out for +2. 

We can also embody the unary deontic operators of PD,L by using the 
special actions u and 0 or the comparison between an action and its negation. 
Define the following translation mappings, z2, ~3, ~4 : Cp U C --+ @2 U C2 such 
that they all satisfy basic condition, action morphism, classical morphism, and 

T2(P&) = l(U +, Q(U)), t2(FmCI) = u *I Q(a), t2(Oma) := u *‘I q(a) 

-- 
T@&) = Tj(c1) +1 0, z3(&&) = 1(73(a) +-I 0), z3(U,a) == 1(23(N) +1 0) 

.- 

then we have the following result. 

Proof. The key step of the proof still depends on the model transformation 
between these two logics. However, strictly speaking, the translation mappings 
zi’s are not l-l any more. What we have is a weaker result. For cp, I+$ E @, we 
said that IJJ and I,+ are logically equivalent if for any PD,L model A4 and w  E W, 
w k ‘;D iff w  /= $, and for LX, /? E 2, we said that they are logically equivalent if 
for any PD,L model AI, ]CIO = jj?o. Then, we can show that if 
zi(cp) = zi($)(resp. pi = r;(p)), then cp and I,+ (resp. 01 and /3) are logically 
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equivalent. Thus, for the current purpose, we can again define the inverse 
mapping of ri by letting r;’ (cp) be an arbitrary element in the equivalence class 
that is mapped to q by ti. So, the model transformation process is just like that 
in the last proof. The main difference lies on the transformation between opt 
and rc. 
1. For the direction from a PD,L model A4 = ( W, t=! 0 . 0, opt) to a LA-P model 

M’ = (W, I=‘, 0 * U’JC), we just let rr be the characteristic function of opt as 
above. To ,show that M’ is indeed a LAP model when k’ and 0 0’ are defined 
according IO different ri’s, we consider the typical cases. 

(a) If cp := +u ~1 Q(X)) = tz(P,a), then w  ‘F’ cp iff there exists u E dozy 
such thalt u E opt iff U(jzz(x)[‘(w)) = 1 3 n(flui’(w)), so (k 7) is satisfied 
for this type of wffs. 
(b) If cp := zs(rz) +I 0 = z3(Pma) then w  i=’ cp iff there exists u E BEG such 
that II E opt iff n(Ors(a)[‘(w)) = 1 > n(i00’(w)), so (b7) is satisfied for 
this type of wffs. 
(4 If CP = ( ( ) -7 ~4 x >-I Q(E)) = r4(Pn2sr) then w  1’ cp iff there exists 
u E ~M[(JIY) such that u E opt iff H([Q(Lx)[‘(w)) 3 U(~24(co~‘(w)) since 
opt is nonempty and by (0. U5.1) and (0. Ul>, I43)U’(w)u 
Uz4(coU’(w) = w. 

2. For the other direction from a LAP model A4 = (W, k, 0 . 0, TC) to a PD,L 
model M’ ::= ( W, b', 1 . 0': opt}, we consider the three cases separately. 

(a) For 1:2, let opt = {w 1 z(w) = U(W)}. S ince our possibility distribution 
rt is finiie-valued, opt is nonempty. This is the technical reason why we 
restrict our attention to finite-valued possibility distributions. 5 Then we 
can show that w  k P,a iff ~(O~~(CI)~(W)) b II(W) iff there exists 
u E o@[‘(w) such that X(U) = n(W), i.e.u E opt since 7c is finite-valued. 
(b) For ~3, let opt = {w ( rc(~) # 0). opt is again nonempty since n is pseu- 
do-normal. We can prove that w  + P,,,a iff ZI( 0 rs (a) 0 (w)) > 0 iff there ex- 
ists u E iln~‘(w) such that X(U) > 0, i.e.u E opt. 
(c) For r4, we can use either one of the above two transformations. 
For example, let opt = {w 1 z(w) = n(W)), then w  b ,?‘,a iff 
ZZ(0rz(a)[(w) > ZI(o~(a)~(w) iff D([Jr2(a)U(w) =: II(W) iff there exists 
u E OZ~‘(IY) such that Z(U) = H(W), i.e. u E opt since 71 is finite-valued. 

The remaining part of the proof is completely the same as that for the last 
theorem. 0 

s A way to lift the restriction is to provide a finite model property for our logics. That IS, for any 
WIT 9, if we have a model and a world w such that w b cp, then we have a finite model and W’ in it 
such that ~4 k cp. Although we cannot prove the finite model property for these logics in the mean 

time, we strongly believe it holds. 
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The proof of the theorem shows how we can transform a multiple level 
preference model into a two-level one. The different translations of deontic 
formulas in LAP reflect the different ways we use in the transformation. In the 
first translation, we let optimal worlds be those with maximal degree of pref- 
erence, while in the second one, we let optimal worlds be those not minimal in 
the preference ordering. As for the third one, we can in fact take a threshold 
value, and let any worlds with degree of preference beyond the threshold be 
optimal worlds. 

