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Let M be a compact manifold without boundary, o be a fixed base point in M, 
g be a Riemannian metric on M, and V be a g-compatible covariant derivative on 
TM--the tangent space to M. Assume the torsion (T) of V satisfies the skew 
symmetry condition: g( T(X, Y), Y) m0 for all vector fields X and Y on M. (For 
example, take V to be the LeviCivita covariant derivative on (IV, g).) Also let Y 
denote the Wiener measure on W,,(M) = {o E C( [0, 11, M): w(O) = o}, and let 
H(o)(s) denote stochastic parallel translation (relative to v) along the path 
OE W,(M) up to time SE [0, 11. Given a Cl-function h: [0, l] + T,M, it is 
shown that the differential equation 6(t)=H(u(t))h with initial condition 
~(0) = id: W(M) -+ W(M) has a solution (r: Iw + Maps( W(M), W(M)pthe 
measurable maps from W(M) to W(M). This function (u) is a flow on W(M), i.e., 
for all t, T E Iw, u(t + z) = u(t) 0 U(T) v-a.s. Furthermore u(t) has the quasi-invariance 
property: the law (u(t)*v) of u(t) with respect to the Wiener measure (v) is equiva- 
lent to v for all 1 E Iw. This result is used to prove an integration by parts formula 
for the h-derivative a,J defined by a&w) = (d/dr)(,f(u(t)(o)), where f is a 
“C’-cylinder” function on f+‘(M). 6 1992 Academic Press, Inc. 

1. INTRODUCTION 

Let H denote the Hilbert space of absolutely continuous functions func- 
tions h: [0, l] + [w” such that h(0) = 0 and (h, h) = j: lh’(s)1’ ds < co. Recall 
the classical Cameron-Martin Theorem [CMl, CM2, Mar] which states 
that if p is the standard Wiener measure on W(rW”) = C( [0, 11, lRn) and 
h E H, then p is quasi-invariant under the transformation 

(0 -+ 0 + h): W(W) + W(W). (1.1) 
Furthermore, the Radon-Nikodym derivative is given by 

&(o+h)/&(o)=exp -j: h’(~).&(s)-+j: Ih’(s)l”dr), (1.2) 
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where SA h’(s). do(s) is an It6 stochastic integral, see [K3, Theorem 1.2, 
p. 1131. The purpose of this paper is to prove the analogous result for the 
Wiener measure on the path space of a compact Riemannian manifold. 

Let (M, g, V) be given, where M is a compact manifold without bound- 
ary, g is a Riemannian metric on M, and V is a g-compatible covariant 
derivative on TM (see Section 2.) Fix a base point o EM and a Cl-function 
h: [0, l] -+ ToA4 ( = tangent space of M at o) such that h(O) = 0. Let v 
denote the Wiener measure on the path space W(M) = C( [0, 11, M) 
which is concentrated on the set of based paths WOW) = 
{co E W(M): W(0) = o E M}. Let H(w)(s) denote stochastic parallel transla- 
tion (or horizontal lifting) along w (relative to v) on the interval [0, s], see 
Section 3, and in particular Theorem 3.2. (Notice that H is really an 
equivalence class of processes with two processes equivalent if they are 
equal v-a.s.) With the above data, define the “vector field” (Xh) (or more 
precisely an equivalence class of vector fields) on W,(M) by 

X”(o)(s) = H(o)(s) h(s). (1.3) 

Notice that for each o, X”(o) is a vector field along the curve o. Hence, 
it is reasonable to interpret X”(o) as a tangent vector at o E. W,(M). See 
Malliavin [Ml, M3] for some proposed methods of defining the tangent 
space (TW(M)) to W(M) and equipping it with a Riemannian metric. Also 
see Remark 2.3, where it is pointed out that the map h + X”(o) is an 
isometry with respect to the “natural” metrics on H and T, W,(M). 

Given such a vector field Xh, it is natural to try to construct its flow. In 
other words, one wants to find a function 0: [w + Maps( W(M), W(M)) (the 
measurable maps from W(M) to W(M)) which solves the initial value 
problem, 

4t)(u) = Jodt)(o)) with o(O)(w) = o, (1.4) 

at least for v-almost every OE W,(M). (Note that the s-variable which is 
taken to be the parameter for paths in W(M) is now suppressed. This 
convention will be used whenever possible throughout this paper.) 

Remark 1.1. If M= [w”, with the usual metric and covariant derivative 
and o=O, then Xh(o)(s)=h(s) under the natural identification of TOY 
with [w” x [w”. For this case one easily solves (1.4) to find 

a(t)(w) = w + th, 

which at t = 1 is the transformation (1.1) used by Cameron and Martin. 
The reader is referred to Example 5.1 for the more general Lie Group cases 
where one can still explicitly solve (1.4). 
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Because of the above remark it is reasonable to consider a( 1 ), where a(t) 
solves (1.4), as the generalization of the transformation (1.1). Now assum- 
ing the existence of a solution (a) to (1.4), it is natural to ask whether the 
map a(t): W(M) --f W(M) leaves the Wiener measure (v) quasi-invariant? 
In other words, is the law (vI z o(t),v) of cr(t) with respect to v equivalent 
to v for all t? Recall two measures v, and v are said to be equivalent it they 
are mutually absolutely continuous with respect to one another. Suppose 
for the moment v, = o(t),v is not absolutely continuous with respect to v. 
In this case J?(a(t)) is no longer well defined, since X”(w) was only 
defined up to v-equivalence. More precisely the equivalence class of the 
process X”(a(t)) will now depend on the particular representative chosen 
for Xh. This certainly renders Eq. (1.4) meaningless. Therefore, the issues of 
existence and quasi-invariance of solutions to (1.4) are inseparable. 

Because of the difficulties discussed above, it will be beneficial to reinter- 
pret the meaning of (1.4). The modification is as follows. First, define the 
coordinate functions go(s): W(M) -+ A4 by a,(s)(w) = w(s) for each 
SE [0, 11. We now say a solution to (1.4) is a path (a(t) for t E Iw) of 
M-valued semimartingales solving 

&(t)=H(o(t)).h with a(O) = (T,, (1.5) 

where H(o(t)) is the stochastic parallel translation (or horizontal lift) of the 
M-valued semimartingale c(t). (We are now suppressing both the random 
sample path o and the s-parameter from the notation.) Of course the 
process a(t) must be suitably differentiable in the t-variable. Recall that 
the notion of stochastic parallel translation along any continuous M-valued 
semimartingale is always well defined, see Theorem 3.2 below. 

The reformulation in (1.5) of (1.4) has the advantage that it makes sense 
even if the flow does not satisfy the quasi-invariance property. It is now 
possible to summarize the main results of this paper. 

THEOREM 1.1. Let (AI, g, V, W(M), H, a,) be as above and suppose that 
h: [0, l] --f T,M is a C’-function such that h(0) = 0. Then there is a unique 
solution 0: R + “Brownian semimartingales” on M satisfying (1.5). 

See Definition 4.1 for the notion of a Brownian semimartingale. 
Theorem 1.1 is a consequence of Corollary 6.3. Two proofs of Corollary 6.3 
are given in this paper, one in Section 6 and the other in Section 7. The 
condition that h is C’ rather than an element of H is an unnatural restric- 
tion which is needed for technical reasons. I would expect the results in this 
paper to be true for all h E H. 

The next theorem is a combination of Theorem 8.1 and Theorem 8.5. In 
order to state the theorem, recall that a continuous M-valued process 
{Xsl SE rO, 1, defined on a measurable space Sz may be thought of as a 
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function from Sz to W(M). This function is still denoted by X and is given 
by X(o) = (s + X,(o)). I will write X, or X(s) interchangeably depending 
on which notation is more convenient. 

THEOREM 1.2. Keep the assumptions and notation in Theorem 1.1. 
Further assume that V is torsion skew symmetric (see Definition S.l), then 
v, = o(t); v (the law of a(t)) is equivalent to v, for all t. If a(t) is viewed as 
a function from W(M) to W(M), then a(t) solves (1.4) and is a flow on 
W(M), i.e., for all t, z E iw, a(t) oa(r) = a(t + z) v-a.s. Furthermore, if 
pt = dv,/dv is the Radon-Nikodym derivative of v, with respect to v, then p: 
is v-integrable for all r E iw. (See (8.16) and Theorem 8.5 for a formula for p,.) 

Remark 1.2. The Levi-Civita covariant derivative is an example of a 
torsion skew symmetric covariant derivative. See Example 8.1 for more 
examples. 

The integration by parts formula in the next theorem is an easy conse- 
quence of Theorem 1.2. Theorem 1.3 is a combination of Theorem 9.1 and 
Proposition 9.1. 

THEOREM 1.3.’ Keep the notation and hypothesis of Theorem 1.2. Let 
(., .) denote the inner product on L2( W(M), dv). For a function 
f: W(M) + [w let 8,f = (d/dt)l,f(a(t)): W(M) + [w, ifthe derivative exists in 
probability. Then there is a function z(h): W(M) + Iw such that for all 
“C2-cylinder functions” f and g on W(M) one has the integration by parts 
formula: 

(a,.Lg)=(f, -a,g+z(h).g). 

Furthermore, there are constants E > 0 and K > 1 independent of h such that 
for all h #O in C’, v(eEC’(h)“‘h’1112) < K< 00, where Ilh’lj’=sA /h’(s)]* ds. 

See Definition 9.1 for the notion of a C2-cylinder function, and Eq. (9.2) 
for the explicit formula for z(h) involving the Ricci curvature and the 
torsion of the covariant derivative V. 

Remark 1.3. The analogues of Theorems 1.2-1.3 are valid if the Wiener 
measure (v) is replaced by a pinned Wiener measure on W(M), i.e., a 
Brownian bridge. See Driver [D3]. 

There have been numerous other nonlinear extensions to the classical 
Cameron-Martin theorem in the literature. The first such extension was by 
Cameron and Martin [CM3]. The later nonlinear extensions are for the 
most part done in the setting of Gross’ [Gr2] abstract Wiener spaces, see 

’ Leandre [Le] has recently proved this integration by parts formula directly using 
methods of Bismut. 

580/110/Z-3 



276 BRUCE K. DRIVER 

Gross [Grl], Kuo [Kl, K2], Ramer [Ra], and Kusuoka [Kul-Ku4]. 
The order is both chronological and by degree of generality. 

Results which are closer to those of this paper may be found in Albeverio 
and Hoegh-Krohn [AH], Shigekawa [Shl, Sh2] Frenkel [Fr], M.-P. 
Malliavin [ MM1 1, and Gross [Gr4]. All of these papers include quasi- 
invariant results for the Wiener measure (or the pinned Wiener measure) 
on the based (loops) paths of a compact Lie group. See Sections 5 and 10 
for a more thorough discussion of how the results in this paper relate to 
the Lie group and homogeneous space cases discussed in [AH, Shl, 
Sh2, Fr, MMl, Gr4]. Some other related references that the reader may 
wish to consult are Airault and Malliavin [AMl, AM2], Airault and Van 
Biesen [AVl, AV2], Epperson and Lohrenz [ELl, EL2], Getzler [Gel, 
Jones and Leandre [JL], P. Malliavin [Ml-M3], M.-P. Malliavin and 
M. Malliavin [MM2-MM4], and Pressley and Segal [PSI. 