The result also shows that LAP is indeed more expressive than PD,L in 
deontic reasoning. Since the optimistic action preference connective +.I is used 
in the definition of Meyer‘s deontic operators., it is expected that the same thing 
can be done for +2. For example, we can define 

02a = CT7 +2 cr, 

P2cx = y(c( +2 a), 

by the pessimistic preference connective. 
Furthermore, we can also define some derived modal operators by using the 

special action i. Let 

12a = ct +2 i! D2c( = E +2 i, 

then ii K (resp. f2ct) means it is weakly (resp. strongly) inclined to do X, whereas 
Dlcc (resp. D2a) means it is weakly (resp. strongly) declined .to do ~1. These 
derived operators should be useful for the representation and reasoning of 
agents’ mental attitudes in the agent-oriented programming [ 111. 

Before proceeding to a more general logic, we would like to consider an 
illustrative example. The example is originally given in the decision theory 
context by Savage [12] and recently cited in Ref. [I 31. 

Example 1 (Savage’s omelette example). The problem is abou.t the decision of 
adding an egg to a 5-egg omelette. The egg may be good or rotten and we have 
three available acts. 
1. aI: break the egg in the omelette. 
2. a2: break it apart in a cup. 
3. a3: throw it away. 

The possible outcomes of doing al are sI: 6-egg omelette (when the egg is 
good) or ~2: a wasted omelette (when the egg is rotten), those for doing a2 are 
$3: 6-egg omelette and a cup to wash or ~4: 5-egg omelette and a cup to wash, 
and those for doing a3 are s5: .5-egg omelettIe and a wasted egg or s,$ 5-egg 
omelette. Let SO denote the initial state, then .by our notation, this means that 
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1. 0~1O(So) = {Sl,S2), 

2. Oa2O(so) = {s3,s4), 

3. 0~3O(So) = {%,%). 
To denote the preference between possible outcomes of these acts, we use a 

possibility distribution rc such that rr(si) = 1, TC(S~) = 0, rr(s3) = 0.8, 7r(s4) = 0.4, 
rc(ss) = 0.2, n(sg) = 0.6. Then according to the semantics of GD,L, in state SO, we 
have Pi al, PF” a2, e” a3, e.’ a2, and e’ a3, but we do not have Eg ai for any 
c. This means that aI is fully permitted and not forbidden at all, whereas a2 is 
almost completely permitted and slightly forbidden and a3 is moderately per- 
mitted and forbidden. On the other hand, since in this case, all ai’s are mutually 
exclusive (i.e., no two ai’s can be done simultaneously), we have q =: a2 U a3, 
a2 = al u a3, and q = al u a2, so we have o”g.g al, but do not have 0; a2 or 0: 
a3 for any c. This means that only al is slightly obligatory, whereas a2 and a3 
are not oblig,atory at all although they are permitted to some degree. 

Let us turn to the semantics of LAP, then in so, we have al +I a2 >-, 03 and 
a2 +2 aI t2 u3. This means that from an optimistic view, al is the preferred 
action, whereas from a pessimistic one, the best choice is a2. In both cases, a3 is 
the worst choice. Furthermore, if we adopt the translation mappings ~2 or ~4, 
then we have 0, ul, F,,, u2, and F,,, a3, so only a1 is permitted (il. is even 
obligatory), and u2 and a3 are forbidden. However, if we use the translation z3, 
then all ai’s are permitted and none of them are obligatory or forbidden. 

5. A logic for action under conflicting obligations 

Recently, a logic for conflicting obligation has been proposed by Brown [14], 
in which the preference ordering is set between obligations instead of worlds, 
where an obligation is represented by a subset of possible worlds. Since the 
intersection of two sets of possible worlds may be empty, the conflicting ob- 
ligations can be represented in the framework naturally. Then four unary de- 
ontic operators and a dyadic comparative operator are defined. Their 
semantics based on the combination of quantifiers on the set of obligation and 
traditional de:ontic operators 0 and P. For example, one of them means for all 
obligations cp is obligatory. The formal semantic models of Brown’s logic are 
the so-called minimal models in modal logic [8]. 

In this section, we will propose an alternative logic for action under con- 
flicting obligations (LACO) by assimilating Brown’s idea into Meyer’s 
framework. 