At this point it should be pointed out that a majority of this manuscript 
is devoted to Theorem l.l-the existence of the nonlinear transformations 
o(t). Once Theorem 1.1 is proved, the quasi-invariance issue is quite easily 
settled with the aid of Girsanov’s Theorem [Gil-which is yet another 
extension of the classical Cameron-Martin theorem. 

The closest result in the literature (to the author’s best knowledge) relat- 
ing to Theorem 1.2 is the work of Cruzeiro [Cr]. Roughly stated, Cruzeiro 
proves the existence of flows for a certain class of vector-fields on the 
standard Wiener space. She also shows that these flows satisfy the quasi- 
invariance property. As stated, Theorem 1.2 involves a flow on W(M), 
rather than the path space W(rW”). However, by using the stochastic 
development of Eells and Elworthy and P. Malliavin (see, for example, 
[EE, Eli, Em, IW] and Section 3 below), it is possible to transfer the 
differential equation (1.4) or (1.5) on W(M) to a differential equation on 
W(Iw”). (The underlying measure on the path space W(lQ”) will be the 
standard Wiener measure denoted by 11.) When this is done the “vector 
field” Xh on W(M) becomes a vector field Xh on W(rW”) (defined p-a.s.) 
which has the form 

Rh(o) = j C(w) do + 1 R(o) ds, (1.6) 

where o is now a path in W(Iw”), and C and R functions on W( [Wn) such 
that p-a.s. s + (C(w)(s), R(w)(s)) . is an adapted continuous End(R”) x [w”- 
valued process. This result is included in Theorem 5.1 and Proposition 6.1, 
where the reader may find explicit formulas for C and R. Roughly speaking 
Cruzeiro’s results could be used to prove the existence of a flow generated 
by (1.6) provided C- 0. But as a rule in our situation C is seldom zero. 
(A notable exception to this rule is when M is a commutative Lie group, 
i.e., R” or a torus.) It should be noted, however, as in [MMl], if one 
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knows a priori the existence of the flow for (1.6) and one has good control 
over the “infinitesimal density” (z(h)), then one can still use the technique 
of [Cr] to prove the quasi-invariance property. This technique is not used 
in this paper. We will only use the more standard Girsanov theorem. 

As with Eq. (1.4), it is better to first consider Rh as inducing a flow on 
the space of KY-valued semimartingales rather than on W(llY) itself. That 
is, one should consider the equation 

“(t)=jC(w(t))dw(t)+jR(w(f))ds with w(0) = 6, (1.7) 

where w(t) is now a path of &V-valued semimartingales, and b is a standard 
R”-valued Brownian motion. (For example, b(s) could be the coordinate 
process on ( W(W”), p), b(s)(w) = o(s).) Equation (1.7) is solved in 
Theorem 6.1. The idea of the proof is simple. First assume that w(t) is a 
Brownian semimartingale, that is to say, w(t) = j O(t) db + 1 a(t) ds, where 
for each t in R, (O(t), cc(t)) is a continuous adapted End( R”) x KY-valued 
process. The initial condition w(0) = b implies the initial condition 
(O(O), cc(O)) = (Id, 0) for (O(t), CI( t)). Now insert this form of w(t) into (1.7) 
to find the equations 

d(t)= C(w(t)) O(r) with O(0) = Z, (1.8) 

and 
k(t) = C(w(r)) a(t) + R(w(t)) with a(O) = 0. (1.9) 

These equations are then solved by a modified Piccard iteration scheme. 
We can now explain how the torsion skew symmetry condition enters 

into Theorem 1.2. First it is shown that proving quasi-invariance for w(t) 
proves quasi-invariance for a(t), see Theorem 8.2. It is easy to see that in 
order for the law of w(t) to be equivalent to p ( = Wiener measure on 
W(R”)), requires w(t) to have the same quadratic covariation as 6, see 
Lemma 8.1. But this implies that O(t) must be an O(n)-valued process, 
where O(n) denotes the orthogonal group on R”. But by (1.8), if O(t) 
is orthogonal for all t, then the process C(w(t)) must be so(n)-valued, 
where so(n) is the Lie algebra of O(n) consisting of skew symmetric real 
n x n-matrices. But the explicit formula for C (see (5.6)-(5.8)) shows that 
one can not expect C(w(t)) to be skew-symmetric unless the torsion tensor 
has the skew symmetry property in Definition 8.1. 

This paper is divided into ten sections. Section 2 introduces the differen- 
tial geometric notation used in the paper. This section also provides a 
“smooth” warmup to the stochastic calculations done later. The purely dif- 
ferential geometric Theorem 2.4 is also proved. (Theorem 2.4 is mainly used 
in the second proof of Corollary 6.3 given in Section 7.) Section 3 reviews 
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some basic definitions and properties about manifold valued semimar- 
tingales. It is in this section where the stochastic horizontal lift and the 
development maps are reviewed. Both of these constructions will play a 
crucial role throughout the manuscript. Section 4 is devoted to deriving the 
basic estimates needed for proving existence for the flows defined by 
Eqs. (1.5) and (1.7). (On the first reading the reader should probably omit 
the proofs in this section.) In Section 5 and the beginning of Section 6 we 
show that a solution to any one of the differential equations (1.5), (1.7) or 
(1.8)-( 1.9) can be used to construct a solution for the remaining two dif- 
ferential equations. The rest of Section 6 is concerned with proving exist- 
ence and uniqueness to Eqs. (1.8) and (1.9). Section 7 contains an alternate 
proof for existence and uniqueness of solutions to (1.5). Section 8 deals 
with the issues of quasi-invariance and the existence of flows on W(M) or 
W(W). Section 9 is devoted to the integration by parts formula for the 
h-derivative. Finally, in Section 10 (also see Section 5) we discuss some less 
satisfactory alternatives to Eq. (1.4). 

2. GEOMETRIC PRELIMINARIES 

In the beginning of this section I will fix some notation and review some 
basic facts from differential geometry. The rest of the section is devoted to 
studying the flow equation (1.1) in the smooth category. The computations 
done here will be used as a guide for the stochastic case. 

First, some general comments on notation. I usually use angled brackets 
(( )) to enclose the arguments of a function on which the function 
depends linearly. For example, I;(x)(a, b) would denote a function which 
is typically nonlinear in the x-variable but is linear in a for fixed (x, b) and 
linear in b for fixed (x, a). If the variables a and b are elements of a vector- 
bundle, then linear is to be interpreted as fiber linear. If F is a fiber bundle 
over a manifold M, then T(F) will denote the smooth sections of F. If 0 
is a smooth curve in A4 then T,(F) will denote the set of smooth 
sections along CJ. Suppose that f: A4 + N is a differentiable map between 
manifolds A4 and N, then the differential off will be denoted by f,. If N 
is a vector space, the differential &(6(O)) = (d/dr)l,f(o(t)) EN will be 
used frequently, where a(t) is a smooth curve in M. If both A4 and N 
are vector spaces, then we may define the differential f' by 
f'(m) u = (d/dt)l,f(m + tu) E N for all m and u in A4. Notice that f, maps 
TM to TN, df maps TM to N, and f' maps A4 to Hom(M, N), where 
Hom(M, N) denotes the space of linear maps from M to N. Finally, if CI 
and p are l-forms on a manifold M, the two form tl A /3 will be identified 
with the alternating multilinear map on TM given by 

a A B(u, w)=ci(v) ~~(w)-cY(w) ./?(v) 
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for all v, w E T,,,M and m E M. (Warning: This convention differs from 
Kobayashi and Nomizu [KN] by a factor of 2. This explains the factor of 
2 discrepancies between formulas quoted in this paper and those in [KN].) 

Throughout this paper the following data will be fixed. Let 
(M”, V, g, o, u,) be a smooth compact n-dimensional Riemannian manifold 
with metric g, a g-compatible covariant derivative V, a fixed base point 
o E M, and a fixed orthogonal frame u, above o. Recall that a covariant 
derivative V on TM is said to be g-compatible if Vg = 0, i.e., X(g( Y, 2)) = 
g(V, Y, Z) +g( Y, V,Z) for all X, Y, ZE r( TM). Also recall that an 
orthogonal frame at m E M is a linear isometry u: [w” -+ T,,,M. 

The principal bundle of orthonormal frames is denoted by 7~: O(M) + M 
or O(M) for short, where x is the canonical fiber projection. We are mostly 
interested in the path spaces I+‘,( IfX”), W,(M), and WJO(M)), where the 
following notation is being used. 

Notation 2.1. If (Q, q) is a pointed manifold (q E Q given) then 
W(Q)= CCC% 11, Q) is the set of continuous paths in Q and 
w,(Q) = {we w(Q): 40) = 4) is the subset of based paths. Also let 
IP’(Q)( W:(Q)) denote the set of smooth (based) paths in Q. 

Given a smooth path CJ in M and a smooth vector field X along 0, let 
VX/ds E r,(TM) denote the covariant derivative (T*VX of X, where a*V 
is the pull-back of V to sections along 0. Also if UE T,(C)(M)), 
define Vu/dsE T,(E) by (Vu/ds)(s) .t = (V/ds)(u(s)t) for all 5 in [w”, 
where E = Hom([W”, TM) is the vector-bundle over M with fiber 
E, = Hom([W”, T,M) for each m E M. Note because V is g-compatible, 
u(s)-l (V/ds)(u(s)) is in so(n)-the Lie algebra of O(n) consisting of 
skew-symmetric n x n real matrices. 

The covariant derivative V is equivalent to a connection on the principal 
bundle O(M). Namely, let o = CIJ’ be the connection l-form on O(M) with 
values in so(n) defined by o(u’(s)) = u(s)-’ (Vu/ds)(s) where u(s) is any 
smooth path in O(M). Furthermore, this o induces the covariant derivative 
V on the associated bundle TMg O(M) xocnjRn. 

The following definitions are standard, see Kobayashi and Nomizu 
CKNI. 

DEFINITION 2.1. The canonical l-form on O(M) is the P-valued l-form 
(9) on O(M) given by ,9(t) = u P1~*< for all 5 E T,,O(M) and UE O(M). 

DEFINITION 2.2. The standard horizontal vector fields B(a)( -) E 
QTO(M)) for a~ [w” are defined by the following: B(a)(u) is the 
horizontal lift of ua~ TM to T,,O(M) for each u in O(M). So B(a)(u) 
is the unique element in T,O(M) such that x,B(a)(u)= ua and 
o(B(a)(u)) = 0. 



280 BRUCE K. DRIVER 

Remark 2.1. For A ~so(n) and u in O(M), let u . A E T,O(M) denote 
the tangent vector U. A EE (d/&)1 0 UefA. With this notation it is easy to 
check that the decomposition of a tangent vector 5, E T,O(M) into vertical 
and horizontal components is given by 5,=u.o(r,)+B(9(5,))(u). 
One should also note that if u(t) is a smooth path in O(M) then o(ti(t)) = 
u(t)-’ (Vu/d)(t). Hence C(t) also decomposes as C(t) = U. (u(t)-‘(Vu/&)(t)) 
+KN4t))(u(t)). 

DEFINITION 2.3. (i) The curvature tensor of V is defined by 

R(X, Y) Z=V,V,Z-V,V,Z-Vc,, *,Z, 

where X, Y, ZE r(TM). 

(ii) The torsion tensor of V is defined by 

T(X, Y)=V,Y-V,X- [X, Y], 

where X, YE r( TM). 