The language is just that of PD,L (without Meyer’s deontic operators) with 
six classes of tmary deontic operators, (c)~? (c)A, (c)~, (c)f, (c)~, and (c),’ for 
all c E [0, 11, and six binary connectives, +-I (i = 1,2, j = P, 0, F). Let Q3 and 
C3 denote the set of wffs and action expressions for LACO respectively, then 
the formation rules for the wffs are 
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l I’V&&,and 
l ifcp, $ E @3 and a E 23, then -lcp, cp V ICI, [cc]~, (cJo~, (c)&, (~)~a, (c)ic~ (C)~CO 

(c)F+a E @3, 

l Ifccandp~C~,thena$p(i=1,2, j==P,O,F)E%, 
A model of LACO is then a quadruple (IV: b, 0 . 0, z), where W and 0 0 are 

defined as above. However, 7~ is now a possibility distribution on 9(W) such 
that rc(0) = 0, and k satisfies the constraints (i= I)-(b 3) and the following: 

(b 9): w  k (c)& resp. (~),‘a) iff n({S 1 S n IE~(w) # 0)) 2 c(resp. > c) 

(k 10):~ b (~)~a( resp. (c)ic~) iff n({S 1 S n iEO(w) = 0}) B c (resp. > c) 

(/= 11): w  b (c)+ (resp.(c)iZa) iff n({S ) S n Oai(w) = 0)) 3 c( resp. > c) 

(/= 12): w 1 CI *p fi iff {S 1 S n ~cco(w) f: 0) 
>; {s 1 sn [pi(w) f S)(i = 1,2) 

(k 13): 1~ k tl F: fi iff {S 1 S n jaO(w) =: S} 
>i {s 1 s n pi(w) = S}(i = I, 2) 

(k 14): w /= il *p /I iff {S 1 S n oEj(w) =: S} 
>i {s 1 sn ~jQ(w) = 0}(i= 1,2) 

In the semantics above, the set {S / S n Ix~(w) # S} include all obligations 
that permit the execution of IX in W, if we consider the possibility distribu- 
tion rr encode the degree of importance of these obligations, then 
II({S 1 S n 0~0 (w) # 0)) is just the degree of importance of the most important 
obligations that permit the execution of c(. Thus (C),X means that a is permitted 
according to an obligation with degree of importance at least c. Similarly, (~)~a 
denotes that a is obligatory according to an obligation with degree of impor- 
tance at least c, while (C)~CI means that a is forbidden according to an obligation 
with degree of importance at least c. Moreover, ct +y /I denote c1 is permitted by 
som’e obligation that is more important than those permitting /3, and Y +c /I 
means that all obligations permitting a are more important than those per- 
mitting p. The similar interpretations can be given to CI ~0 B and c( +f 8. 

Obviously, a LACO model is a generalization of a PD,L one if we consider 
the opt component in the latter as a single obligation. However, it is in fact also 
a generalization of a GD,L and LAP model. To see that, let us first prove a 
basic property in possibility theory. 

Lemma 2. 1. For each possibility distribution n on W, we canjind a 7~’ on 2w such 
that ,for each U c W 

n(u) = n’({s / s n u f S}). 

2. For each possibility distribution n on 2w, we can$nd a z1 on W such that fbr 
each U C W 
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II’(U) = zz({S 1 s n u # 0)). 
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Proof. 
1. The n’ is defined by 

n(w), 
d(S) = o 

I. 

if S = {w}, 
otherwise, 

for all S G W. 
2. The n’ is defined by 

n’(w) = Iz({S 1 w  E S}), 

for each w  E IV. 
Thus give a. GDJ or LAP model, we can easily find a corresponding LACO 

model by changing rc to rc’, and vice versa. By using the approach in the pre- 
ceding sections, we can also prove the similar translation results between GD,L 
(resp. LAP) and LACO. Let zs : Qii U Cl + (3s U C3 and 26 : @2 U X2-’ @3 U C3 

satisfy the basic condition, classical morphism, action morphism, and 

z5(Q) :I= (C)p%(@), t@g>Ca) = (c);%(a), 

zx(F,‘a) := 3g(<a), q(FICa) = ~T~(P~c’a)’ T&p) = -Ts(p), 

q(o;‘.a) = lT@g>%), 

T6(a +i p) = 76(a) +f 76(b). 

Then, we have the following theorem. 

Note that in the translation mapping r5, the graded deontic wffs Fia is 
mapped to a ~wff of the form T(c)pa’ instead of (c)Fa’. The former means that 
for all obligations with degree of importance at least c, a’ is forbidden, while 
the latter only says that there exists such an obligation, so if there are indeed 
some obligations with degree of importance at least c (i.e. U(2w) > c), the 
former implies the latter. The same remark is applied to wffs of the form Fg>‘x, 
Qga, and OR>“x. This means that in LACO, in addition to the graded deontic 
wffs in GD,L, we can also express some weaker notions of partial prolhibition 
and obligation. Furthermore, we have four additional binary connectives ~-0 
and +F (i = 1,2) that are not available in LAP. Thus, LACO indeed improves 
the expressive: power of GDJ and LAP further. 