(iii) The curvature form Q of o is the so(n)-valued 2-form on O(M) 
defined by 

Q( x, Y) = do( HX, HY) E (dW)H (X, Y), 

where X, YE T,O(M), and HX and HY denote the horizontal components 
of X and Y, respectively. (So HX=B($(X))(u).) 

(iii’) For all UE O(M) and a, b E [w” set Q,(a,b) = Q(B(a)(u), 
B(b)(u)) Eso(n). 

(iv) The torsion form 0 of o is the R”-valued 2-form on O(M) 
defined by 

0(X, Y)=dSH(X, Y)=dS(HX, HY) 

for all X, YE T,O(M) and UEO(M). 
(iv’) For all UEO(M) and a,bE[W” set @,(a,b)=O(B(a)(u), 

B(b)(u)) E R”. 

The next lemma summarizes some basic properties of curvature and 
torsion. 

LEMMA 2.1. Using the notation of Definition 2.3 one has the following 
relations: 

(i) 0 = d9 + o A 9 (first structure equation); 

(ii) Q = dw + w A o (second structure equation); 
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(iii) Q,(a, b)=u-‘R(ua, ub) u for all UEO(M), and a, bE(W”; 

(iv) Q,(a, 6) = us ‘T(ua, ub) for all u E O(M) and a, b E [w”. 

For a proof, see [KN, Sect. III, Theorem 2.4, and Sect. 111.51. 

DEFINITION 2.4. (i) A path UE P’(O(M)) is said to be horizontal 
if (Vu/ds)(s) = 0 or equivalently o( U’(S)) = 0 for all s E [0, 11. Let 
HWm(O(M)) denote the set of smooth horizontal paths in O(M) and 
HWc(O(M)) be the curves in HWm(O(M)) based at u,. 

(ii) The horizontal lift of a curve CJE W,“(M) is defined to be the 
unique curve u E HWz(O(M)) such that a(s) = ~0 U(S). Denote this path u 
by H(o), and call the resulting function H: W,“(M) + HWz(O(M)) the 
horizontal lift map. (Note that H(c)(s) u; ’ is the parallel translation 
operator along 61 rO, s, .) 

DEFINITION 2.5. The development map is the function I: W~(lR”) + 
HW,T(O(M)) given by I(w)= u, where w E W,“(P) is given and 
u E HW,y(O(M)) is the unique solution to the differential equation 

u’(s) = B(w’(s)Xu(s)) with u(0) = u,. (2.1) 

(Recall that U, E O,(M) is a given fixed frame.) 

The stochastic counterparts of the next three theorems will be crucial for 
this paper. 

THEOREM 2.1. The sets HWE(O(M)), W:(M), and W;(rW”) are in one 
to one correspondence. In particular the development map I: W;(W”) + 
HW,T(O(M)), and the projection 71: HWz(O(M)) --f W,“(M) are bijective, 
where 71 now denotes (by abuse of notation) the function x(u) = rt 0 u. Further- 
more, the horizontal lift map H is the inverse of 71, and w = Z-‘(u) is given 
by 

w(s) = js $(u’(s’)) ds’. (2.2) 
0 

Proof Let Z-‘(u) = w where w is given in (2.2). Suppose that u = I(w) 
with w E Wz(UY). By applying rc* to both sides of Eq. (2.1), it follows from 
the definition of B( . ) that rr*u’ = uw’. Therefore w’ = ~~‘rc.+u’ = 9( u’), 
from which Eq. (2.2) follows after remembering that w(0) = 0. We have 
just shown that I-’ 0 Z= id. Now if w = Z-‘(u) with u E HW,y(O(M)), then 
w’ = 9( u’) and B( w’)(u) = B( 9( u’ ) )(u) = u’ because u’ is horizontal. 
Therefore, u satisfies Eq. (2.1) so that u=Z(w)=Zol-‘(u). 

It follows trivially from the definition of H that 7c 0 H = id on W,“(M). So 
it only remains to show that Ho x = id on HWz(O(M)). But this is also 
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trivial, since the horizontal lift of a curve is unique once the initial frame 
is given. Q.E.D. 

For he We and HEW;, define Xh(a)~r,(TM) by 
X”(a)(s)=H(a)(s) ./z(s) for all s in [0, 1). One should interpret Xh as a 
vector field on W,“(M). It is natural to flow along the vector field X”. That 
is, given go E W,“(M) the flow along Xh starting at co is defined to be the 
solution 0: R -+ W,“(M) to the functional differential equation 

d(t) = P(o) E H(o). h, with a(O) = 0,. (2.3) 

Remark 2.2. At this point it would be more natural to work with 
H’-paths rather than smooth paths. A H’-path (c) in M is an element of 
W,(M) such that 0 has a “derivative in L’.” See Klingenberg [Kll-Kl3] 
or [D2, Sect. 31 for a precise definition, and the fact that these H’-paths 
form a Hilbert manifold. In this H’-setting it would be possible to prove 
that Xh is in fact a smooth vector field. Hence, by standard existence 
theorems for ordinary differential equations on Hilbert manifolds (see, for 
example, Lang [L] ) Eq. (2.3) will have a unique solution. Since our main 
interest is in the stochastic case I will not pursue this issue here. Besides, 
the spirit of this section is to elucidate the “algebraic” structure of these 
flow equations and not cloud the exposition with analysis. 

Remark 2.3. Again identifying r,“( TM) ( = smooth sections of TM 
along 0) with the tangent space to W,“(M) at 0 E W;(M), we may define 
a metric (G = Gg’ ‘) on W,“(M). Namely, if X and Y are two vector fields 
along C, set 

G(X, Y)=GgsV(X, Y)=J;g(F(s),z(s))ds. (2.4) 

Notice that G(Xh(o), Xh(o)) = (h, h), where (h, h) = f; Ih’(s)l’ ds. Hence 
the map (h +X”(a)): W,“(R”) + T, W;(M) = r:(TM) is an isometry for 
each 0~ W”(M). 

THEOREM 2.2. Assume the same notation as above, and let o(t) be a 
solution to the flow equation (2.3). Let u(t) = H(a(t)) E HW~(O(M)) and 
w(t)=Zpl(u(t))E We. Then w(t) and u(t) satisfy 

4t)(s) = -u(t)(s). j; (Q,(h, w’))(t, s’) ds’+ B(h)(u)(t, s) (2.5) 

and 

*‘(t)(s) = j; (Q,<h, w’))(t, s’) ds’ . w’(t)(s) 

+ (@,(h, w’))(t, s) + h’(s), (2.6) 
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where w’ = dwjds, 14 = dwldt, etc., and (Q,(h, w’))(t, s) = 
Q u(r, .,(h(s), w’(t)(s) > with similar notation for the 0, and the B(h) terms. 

Proof. I will give two proofs of this theorem. One using the covariant 
derivative V, and the other using the connection form cc). It will be this 
second proof which is more easily adapted to the stochastic case. The first 
proof is included for the reader who is more comfortable with covariant 
derivatives. 

First Proof: Start with the basic formula for ti: 

zi=u.~(ti)+B(9(ti))(u)=u. + ww x4, (2.7) 

see Remark 2.1. By definition of w and Theorem 2.1, u’ = B( w’)(u), and so 
by taking rc* of both sides of this equation one finds cr’ = uw’. Since u(t) is 
a horizontal curve in s for each fixed t, it follows by definition that 
Vujds = 0. Therefore (V/ds)(V/dt) u = [Vjds, Vjdt] u = R(a’, d-) u, and 
hence by Lemma 2.1, and the relations 6’ = uw’ and C? = uh, one has 

R(o’, 6) u=Q,,(w’, h) = -Q,(h, w’). (2.8) 

It follows by integrating (2.8) using Vu/dt = 0 at s = 0 that 

(u-‘$)(t,s)=jl:D.(w-,h)(t,s’)ds’ 

= - J‘ ’ Q,(h, w’)(t, s’) ds’. (2.9) 
0 

Combining Eqs. (2.7) and (2.9) along with the observation that S(G) = 
U-l ~*~=u-l($.u-l uh = h proves Eq. (2.5). 

Now to prove (2.6), first suppose that u(t) is any smooth curve in O(M), 
0 z n 0 u, and XE r,( TM) is any vector field along 0’. Then I claim 
(d/dt)(u-IX)= -u-‘((Vu/dt)u-’ X- VX/dt}. To see this, let li E O(M) be 
any horizontal lift of the curve 0, and define g(t) E O(n) by the equation 
u(t) = G(t) g(t). Then 

f (U-lX)2 
dt (g- 

‘a-1X)= -g-‘gg-‘~-‘~+g-’ f (a-lx). 

Since, li is horizontal, Vu/dt = @ and (d/dt)(ti ~ ‘X) = li- ’ (VX/dt). These 
two observations and the last displayed equation yield 

VU V 
=U --u-‘x+- 

dt “> dt ’ 
(2.10) 
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Applying (2.10) with u(t) replaced by u(t)(s) and X(t) replaced by 
a’(f)(s) gives 

d V0’ ).+‘=-[Cu-‘a’]= --u-‘.E.u-‘a’+u-l- 
dt dt dt ’ 

(2.11) 

Now using the definition of torsion, Lemma 2.1, and the relation (T’ = UW’, 
it follows that Va’ldt = V&Ids + T( 6, a’) = V6/ds + u0, (h, w’). Since 
s -+ u(t)(s) is a horizontal path in U(M), Vr?/ds = (V/ds)(uh) = uh’. So the 
last two equations show that 

u-l z=B,,(h, w’)+h’. (2.12) 

Equation (2.6) is now a consequence of (2.1 l), (2.9), and (2.12). 

Second Proof: Our starting point is still Eq. (2.7). We also borrow 
from the above proof the equations $(a) = u-‘c?= h and S(u’) = 
U- ‘a’ = w’. Since U’ is horizontal, w( u’) = 0. Therefore, 0 = (d/dt) w( u’) = 
dw(ti, u’) + (d/ds) o(G). By the second structure equation (Lemma 2.1) 
and again because U’ is horizontal, 52( ti, u’ ) = do( ti, u’). Hence 
(d/ds)o(zi)=Q(u’, ti)= -Q,(h, w’), so that 

o(zi)(t, s) = -j-i Q,(h, w’)(t, s’) ds’. 

This last equation is the same as (2.9), which as above yields (2.5). 
Now compute k’ = (d/dt) $(u’): 

=O(li,u’)-or\$(ri,u’)+h’. 

The last equality is a consequence of the first structure equation 
(Lemma 2.1). Because o( u’ ) = 0, one has 

ti’=O(ti,u’)-m(zi)9(u’)+h’= -o(ti) w’+O”(h, w’)+h’, 

which combined with (2.9) again proves (2.6). Q.E.D. 

Equation (2.6) may be considered as a functional differential equation 
for w’ by defining u to be Z(w). (Notice that w may be recovered by integra- 
tion from w’ since w(0) = 0.) Theorem 2.2 shows that given a solution (a) 
to the flow equation (2.3), then w = I-’ 0 H(a) solves Eq. (2.6). It will be 
shown in Section 5 that (2.6) is still valid for random paths provided all 
w”s are replaced by 6w, where 6w is the Stratonovich differential of w in 
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the s-variable. One possible method for solving (2.3) would be to solve 
(2.6) instead and then set ~7 = rc 0 Z(w). (This is what is done in Section 6.) 
The next theorem shows that c defined this way solves (2.3). The stochastic 
analogue of this theorem appears in Section 5. 

THEOREM 2.3. Suppose that w(t) is a smooth path in Ww(iWn) satisfying 
Eq. (2.6), where u in (2.6) is to be interpreted as Z(w). Zf o = 7c 0 Z(w), then (J 
satisfies the geometric flow equation (2.3). 

Remark 2.4. If we had been working with the Hilbert manifold of 
H’-paths and had shown that the maps Z and H are diffeomorphisms, then 
a direct proof of Theorem 2.3 would be unnecessary. 

Proof: To simplify notation set A = jb Q,(h, w’)(t, s’) ds’, and u = Z(w). 
We first show that u satisfies Eq. (2.5). Because of Eq. (2.7) it suffices to 
show that 9(zi)=h and w(C)= -A. Set t;=$(zi) and E=w(ti), then I 
claim that the pair (5 -h, A + E) satisfies the differential equations 

(E+A)‘=Q,(w’, r-h) 
and 

(t-h)‘=(E+A)w’+O,(w’,5-h). 

TO show this, compute E’ using the second structure equation: 

(2.13) 

(2.14) 

Because u’ is horizontal, w A o( u’, ti) = 0 and w( u’ ) = 0, so that 
E’=Q(u’,ti)=Q,(w’,~). Thus (E+A)‘=Q,(w’,5--h), which is 
Eq. (2.13). 

Now compute <’ using the first structural equation and $(u’) = w’: 

= O(u’, li) --o A 9(u’, l.i) + ti’. 

Using again w(u’) = 0 and also. that w satisfies Eq. (2.6) one finds 

~‘=O,(w’,5:)+O(ti)Q(U’)+lv 

= O”(w’, 5) + Ew’ + Aw’ + O,(h, w’) + h’. 

This last equation easily gives Eq. (2.14). 
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Equations (2.13) and (2.14) are linear differential equations for the pair 
(E+ A, 5 - h) with 0 initial conditions at s = 0. By uniqueness of solutions 
to linear O.D.E.‘s it follows that A + E z 0, and 5 -h ~0, and so (2.5) 
holds. The theorem is now completed by applying rc* to both sides of (2.5) 
to get 

f?(t)=71*ti(t)=u(t)h=H(o(t))h, 

which is (2.3). Q.E.D. 

I will end this section with a purely differential geometric theorem on 
the existence of “nice” extensions of covariant derivatives for manifolds 
imbedded in a Euclidean space. This theorem will be used in the next 
section to give an extrinsic proof of the existence of stochastic horizontal 
lifts. It will be use again, in a more serious way, in Section 7. We will need 
the following lemma to prepare for Theorem 2.4. 

LEMMA 2.2. Suppose that M is an imbedded submanifold of RN, 
i:M-+RN is the inclusion map, and g is a metric on M. Then 
j: O(M)+RNxHom(RN, RN) defined by j(u)=(ion(u), i’(n(u))ou) is an 
imbedding of O(M) in RN x Hom(R”, W”). Here i’(m): T,M+ IWN is given 
by i’(m)-pr,oi,, with pr, projection onto the second RN under the natural 
identification of TRN with RN x RN. Explicitly, this identzj’?cation is given by 

Proof (Sketch). Let k = N - n, where n is the dimension of M. Given a 
point m E M, there is an open neighborhood U of RN containing m, and a 
P-function F: U-r R“ such that UnM=F-‘((0)) and P”(p): RN-+ Rk 
is surjective for all p E U. Choose a smooth function 2: U + N x N-positive 
definite symmetric matrices such that g(v,, wX) = (g(x)u, w) for all 
u,, w, E T,M and x E U A M, where ( ., .) is the usual inner product on RN. 
Define H: U x Hom(R”, RN) + Rk x Hom(lR”, Rk) x Y, where 9’ is the 
set of all n x n real symmetric matrices, by H(x, A) = (p’(x), F’(x)A, 
A”g(x)A -1). Then check that j(O(M)) n [Ux Hom(R”, RN)] = 
H-‘({(O,O, O))), and that the differential of H is surjective for (x, A) E 
j(O(M)) n [ Ux Hom(R”, RN)]. The lemma now follows by the implicit 
function theorem. Q.E.D. 

From now on we will identify M with i(M), and O(M) with j( O(M)). 

THEOREM 2.4. Suppose that M is an imbedded submanifold of RN, g is a 
metric on M, and V is a g-compatible covariant derivative on TM. Then there 
is an open neighborhood Y c RN of M, a (?-function z: Y + M, a metric g 
on Y, and g compatible covariant derivative v on TY satisfying: 
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0) AM is the identity on M; 
(ii) zf i: M + Y is the inclusion map then i *g = g; 
(iii) suppose that Z: [w + TY is a smooth path then 7c*(VZJdt) = 

(V/dt)(n*Z), in particular tf Z: [w + TM is smooth then VZldt = VZldt. 

Let I- be the N x N-matrix valued l-form on Y such that V = d + r, and 
let P(y)=7r’(y): [WN+[WN (i.e., P(y)a=(d/dt)],n(y+ta)E[WN.) Then 
condition (iii) is equivalent to: 

(iv) PT=dP+n*T(.) P, moreexplicitlytfv,-(d/dt)l,(y+tu)isa 
tangent vector in Y, then 

(v) P(m) is orthogonal projection onto T,,,M for all m E M. 

Remark 2.5. The key consequence of condition (iii) is that if Z is a V- 
covariantly constant path in TY then Z = rc*Z is a V-covariantly constant 
path in TM. It is this property that will be used in Section 7. 

Proof: First we show that (iii) and (iv) are equivalent. Write 
at) = 8f),(,), where 6(t) E Y and T(t) E RN, similarly Z(t) = n,Z(t) = 
z(t),,,,, where z(t) = P(c?(t)) F(t) and a(t) = rco C(t). With this notation, 
then.*(VZ/dt)=(P(~)[2+r(6)z])Oand (V/dt)(nc,Z)=([i+r(&)~),. 
Therefore condition (iii) is equivalent to 

P(a)(3+r(6)z)=i+r(a)Z (2.16) 

for all functions F(t) in RN. Now write u = P(C), so that z = uZ and 
2 = (d/dt)(uZ) = tiZ+ u,? Using this expression for i and r(8) = (z*T)(G) 
in (2.16) one shows easily that condition (iii) is equivalent to (iv). 

To prove the existence of V, it is convenient to transfer the problem on 
Y to one on the normal bundle (E) of TM in T[WN. Let p: E + A4 be the 
fiber projection, and SE T(E) be the zero section of E. By the tubular 
neighborhood theorem [L, Chapt. 4, Theorem 91 there is an open 
neighborhood Y of M in RN and a diffeomorphism $: Y--t E such that 
pO$IM=idM, and II/oi=S. Define ~=po+, then I-C: Y-+M satisfies 
condition (i). 

Now suppose that 2 is a metric on Y, V is a covariantperivative on TY, 
and z:J+ TY is a smooth map. Let 2~ (I,-‘)*g, V=$,Vll/;‘, and 
Z= +,Z, then it is easy to check that condition (ii) is equivalent to 

(ii’) g = S*$, 

and condition (iii) is equivalent to 

(iii’) p,((V/dt)Z) = (V/dt)(p,Z) = VZ/dt, where Z =poZ. 
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Also the condition that v is g-compatible is equivalent to ? being g-corn- 
patible. Hence, if we can find a metric 2, and a &compatible covariant 
derivative (V) on TE satisfying condition (ii’) and (iii’), then the corre- 
sponding g and v will satisfy the conclusion of the theorem. 

We now construct ? and 8. First choose a fiber metric G on E, and a 
G-compatible covariant derivative D on E. This covariant derivative D is 
equivalent to a connection on E. Explicitly, we may define the horizontal 
subspace XT,E of T,E by 

f(O): 1/:(-l, l)+TEsmooth, V(O)=e,andT=O 

As is well known p* : XT,E + T,,,,M is a linear isomorphism. Let X’ also 
denote the horizontal lift operator: %(v)(e) -p* ( ,;keE (v) for YE T,,,,M. 
Recall that the vertical subspace YT,E of T,E is defined to be the 
Ker(p,,) and is isomorphic to EPce,. This isomorphism is given by 

e’+(e’),=-$ 
I > 

(e+te’) :Epts,-+VT,E. 
0 

Let K: TE + E be defined by icIPTE = 0, and K( (e’),) = e’ for all e’ E EPce,. 

Remark 2.6. It is easy now to check that p*TMg .ZTE, p*Eg VTE, 
and TE= XTEOYTE so that TEgp*TM@p*E, where p*TM and p*E 
denote respectively the pull-backs of TM and E over M to bundles over E. 

We are now in a position to define 2 and ?. Set g( l, r) = 
g(p,&p,q)+G(K(t),Jc(r)) for all &~ET,E and egE. Suppose that 
Z(t) is a smooth curve in TE, and e(t) -p(z(t)), define 

It is now easy to check that ? is 2 compatible and that (iii’) holds. Condi- 
tion (ii’) is also easily verified using S, u = S(u)(S(m)), where u E T,,,M. 
So we are now only left to prove (v). 

The fact that P(m) is a projection onto T,,,M for m E M follows from 
II 0 n= 71, and 7c = id on M. To show that P(m) is orthogonal it suffices to 
show that P(m)( T,,,MI) = (0). S’ mce II/ is by definition an isometry from Y 
to E, T,Ml= t&‘(V-T+(,,,) ) E . Because 7~ -p 0 $ and P(m) = n’(m) (n’(m) 
is 7r*, with base points forgotten) it follows that P(m)(T,M’)= {0}, 
since n,(T,MI)=p,ll/,ICI,‘(~T,,,,E)=p,(-YT,,,,E)= 10). Q.E.D. 
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Remark 2.7. The condition that v is g-compatible is easily seen to be 
equivalent to the condition 

de(.)=sl-(.)+l-‘r(.)s, (2.17) 

where S is being identified with the matrix function 8 satisfying 
g(o,, w,) = @(x)0, w) for all x E Y and u, WE [W”‘. 

3. ST~CI-IA~TIC PRELIMINARIES 

This section will fix the probabilistic notation and review some facts 
about semimartingales on manifolds. We will emphasize the non-intrinsic 
point of view because it facilitates the derivation of the estimates in 
Section 4. Throughout this section and the rest of the paper 
P-4 9, (~.)spo, P) will be a filtered probability space satisfying the “usual 
hypothesis” (or sometimes written as the usual conditions). 

USUAL HYPOTHESIS. (L&F-, {~},,,,P) is said to satsfy the usual 
hypothesis if the a-algebra 9 is complete with respect to’the probability 
measure P, the filtration { FS} is right continuous, and & contains all P-null 
sets. 

Given a measurable function J 52 + [w, the integral jn f(o) dP(o) will 
often be denoted by P(f ). More generally, for any A E 8, set 
P(f; A) = jAf(co) dP(o). If Z’CC is a sub-sigma algebra of 9, then 
P(f 1 2) denotes the conditional expectation off with respect to P and 2. 
Finally, if (X, X ) is another measurable space and F: Q -+ X is .9/X- 
measurable, let F, P denote the probability measure on (X, 2”) defined by 
F,P(A)-P(F-‘(A)) for all AE%. Recall that iff:X+R is a bounded’ 
measurable function then F, P(f) = P( f o F). 