6. Concluding remarks 

In this paper, the possibility theory and Meyer‘s semantics for deontic logics 
are combined1 to provide a semantics for action preference. We generalize 
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Meyer’s model step by step to provide the semantic basis for three logics. The 
logic GD,L can reason about graded normative behavior. In the logic LAP, we 
can compare the preference between actions and do decision choice according 
to the comparison. The third logic, LACO, is based on the semantics of con- 
flicting obligations. Our main theorems show that PD,L is less expressive than 
either GD,L or LAP in deontic reasoning, which in turn are less expressive than 
the most general logic, LACO. In what follows, we consider some related work 
and possible further research. 

6.1. Related works 

The deontic operators and preference connectives considered in this paper 
are all applied to actions. However, there have been volumes of works on the 
deontic and preference logics of propositions [3,15]. This kind of logics can also 
be considered in the present framework. 

First, for GD,L, wffs of the form ‘759 and q l,“(p can be added for 
q =: 0, F, P and cp E @. In the semantics, replace Gus by )qp/ =def{w 1 w  b q} 
and Cr by 140. Then when cp is a nonmodal formula, qp and o”,(p are just the 
wffs (cp II c) and (q N 1 - c) in possibilistic logic [16]. This also gives 
possibilistic logic a deontic interpretation. 

Second, for LAP, we can add wffs of the form q +t @ and interpret it as 
(cpl ::>I 11~91 for any wffs cp and $. Again, this type of wffs are just equivalent 
to those of another well-known logics, called qualitative possibility logic 
(QPL), developed by Farinas de1 Cerro and Herzig [17]. It has been known 
that QPL has close relationship with conditional logic and nonmonotonic 
consequence relation [18], so the extension of the present framework to 
covering conditional and defeasible obligal:ion will deserve further consid- 
eration. 

6.2. Further generalization 

In the above-mentioned semantics, a fixeNd possibility distribution is asso- 
ciated with a model, so the logics are of static: preference. However, there is no 
essential difficulty in associating different possibility distributions with every 
possible world. Then we can get a variable preference relation. We believe that 
this step is necessary in developing dyadic deontic logics. 

Second, in the present framework, the denotation of each action is a binary 
transition relation on the set of possible worlds. That is, we do not consider the 
action uncertainty. Though OU.~(W) d enote the all possibilities of doing c1 in w, it 
is not. known which world is more possible than others. In the further research, 
we can interpret ial as a fuzzy binary relation so that ANY is a possibility 
distribution or assign axe as a probability measure on W directly, then the 
expected payoff of doing a in w  can be estimated as 
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where @ and (4 are a kind of t-norms and co-t-norms, respectively. Then the 
preference between two action can be compared via their expected payoff. This 
will also provide a kind of decision-theoretic semantics for our logic. 

Third, the use of possibility theory forces our preference relation on possible 
worlds (or sets of possible worlds in the case of LACO) to be a connected 
ordering. This results in that we have only “do not care” incomparability (i.e. 
~(w > U) A ~(u > w)) but do not have “do not know” incomparability. This is 
indeed a limitation of our semantics, however, it can be easily overcome by 
allowing partial ordering between worlds. But the semantics then have to be 
written in qualitative terms. For example, w  t= c( +I /I iff there exists u 6: ]u[(w) 
such that for all v E ]/?o(w), u > v, where > is a partial ordering between 
worlds. 

Forth, our system is only for single agent. To model multiagent environ- 
ment, we must associate a preference relation for each agent in the model, then 
some actions, such as “request” and “commit”, that will change the agents’ 
preference can be considered in the framework and it can serve as a semantic 
basis of agent-oriented programming [II]. Moreover, the interference of dif- 
ferent agents will change the choice of decision makers just like the situations 
analyzed by game theoreticians. These problems will all be considered in our 
long-term goad to the integration of different mental attitudes in a logical 
framework. 

Finally, because the paper mainly concentrate on the semantic comparison 
of different logics, the proof-theoretical aspect of these logics are completely 
ignored. In fact, Meyer has provided an axiomatic system for PD,L. Since we 
have shown that the graded deontic operators in GD,L behave just like Meyer’s 
ones, we can obtain an axiomatic system for GD,L by replacing classical de- 
ontic operators with graded ones and adding some bookkeeping axioms like 
q’(x > Gu. if l!: > d. As for the axiomatic system for LAP, we believe the 
properties given in propositions 1 and 2 will provide a basis. The further de- 
velopment of these properties into an axiomatic system and the study of axi- 
omatic system for LACO are all interesting topics for future research. 
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