Hopefully, the reader will not be confused by the overuse of the symbol 
52 for both the curvature form and the sample space 52. The symbol d will 
also have a dual meaning which is likely to be even more confusing: 
namely, the differential of a form or the It6 stochastic differential of a 
process (sorry). 

Suggested references for this section are Protter [Pr] for stochastic 
integration theory, and Emery [Em] for stochastic calculus on manifolds. 
Some other references are [Bil, Bi2, Ell, IW, Me, No, RW, SclLSc3] to 
name just a few. For the reader not familiar with stochastic calculus on 
manifolds perhaps Meyer’s short paper [Me] is a good place to start. 

We will adopt the notation in [Em], in particular f X6Y will denote the 
process (s + IS, X 6 Y) where the integral is the Fisk-Stratonovich stochastic. 
integral. In terms of It6 integrals, s X6Y= 1 XdY + $[X, Y], where 
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[X, Y] denotes the quadratic covariation of the semimartingales X and Y. 
One often writes dXdY for the differential of [X, Y]. The following 
assumptions will be in force throughout this manuscript. 

Standing Conventions. A process {X(s)} means an adapted process. 
A semimartingale is by definition (in this paper) continuous. (More 
generally, most processes appearing in this paper will be continuous.) 

DEFINITION 3.1. An M-valued semimartingale is a continuous M valued 
(E) adapted stochastic process X, such that for all f in C”(M), f(X) is a 
real (Sz, 9, (Fs}, P)-semimartingale. 

Remark 3.1. If X is an M-valued semimartingale and cp: M + Q is a 
Cm-function then Y = q(X) is a Q-valued semimartingale. 

Suppose that a(s) is a T*M semimartingale and X(s)= 77(@(s)) (by 
Remark 3.1, X is an M-valued semimartingale), where 71: T*M + M is the 
canonical projection. We would like to define the Stratonovich integral 
J c((6X). To this end, use the Whitney embedding theorem (see Ref. [Au] 
of [Sp]) to imbed M into [WN (for some N) in such a way that M is a 
closed subset of [WN. By the tubular neighborhood theorem (see Lang 
[L, Sect. IV, Theorem 9]), there exists an open subset V of [WN containing 
M and a smooth map p: V-t M such that pi,,,, is the identity on M. 
Set CL(s) =p*c~(s) which is a T*V-valued semimartingale, since 
p*: T*M + T*V is a Cm-function. With x = (x1, x2, . . . . x”) being the 
standard linear coordinates on [WN, E(s) = Cy!, a,(s) dx’l X(s), where 
a,(s)-cc(s)((a/ax’)l.,,,) =~(s)(p,((a/ax’)l,,,,)). Because the map 
(~-~(p,((a/ax’)l,,,,))): T*M+ [w is smooth, it follows that all of the 
c~i)s are [W-valued semimartingales. Hence, for every T*M valued semi- 
martingale (tl), there exists a finite collection of real semimartingales {ai>, 
and a finite collection of Cm-functions {xi} on M such that 
4s) = c a) ~X’lX(,,. 

DEFINITION 3.2. (i) Suppose that U(S) is a T*M valued semi- 
martingale and X is the M-valued semimartingale X(s) = %(cl(s)). The 
Stratonovich integral j c(( SX) is the real valued semimartingale 
z= C ifi(s) ~k’(X(s))), where {h(s)> is a finite collection of real semi- 
martingales, and {g’} is a finite subset C”(M) such that a(s)= 
cm) &ilx(s,. 

(ii) Suppose that cz is a smooth l-form on M and X is an M-valued 
semimartingale. The Stratonovich integral f c1(6X) is the process s 6(6X), 
where 6(s) = al X(s) -a T*M-valued semimartingale such that X(s) = 7T 0 Z. 

Remark 3.2. The fact that j a( SX) is well defined is proved in [Em, 
Proposition 7.4, Sect. (7.7), and Exercise (7.8)]. A direct proof of this fact 
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may be modeled on the proof of the more general Theorem 6.24 of [Em]. 
Because j a(6X) is well defined it follows that j a(6X) = j Cr(GX) = 
j Ci a;W’W), w h ere we are now using the notation preceding Delini- 
tion 3.2. This last expression for j @(6X) is the ordinary Stratonovich 
integral for j c~(GX) when X is viewed as an RN-valued semimartingale. 

Remark 3.3. If c1 is a smooth l-form on A4, then again by the Whitney 
imbedding theorem a may be written as a finite sum Cf, dg’ where the 
functions {f,} and {g’} are smooth functions on M. For c( = Cfi dg’, the 
Stratonovich integral j x(6X) is given by C jh(X) 6(g’o X). 

The following easily proved elementary properties of these stochastic 
integrals will be used routinely in the sequel. 

PROPOSITION 3.1. Suppose that X is an M-valued semimartingale. 

(i) Let a be a T*M-valued semimartingale above X (ii 0 a =X), and 
let Z be a real-valued semimartingale, so that n - Z. c( is also a T*M semi- 
martingale over X. Then f n(6X) = { Z 6( j N( 6X)). 

(ii) ForfEC”‘(M), f”,df(hX)=f(X(s))-f(X(0)). 

(iii) Suppose that cp: M+ Q is a C” mapping between two manifolds 
and that n is a l-form on Q. Let Y= q(X) (a Q-valued semimartingale), 
then s ((p*n)(dX) = j n(8Y). This rule may be written informally as 
(p* 6X= S(cp 0 X). 

I will now recall some facts about stochastic differential equations and 
stochastic parallel translation on manifolds, see [Em, Scl-Sc3]. The 
emphasis will be on the special cases used later in the paper. 

DEFINITION 3.3. Suppose that Q is a manifold and X R” + T(TQ) 
(a + X( a)(. )) is a linear map. Given an R”-valued semimartingale (w), a 
Q-valued semimartingale (q) is said to satisfy the Stratonovich stochastic 
differential equation 

(3.1) 

iff for all f in Coo(Q) 

d(f(q)) = wr(q)@w) with of(q)(a) zdf<X(a)(q)). 

More precisely, 

f(q(s))-f(q(O))= i j’ (X(ei>(ds’))f 1 ~W’(S’L 

i-1 O 
(3.2) 

where {ei}r= I is the standard basis for R”. 

580/110/2-4 
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DEFINITION 3.4. The support of the linear map X: R” + Z( TQ) is the 
union of the supports of the vector fields Xi= X(e,), iE { 1,2, . . . . H). So X 
is said to have compact support if each Xi has compact support. 

THEOREM 3.1. Suppose that (w, Q, X) are given as above and that X has 
compact support. Fix a point q0 E Q, then there exists a unique solution to 
(3.1) such that q(0) = qO. Furthermore, tf Q is an imbedded submantfold of 
an open subset (V) of [Wn, and J?I W + r( TV) is a linear map extending X 
(that is, X(a)(q)=R(a)(q) for all aE[W” and qEQ) then q is also the 
unique solution to 6q = X(6w)(q) with q(0) = qO. 

Remark 3.4. Theorem 3.1 is a consequence of the much more general 
Theorem 7.21 in [Em], which is a consequence of [Em, Theorem 6.411. 
Unfortunately, the proof of Theorem 6.41 contains an error. Namely, it is 
assumed that the normal bundle to an imbedded submanifold is always tri- 
vial. This is not in general true. For example, it is false if the manifold is 
non-orientable or more generally if one of the Stiefel-Whitney classes of the 
tangent bundle are non-trivial (see Milnor and Stasheff [MS, Lemma 4.21). 
Because of this problem and the fact that the proof of this special case is 
considerably simpler than the general case, a proof of Theorem 3.1 will be 
included. Undoubtedly, the oversight in [Em] can be lixed-probably 
using a modification modeled on the proof given below. 

Proof We start by first proving existence in the case that Q is an open 
subset of RN. For the moment it is not assumed that X has compact 
support. Write Xi(q)= X(e,)(q) as above. By It&s lemma, q solves 
6q = X( 6w)(q) iff q solves the standard Stratonovich differential equation 

dq = 1 Xi(q) 6~‘. 

This last equation may easily be transformed into an equivalent Ito 
stochastic differential equation 

dq=cXj(q)dw’+;c 
Y 

=ZX,(q)dw’+ff(~xi)(q)X:(q)dCw’,**l (3.3) 

with initial conditions q(0) = qO. Therefore, by standard existence and 
uniqueness theorems for equations of type (3.3) (with only minor modifica- 
tions due to Q being an open subset of RN rather than all of RN), there is 
a unique maximal solution q to (3.3) with possible explosion at a predict- 
able stopping time c. Furthermore the process q is a continuous semimar- 
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tingale on the stochastic interval [0, t), see Protter [Pr, Theorem 8, p. 199, 
and Theorem 38, p. 2471. 

Now to the general case. (Assume now that X has compact support.) By 
Whitney’s imbedding theorem we may and do assume that Q is imbedded 
in IWN. We now use the notation in Theorem 2.4 with M replaced by Q. 
Recall that E is the normal bundle to Q c RN, S is the zero section of E, 
p: E + Q is the canonical projection, Y is an open neighborhood of Q 
diffeomorphic to E, etc. Define a linear map 8: (w” -+ f( T(E)) by letting 
R(a)(e)=Z’(X(a)(p(e)))(e) be the horizontal lift of X(a)(p(e)) to e 
for each e E E. (To define this horizontal lift just choose any connection 
on E.) Then, for each UE [w”, q E Q, and eE E, 1 satisfies: (i) 
p,~<~)(e)=~<~)Me)) and (ii) s,x(u)(q)=X(u)(S(q)). 

By the special case proved above there is a unique solution with possible 
explosion time 5 to the equation 6e= R(Gw)(e), with initial condition 
e(0) = e,, where e, = S(q,) E E. Define q = p 0 e, and C = S(q). 

Claim. The semimartingale q =p 0 e solves 6q = X(6w )(q) and e = 
.G=S(q). Compute 6q=p,6e=p,X(Gw)(e)=X(Gw)(p(e))=X(Gw)(q) 
as desired where we used property (i) above. Now compute 66 = S, dq = 
S,X(Gw)(q)=X(Gw)(S(q))=T(dw)(d) by property (ii) above. So by 
the uniqueness of solutions to stochastic differential equations it follows 
that &=e, since t(O)=e(O)= S(q,). This proves the claim. 

Because e = S(p(q)), it follows that e remains in the zero section of E for 
all time. Let K be a compact subset of Q containing the support of X and 
set R= S(K). It is now clear that e must remain in the set R for all time, 
and therefore there can be no explosion. Thus 5 = cc a.s. This proves 
existence. 

We now prove uniqueness and the last statement of the theorem. 
Suppose that q is any solution to the dq=X(Gw)(q) with q(O)= qo. Also 
suppose that Q is an imbedded submanifold of V (an open subset of [WN) 
and R: aB” + Z(TV’) is a linear map extending X. Since, qE Q and 
R(u)(q)=X(u)(q) for all q in Q, it follows that q also satisfies 
6q= x(Gw)(q) with q(O)=q,. But this equation can be converted as in 
(3.3) to a standard It6 type equation which is known to have unique 
solutions. So the solution q must be unique, and can be found by solving, 
6q = X(Gw)(q) with q(0) = qo. Q.E.D. 

In order to state and prove the stochastic analogues of Theorem 2.1 it is 
necessary to discuss stochastic horizontal lifts or equivalently parallel 
translation. The stochastic differential equation for parallel translation does 
not quite lit into the context of the above theorem. So I will now treat 
this special case. We will use the notation in Section 2-recall that 
n: O(M) + M was the principal O(n)-bundle over M of orthogonal frames, 
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and o was the so(n)-valued connection l-form on O(M) constructed 
from (V). 

DEFINITION 3.5. A semimartingale U(S) in O(M) is said to be o-hori- 
zontal (or just horizontal) if J o(6u) = 0 -abbreviated as w(6u) = 0. 

DEFINITION 3.6. Suppose that ~7 is an M-valued semimartingale, then 
an O(M)-valued semimartingale u is said to be a horizontal lift of c if 
(i) KOU=CJ, and (ii) u is horizontal (w(&)=O). 

The next theorem is Proposition 8.13 of [Em] which guarantees the 
existence of horizontal lifts. A fairly easy proof of this theorem may be 
given using essentially only Theorem 2.4, Proposition 3.1, and Ito’s 
formula. Because the notation and techniques of the proof will be needed 
in Section 7, I will give a proof here. 

THEOREM 3.2. Suppose that r~ is an M-valued semimartingale and that u, 
is a O(M)-valued FO-measurable random variable such that n 0 u, = o(O). 
Then there is a unique horizontal lift (u) of (T such that u(O) = u,. (In all 
applications u, will be the fixed base-frame in O(M).) 

ProoJ First use Whitney’s imbedding theorem to imbed A4 into a 
Euclidean space (I@‘). Then choose a ( Y, 2, rt, 8, r, P) as in Theorem 2.4. 
For notational simplicity I will drop the bars from the notation. There is 
no danger in doing this, since Theorem 2.4 guarantees that V = V, and 
g = g on the domains of V and g, respectively. Recall that V = d + r on TY 
(when TY is identified with Y x W”) and P(y) = n’(y). (P throughout this 
proof will denote 7~’ and not the probability measure on ($2, F).) Let 
pr,: Yx RN+ RN be projection onto the second factor, (., .) denote the 
standard inner product on both [w” and IWN, and identify the metric gy on 
T, Y with the positive definite matrix g(y) such that g, (c(, p) = (g( y)a, B) 
for all CI, /I E IWN. Since MC RN is an imbedded submanifold, TM can be 
identified with 

((m, a)EMx RN 1 P(m)a=O}, 

and the frame bundle O(M) may be identified with 

{(m, U)EMX Hom(lQ”, RN): P(m)u=u, u”g(m)u=id}, 

see Lemma 2.4. 
We now can easily compute w in this non-intrinsic notation. For this 

suppose that U(s)= (CT(S), u(s)) is a smooth path in O(M), then 
o(U)= U-‘(VU/ds)=u-‘(u’+T(o’) u), where 0’ is the derivative as 
a tangent vector in M, while u’(s) = lim,,, [u(s + E) - U(S)]/& is the 
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Hom(W, RN)-valued derivative. (Notice under all of our identifica- 
tions that U’ = (a’, uk) E TMx T(Hom(W, IV)). Therefore in general 
d(u,, 4) =u -‘(A + T(u,)u), where (u,, A,)E TO(M), and u-’ - 
u~r&,~,~~. The form w may easily be extended to a smooth form (0) on 
all of Y x Hom(W, RN) by setting 

ti((u,, A,)) = u-l P(m)(A + r(o, > 24) = d’g(m)(A + r( u, > 24). 

Suppose that U(s) is an O(M)-valued semimartingale. In this extrinsic 
notation U(s) = (cr.(s), u(s)), where cr is a RN-valued semimartingale and u 
is a Hom(R”, RN)-valued semimartingale such that a.s.: 

(i) a(.) 
(ii) P(a( .)) u( .) = u( .); 

(iii) and u”g(o)u = id. 

The condition that U is horizontal (w(6u) = 0) translates to 

0 = fs(S(a, u)) = u-lP(a)(su + r(so) u) 

or equivalently to 

0 = utrg(o)(bu + r(h) u). 

Either one of these last two equations is equivalent to: 

(iv) P(a)(Gu + r(60) 24) =O. 

Claim. Let Q(m) =1-P(m), then under conditions (i)-(iii) above 
Q(a)(Su+r(Sa) u)=O. 

One way to verify the claim is just to notice that the form 
v(D,, A,) = Q(m)(A +r(u,) u) is identically zero on TO(M), and that 
Q(o)(& + r(&) U) = v(6U) which must be zero, since Stratonovich 
integrals are intrinsic objects. Alternatively, one could use Eq. (2.15) of 
Theorem 2.4 as follows. Because of (ii), Q(o)u = 0 and hence 

But by (2.15) 

SQ(a).u+Q(o)Su=O. (3.4) 

de(a)= -6P(o)= -dP(6a)=r(6a)P(a)-P(a)r(&T), 

so that 
6Q(a).~=r(6o)~-P(o)r(sa) ~=~(~)r(s~)~, (3.5) 

where (ii) was used once again. The claim clearly follows from (3.4) and 
(3.5). 
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As a consequence of the claim, condition (iv) in the presence of condi- 
tions (i)-(iii) is equivalent to 

(iv’) &+r(&) u=O, (3.6) 

because P(o) + Q(c) = Id. Therefore in order to Iind a horizontal lift we 
need only find a Hom([W”, RN)-valued semimartingale satisfying conditions 
(i)-(iii), and (iv’) above with u(0) = a,. At this point we have no choice but 
to define u as the unique solution to the linear Stratonovich differential 
equation (3.6) with initial condition u(0) = u,. 

Remark. One may expand (3.6) into the It6 form to get 

du= -T(o)(do) u+$[l-(a)(da) r(a)(da) -r’(o)(da, da)] u. 

(If the notation is not clear see Corollary 8.3 below.) Thus if 

Z= -,r I-(a)(dc) + k j [r(o)(da) JJa)(da) - I-‘(c)(da, dc)] 

(a Hom([WN, RN)-valued semimartingale), then (3.6) is equivalent to the 
linear stochastic differential equation du = dZu. By Theorem 7 of 
[Pr, p. 1971, the equation du = dZu with u(0) = U, has a unique solution, 
and hence so does (3.6) with u(O) = u,. Furthermore, this solution (u) is a 
semimartingale. 

It now remains to show that this solution u satisfies conditions (ii) 
and (iii) above. This is where the choice of a nice covariant derivative 
in Theorem 2.4 comes to play. Recall from Remark 2.7 that the 
Hom([W”‘, RN)-valued l-form rl E dg-gr- r”g defined on TY is identi- 
cally zero. (For the proof, it suffices that q vanishes on TM.) Now by 
assumption u, E O(M), so v E u”g(a)u = id at s =O. Therefore to show 
codition (iii) holds (v = id), it suffices to show that 6v = 0. Write g, for g(a) 
and compute 

6v = cwg,u + u” hg,g + utrg, 6u 

= -uUfrrtr(Go)g,u+ut’dg(Go) u-u”gJ(6o) u 

=utr[rt’(Ga) .g,+dg(6a) -gJ(b)] .u 

= utrq (6cJ ) u = 0, 

where we have used (by definition) that dg(bo) = 6(g(o)), the differential 
equation (3.6) for u, the differential equation for a” (the transpose of (3.6)), 
and the fact that q E 0. 

Let w = P,. u, where P, = P(o). To show that condition (ii) holds, we 
must show that w = U. Since w(0) = u(O) = u,, it suffices-by uniqueness 
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of solutions for linear stochastic differential equations-to show that w 
satisfies the same differential equation as U, i.e., that 6w + Z( 60) w = 0. 
For this just compute dw + Z( 60) w, 

dw+r(&) w=6P;u+P;6u+Z-(60) P,u 

=dP(&) u-p,r(dO) u+r(ib) P,u 

=[dP-P.Z’+Z.P](6a)u=O, 

where the last equality is a consequence of Theorem 2.4 which guarantees 
that the Hom(IWN, [W’“)-valued l-form [dP - P. Z+ Z. P] vanishes on TM. 

Q.E.D. 

Notation 3.1. Let YM, HYO(M), and YIR” denote the space of based 
M-valued semimartingales starting at o E M, horizontal O(M)-valued semi- 
martingales starting at U, E O(M), and IV-valued semimartingales starting 
at 0 E [w”, respectively. 

The next theorem, which is the analogue of Theorem 2.1, establishes a 
l-l correspondence between the three sets 9’M, HYO(M), and Yiw”. 
Recall the canonical l-form (9) on O(M) is given by 9(<,) = u-%c*~, 
for all r, in T,O(M), and for a E Iw” the horizontal vector-field B(a) at 
u E O(M) is defined to be the horizontal lift of ua E TM to T,, O(M). 

THEOREM 3.3, Define the maps H: YM -+ HYO(M), rc: HYO(M) -+ 
YM, I: Y R” + HYO(M), and I-‘: HYO(M) --, YR” as follows. Let H(a) 
be the horizontal ltft of a E YM to O(M) starting at u,, and x(u) = 7~ 0 u. For 
b E 9’ R”, let Z(b) G u be the solution to the Stratonovich differential equation 
&= B(Gb)(u) starting at u(O) = u,. Finally for UE HYO(M), set 
b=Z-‘(u) =j 9(6u). Then H and n are inverses to one another as are Z 
and ZZ’. 

Proof It is clear by the definition of H and rr, and the uniqueness of 
horizontal lifts that 7c 0 H = id on YM and Ho 7c = id on HYO(M). Now 
ZZ1~Z(b)+!J(6u)=~9(B(6b)(u)), where u=Z(b). But S(B(a)(u)) 
=a for all a in [w” and u in O(M), so that ZZ’oZ(b) ={ db = b. (If the 
reader is not convinced, he/she should write 9 = Cf, dg’ and redo the 
argument-the proof amounts to unwinding definitions.) 

Suppose that b = Z-‘(u) - J9(&). We wish to show that 
6u = B(Gb)(u). More explicitly, it must be shown for all f E C”(O(M)), 

W(u)) = (B(u)f)<ab) = (B(u)fKd j- %a~)) = x,<Su>, (3.7) 

where (B(u)f)(a) = B(a)(u)f and zf(t,) = (B($(<,))(u))J For 5 in 
TO(M) define Vt and Hc to be the vertical and horizontal components 
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of 5, respectively, then XY( 5) = df( H5 ). Let Yj-( <) = df( I’() = 
df(u . w( 5)). Since 5 = H{ + I’( for all { in TO(M), it follows that 
u”= pf+ Yf. (Notice that ZY and “y^, are both l-forms on O(M).) There- 
fore, for any O(M)-valued semimartingale we have that 

d(f(u)) = df(6u) = ~f(ik4) + Vf(SU). (3.8) 

Therefore (3.7) will be a consequence of (3.8) provided that Yf( 6~) = 0 
when u is a horizontal semimartingale. By choosing a basis {T,} for so(n), 
we may write o=C o”T, and vY=CgaeY’, where g,(u)=df(u. T,) 
(recall u . T = (d/d?)1 ,, uetT for TE so(n)). Therefore assuming u is horizontal, 

by Proposition 3.1(i), and the fact that cY( 6~) = 0 for all a. Q.E.D. 

Remark 3.5. Equation (3.8) is a stochastic analogue of (2.7). This may 
be made more explicit. Let p0 be the vertical vector fields on O(M) defined 
by ~Ju)=u. T,. For UEY’O(M), set WG~$(&) then (3.8) may be 
written as 

6u=pdy6u) fo++CwiBi(u), (3.9) 
a I 

to be interpreted as 6(f(u))=~,(~a(u)f)w”(6u)+~i(B,(u)f)6wi for 
all f e C”(O(M)). 

To end this section, the reader is reminded of the definition of an 
M-valued Brownian motion starting at o E A4 and its relationship to the 
standard Brownian motion on R”. 

DEFINITION 3.7. Let (M, g, V) be a Riemannian manifold equiped with 
a g-compatible covariant derivative V. The Laplacian with respect to V is 
the second order elliptic differential operator (A) on C”(M) defined by 

Af~sP(Vdf)=CVdf(E,,Ei>=C {E?f-df<V,Ei>}, 
I I 

where {Ei} is any local orthonormal frame. 

It will be useful to record the following method for computing Af: 

LEMMA 3.1. Suppose that f E C”(M) and a, b E IF!” then 

(i) (B(a) B<b)fi n)(u) = P df )<w ub); 
(ii) Cj Bf (j-0 X) = Afi 71, where Bi- B(ei) and the e, is the ith 

standard basis element for IV. 
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Proof (i) B(b)(u)fon:=df(71,B(b)(u))=df(ua). Thus 

(B(a) B(b)fon)(u)= (d/d~)J,df(e”~~“)(u)~h). 

Let Y(S) G esB<a>( u) . b, a tangent vector field along the curve a(s) = 
4e “B<“)(~)). Therefore, 

(B(a) Wf4W=$I df(W)) 
0 

=V @-(a'(O), Y(O))+ df z(O) 
( > 

=O'df)(~,B(a)(u), ub)=(VdfKua, ub), 

since Y(S) is a parallel vector field along cr. 
(ii) Leta=b=e,in(i)andsumoni. Q.E.D. 

DEFINITION 3.8. An M-valued semimartingale (a,) is a Brownian 
motion iff for all f E Cm(M), there is a real-valued local martingale Mf 
such that d(f(a)) = dMf+ $df(a) ds. 

The following theorem restates [Em, Proposition 8.26(iii)] which relates 
the standard Brownian motion on R” to Brownian motions on M. I will 
only give the easy direction of the proof here. The reader is invited to give 
a non-intrinsic proof of the other direction using the ideas and notation in 
this section. 

THEOREM 3.4. Let (F be an element of YM, then 0 is a Brownian motion 
zjjf b=Z-‘oH( ) IJ is a standard Brownian motion on R”. 

Proof (Easy Direction Only). Assume that b is a standard Brownian 
motion on R”, and set u = Z(b) and cr = rc 0 U. By definition of u satisfying 
6u= B(Gb)(u), for any FE Cm(O(M)) 

d(F(~))=B(db)(u)F+ $C (BiBjF)(u) d[b’, b’] 

= B(db)(u)F+ 4 c (BfF)(u) ds. 

Now if F=fon, where fEC”(M) we have by Lemma 3.l(ii) that 
C (@F)(u) = Af 0 z(u), so that the above equations becomes 

df(o) = B(db)(u)F+ fAf(o) ds. 

This shows e is an M-valued Brownian motion, since f B( db )( u) F = 
xi j (B(e,)(u) F) db, is a martingale. Q.E.D. 
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4. ESTIMATES AND DIFFERENTIABILITY 

In this section and for the remainder of the paper it is assumed, as in 
Section 3, that (Q, 9, { K},s, 0, P) is a filtered probability space satisfying 
the usual hypothesis. We further assume that this probability space 
supports an R/-valued Brownian motion {b(s)},, c0, i, with respect to the 
Filtration 9*. For example, take Q = W( Rn), P = Wiener measure, 
b(s): Q + R” to be given by b(s)(w) = w s ( ) , and E to be the augmentation 
by all P-negligible sets of the a-algebra generated by the maps b(s’) for 
s’ d s. Alternatively and more geometrically, we could take D = W(M), P to 
be the Wiener measure on W,(M) c W(M), E to be the augmentation 
by all P-negligible sets of the a-algebra generated by the maps 
a,(s’)(w) =o(s’) (WE W(M)) for s’<s, and hr Z-‘oH(a,). Notice that 
Theorem 3.4 guarantees that b is a standard R”-Brownian motion. (See 
Section 8 for a more detailed discussion of these two examples.) 

It is now useful to restrict the class of semimartingales to “Brownian 
semimartingales.” But first a word on notation and conventions. In the 
sequel we will be interested in processes (X(t, s)) indexed by s E [0, 1 ] and 
f EJ or R, where JE [ - 1, I]. These processes will usually be C’x” as a 
function of (t, s)-that is, P-a.s. the map (t, s) -+ X(t, s) is differentiable in 
the t-variable and the derivative T((t, s) is jointly continuous in (t, s). Typi- 
cally for each I E R, the process X(t) = X( t, .) will be a semimartingale. The 
following conventions on the differentials of such two-parameter processes 
are strictly followed in the sequel. 

Standing Conventions. For each t E R, let X(t) be a semimartingale in 
the suppressed s-variable, i.e., (X(~)(S)},~ to, ,, is an E-adapted semimar- 
tingale. Then dX( t) (6X(t)) d enotes the It6 (Stratonovich) differential of 
X(t) with respect to the suppressed s-variable. So if { Y(t)} ,t R is another 
one parameter family of semimartingales, then 

and 
s ’ Y(t) dX(t) is the process s + 5 Y(t)(s’) dX(t)(s’) 

0 

s 
’ Y(t) &X(t) is the process s + 

s 
Y(t)(s’) dX(t)(s’)+ k[ Y(t), X(t)](s). 

0 

DEFINITION 4.1. (a) Let V be a finite dimensional vector space and 
Hom(R”, Y) be the finite dimensional vector space of linear operators 
from IR” to V. A V-valued process (w) is a Brownian semimartingale if w 
is a continuous 9*;-adapted process such that there exists a continuous 
adapted Hom(R”, V) x V-valued process (0, a) such that w(s) = w(O) + 
J; O(s’) db(s’) +s; a(~‘) ds’. In the future we write this as w = w(O) + 
J 0 db + j a ds. 
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Remark 4.1. Assuming that w(0) = 0, the map (0, CX) + w = J 0 db + 
S a ds is injective. Indeed, if w = j 0 db + j a ds = 0, then the finite variation 
part (j a ds) of w is zero and so a = 0. Also the quadratic variations 
[A 0 w, 1-0 w] = j xi [A 0 OeJ2 ds = 0, where A E V* (the dual space of V) 
and {e,> is the standard basis for R”. This shows that i 0 0 z 0 for all 1 and 
so 0 = 0. (Of course this is true up to indistinguishability, a comment that 
will usually be omitted in the sequel.) 

DEFINITION 4.1. (b) Let Q be a manifold, then a Q-valued semimar- 
tingale (X) is said to be a Brownian semimartingale iff fo X is an R-valued 
Brownian semimartingale for all fo P(Q), 

The proof of the following proposition is easy and is left to the reader. 

PROPOSITION 4.1. (i) Suppose that X is a Q-valued semimartingale 
where Q is an imbedded submantfold of IWN. Then X is a Brownian semi- 
martingale in [WN in the sense of Definition 4.1(a) off X is a Brownian semi- 
martingale in Q in the sense of DeJinition 4.1(b). 

(ii) Suppose that o is an M-valued semimartingale, u-H(a), and 
w = Z-‘(u) = I-‘0 H(a), where I, H, and I-’ are as in Theorem 3.3. Then zf 
any of the processes X, u, or w is a Brownian semimartingale then so are the 
remaining two processes. 

Before starting on the estimates, it is necessary to introduce a number of 
different norms. First a convention. If V is a finite dimensional vector 
space, then Iv] will denote the length of v with respect to some norm (1. I) 
on V. Since V is finite dimensional, it will in general not matter which 
norm is chosen, and this choice is left to the reader if the norm is not given 
explicitly. For the following standard vector spaces it is convenient to make 
the following choices of norms. 

theN~~~~~-%rrn~d\ nyrm. 
is an n x m matrix, we put IAl = tr(A*A)‘j2 = 

(ii) If aE KY’, Ial will denote the standard Euclidean length of a. 

(iii) Suppose that (B, I . I ) is a normed space and f: [0, 1 ] + B, define 
fs*=w{ If(r <rds} and f*=ff. We also write Ifl, forf: 

DEFINITION 4.2. Suppose that f, is a continuous adapted stochastic pro- 
cess taking values in a normed space ( V). For p E [ 1, co ), define llfll sP(s) = 
Ilf 31 Lpcpj, and Ilf II sp = Ilf II spclI = Ilffll Lpcpj. Also let Sp( V) or just S* stand 
for the space of continuous adapted processes fx E I/ such that I/f )I sp < co. 

For spaces of Brownian semimartingales it will be convenient to define 
two types of norms. 
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DEFINITION 4.3. Suppose that w = s 0 db + J CI ds is a V-valued 
Brownian semimartingale and that p E [ 1, co]. Define 

(i) IIwII~~~~~ = 
R[J 

’ lO(s d ’ 
0 

s ]I-’ + j-1 Ia(s’)l ds’ ~~L1(p~, (4.1) 

and 

(ii) IIwII~~(~) = IIOIlsp~s~ + lIaIl~+~. (4.2) 

Again set IJwIIHP= IIwIIHPCij, I(wIIBP= IIwII~~~~~. Also let HP=ffP(Q and 
BP = BJ’( V) denote the set of V-valued Brownian semimartingales such that 
llwllw < cc and II w II BP < co, respectively. 

LEMMA 4.1 (Basic Inequalities). Let r, r’, p E [2, a] such that l/p = 
l/r + I/r’. Suppose that w is a V-valued Brownian semimartingale and Z is 
a Hom(W, V)-valued continuous adaptedprocess (more generally just locally 
bounded and predictable); then: 

(i) (Burkholder’s inequality) For p E [2, 00 ), there is a positive 
constant c,, such that for all SE [0, 11, I(wII,,(,) Gc,, IIwIIHPCsJ; 

(ii) IIwIIw d IIwIIBP; 
(iii) (Emery’s inequality) II J Z dwll np Q lIZI s7 . II w/I Hr,; 
(iv) For all s in [0, 11, 

)I II 
P 

’ Zdw d IIwll&s)~ P( 1 Z(s’)( “) ds’ 
HP(s) J 0 

’ 6 II wll &,, . J 0 
II4 &/, ds’; 

Now assume that Z is also a Brownian semimartingale and r, r’, p E [2, CC ) 
such that l/p = l/r + l/r’; then 

(iv’) II J Z WI f,+) < cp II wII&~~ . f”o IIZII ~pcssj ds’; 
(V’) /(~Zdwll.~~.Cr(lZ~lH~~lwl~~~,~CCrl~Z~l~~~~~~~~~‘; 
(vi) there are constants c,,,. such that IIZWI(~~ <c,,~~IIZ~~~~ I(~l1.r’; 

(vii) If Z is a process which is P-a.s. absolutely continuous with respect 
to ds, then IIZwllB~ < IIZ’IIP llwll~~ + IIZIIP II~Iw 

Proof (i) See Stroock [Stl, St2]. 
(ii) This one is trivial and is left to the reader. 
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(iii) The proof of a more general form of Emery’s inequality may be 
found in Protter [Pr, Theorem 3, p. 1911. I will give a short proof for this 
special case. 

By definition of II . (I HP, llJZWIHp= IIIZWLz+ I.WLIIILp(p) where 
IfI Lk = [j: If(s)l k ds] ‘lk. Therefore, 

G I/z* II L’(P) . II lwL2+ bI.III.qP) 

= IIzI,.Y’ IIWIIH”, 

where Holder’s inequality was used in the second inequality. 

(iv) 

= II l-w L2([0, s)] + IZ4,‘([0, s]) IILqP) 
HP(s) 

G II I-wLq[o,s), + Iz4.q[o,s,)llLP(P) 

G II WII B”(s) II IZI LZ( [O, s)] II U(P). 

Now 

II I4 LZ([O, s)] II ;P(p) = p 

by Jensen’s or Holder’s inequality. Finally 

~[zf]” ds’ = j-i lIZI &~~ ds’. 

The estimates in (iv) now easily follow from the last three displayed equa- 
tions. 

(v) By Holder’s inequality, IIZOIIsp < llZlls7 IlOll,,,, and IIZallsp < 
IIZll., Ilall,,‘. Therefore 

Ill II 
Zdw = llZOllsr+ IIZ4lSP~ IIz/I.~H~II.~~+ II~IIS~~I = /Izll.s~Ilwll.~~~ 

BP 

as claimed. 
The statements in (iv’) and (v’) follow immediately using (i), (ii), (iv), 

and (v). 
To prove (vi) and (vii), write Z=s A(db) +s y ds, where A is a 

Hom(W, Hom(W, V))-valued process and y is a Hom(W, Q-valued 
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process. Using the definition of 11. lisp and basic stochastic calculus one 
finds that 

llZwllfp= l/A(.) w+zoII,P+ Ilyw+Z~+~~~ll,r, (*) 
where A .O E XI=, A (e,) Oe,. Using Holder’s inequality on (*) it is easy 
to deduce that 

IIZWIIBI, d IIZIIS~ llwlIE’+ IIZII.~ IIWIIS’~ + ll4ls~ IlOllS~. 

Gc, IIZllB’IIWIIB”+Cr’IIzll.~Il4l.~‘+ llzllB’IlwllB~‘~ 

which proves (vi) with c,, rl = c, + c,, + 1. (The actual size of c,, rl will 
depend on the choice of norms put on the spaces V, Hom(W, V), and 
Hom(W, Hom(W, V)).) Assertion (vii) also easily follows from (*). 
Indeed, we now are assuming that A = 0 and y = Z’ so that (*) reduces to 

llZWllBr= IIzoIl.P+ IIz’w+z4l,P~ 
which clearly implies (vii). Q.E.D. 

LEMMA 4.2. For each finite dimensional vector space V, and p E [ 1, co], 
the spaces Sp( V) and BP(V) are Banach spaces. 

Proof. First note that as a normed space BP(V) z SP(Hom(W, V)) @ 
Sp( V), so it will suffice to show that Sp( V) is a Banach space. Now it is 
clear that Sp( V) is a normed space, so that only completeness remains to 
be verified. For this suppose that {f,},“= i c Sp( V) with C, IIf, )I sp = 
CH Ilf ,*I1 U(P) < co. Since, Lp(P) is complete, it follows that C,ff exists in 
Lp(P), and in particular P-a.s. C,, f ,*< co. Therefore P-a.s. f = C,, f, is a 
continuous function. By Holder’s inequality, the monotone convergence 
theorem, and the fact that f * <C, f x P-a.s., it follows that ilf II sp d 
C, II f, 11 sp < co so that f E Sp( V). Similarly, 

and this last expression tends to zero as N + co. Therefore f = C,"= 1 f, in 
Sp, and so Sp( V) is complete. Q.E.D. 

The next theorems will be used in proving existence, regularity, and 
differentiability of solutions to (1.5) and (1.7). But let us first record 
Gronwall’s inequality in the form that it is used in this paper. 

LEMMA 4.3 (Gronwall’s Inequality). Suppose that t,b(s), E(S), and q(s) 
are non-negative functions on [0, co) such that 

(4.3) 
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then 

(4.4) 

In particular ifq and E are constants then (4.4) reduces to 
$(s) < ceqs. (4.4’) 

THEOREM 4.1. Let X: IR” -+ IJ TRN) be a linear map with compact support 
as in Definition 3.4. For convenience write X(q)a for X(a)(q), and X,(q) for 
X( e,)(q), where { ej}r= 1 is the standard basis for R”. Assume that w and w are 
two Brownian semimartingales in B” = B”(RN) with canonical decomposi- 
tions w=jOdb+j d a s and W=j~db+~cCds. Let qOEIWN befixed, and 
define q and 4 to be the solutions to the It6 stochastic differential equations 
dq = X(q) dw and dg = X(q) d*, respectively, with initial conditions q(0) = 
q(O) = qO. Thenforpe [2, co), there isa constant K,, = K,( Ilwllel, jIWllgz, X) 
such that llq-~llHP<Kp/lw-WJIHPand llq-~l~BpdKp/lw-~ljBp. 

Proof: Since X has compact support, there is a constant C such that 
IX(q) - X(q)1 < C 1q - 41 and IX(q)1 d C for all q and 4 in RN. Also because 
X has compact support, the processes q and 4 remain inside any ball con- 
taining the support of X and the initial starting point q(,. Let Q = q - S, 
then 

Hence, 
dQ = (X(q) - X(q)) dw + X(q) d(w- w). (4.5) 

IIQII ;pcsj < Ibll~m . i‘ ,: 11X(q) - X(q)ll&,, ds’+ C Ilw - WII&s, 

G c I141;m. s 1 IIQII &,s,I ds’ + C llw - *II ;pcsj 

6 c IIwII;m ‘Cp. I ’ 0 
IIQII ;pcs,) ds’ + C Ilw - 41 ;pcsj, 

where Lemma 4.1 parts (iii) and (iv) were used in the first inequality, and 
(i) in the last. It now follows from Gronwall’s Lemma (Lemma 4.3) that 
there is a constant K, such that Ij q - 411 Hp < Kp II w - W/l Hp. 

We may now compute liQl[ BP using (4.5) and Lemma 4.1 repeatedly: 

llQll~~-ll(~~q)-~~~~~~+~~~~~~-~~II~~ 

+ II - -vq)b + X(ca(~ - aIsP 

~~Il~lls~IlQll~~+~II~--ll~~+~Il~ll~~IlQll.~+~ll~-~ll,~ 

= c IIWIIP IlQll,P + c IIW--wllBP 

,<C{c, ~I~~~PI/QIIHP+ llw--11~~) 

Mb{ llw--ll,p+ llw-*IIw} GK, llw--llw, 
as claimed, where K, has been increased in size appropriately. Q.E.D. 
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COROLLARY 4.1. Let Q be a compact mantfold which is assumed to be 
imbedded in RN for some N. Suppose that X: R” + I( TQ) is a linear map 
of R” to the smooth vector fields on Q. Let w = i 0 db + j a ds and 
W = s 0 db + j E ds be two Brownian semimartingales in Bw(l%“) as above, q0 
be a fixed point in Q, and q and q be the solutions to the Fisk-Stratonovich 
differential equations dq = X(q) 6w and dq = X(q) 6W, respectively, with 
initial conditions q(0) = q(0) = qO. Then for 2 <p < 00, there is a constant 
K =K (IIwIIP, w ,14p-q11” <K ,,/I -)zliW such that ll~-dlHp~Kp ll~-~WIl~~, and 

BP\ p’ w w BPr where the norms on Q are determined by the 
imbedding of Q into RN. 

Proof. We make use of the imbedding of Q in RN to write the 
Fisk-Stratonovich differential equations non-intrinsically as It6 equations. 
First extend X to a linear map from X: l%” + r( TRN) in such a way that 
B has compact support. Then the equation for q may be written non- 
intrinsically as 

dq = Z(q) dw + $F(q)(dq) dw = X(q) dw + $p(q)(X(q) dw) dw 

=X(q) dw + $ f: R’(q)(X(q) Oe,) Oe, ds 
i=l 

=X(q)dw+ Y(q)[O@O] ds, 

where Y(q)[A 0 B] = (l/2) C;= i p(q)(X(q) Ae,) Bera smooth vector 
field on RN with compact support. Here A and B are in End@“) and {e,> 
is the standard basis for BY. Let V= End( Rn) @ End(R”). The corollary 
follows from the above theorem with X replaced by 2: R” x V-r r( TRN) 
given by y(q)(a, v)=X(q)a+ Y(q)v (aE R” and DE l’), and w and W 
replaced by W and w defined to be W(s) = (w(s), J 0 @ 0 ds) and m(s) = 
(W(s), 10 @ 0 ds), respectively. Q.E.D. 

The next lemma is a version of Kolmogorov’s Lemma which will be used 
often in the sequal, see [Pr, Theorem 53, p. 171, and Corollary, p. 1731. 

LEMMA 4.4 (Kolmogorov’s Lemma). Let p > 1 and V be a finite dimen- 
sional vector space. Suppose f: J= [ - 1, l] + Sp( V) is a K-Lipschitz 
function, i.e., Ilf(t,)-f(tz)JISP<KItl--tzI for all t,, t,EJ=[-1, 11. Then 
there is a version off such that P-a.s. (t + f(t)): J+ W(V) = C( [0, 11, V) 
is continuous. In particular, there is a version of f such that 
((t, s) -+ f(t)(s)): Jx [0, l] + V is P-a.s. continuous. 

LEMMA 4.5. Let p > 1, and suppose that q: J+ Sp(lRN) is an II.11 ep- 
differentiable function and the derivative (4) is K-Lipschitz on J. Then there 
is a version of q such that P-a.s. the function (t, s) + q(t)(s) is C’, ‘. 
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ProoJ: First notice that the hypothesis implies llQ1lSp is bounded on .Z. 
Therefore, using the fundamental theorem of calculus in the Banach space 
Sp(RN) one finds 

=s 
II 

” lMt)llspdt dClt,-t,l. 
12 

So by Kolmogorov’s Lemma, we may choose a version of q and 4 such 
that P-a.s. the function (t + 4(t)) and (t -+ q(t)) is sup-norm continuous in 
W( W”). Assume that t 2 0 (t d 0 -may be handled similarly) and let 
ZZ= (0 = to < t, < t, < . . . < tk = t} denote a partition of the interval [0, t], 
and set In(Q) = c::d Q(ti)(ti+ I - t;). Again by the fundamental theorem of 
calculus and the definition of the Riemann integral, 

s(t) = 4(O) +mes!fl)+O Z,(4) in Sp(R”). 

By the definition of I(. II Sp, this implies that 

mes;;+O ldt)-4(0)-~A4)lm =o in Lp(P), 

where 1. I m denotes the sup-norm on W(W). Therefore, by choosing an 
appropriate sequence of partitions 17, with mesh(ZZk) + 0 as k + co, we 
can assume that 

lim 14(+9(WL,(4)1~ =O P-as. 
k-cc 

In particular this implies off a fixed null set independent of S, 

lim k+m Idt)(4 - 4(W) - L&)(s)l = 0. 

Therefore, by the definition of the [W-valued Riemann integral we find, off 
a fixed null set, that 

q(t)(s) = q(O)(s) + J; 4(r)(s) dz. 

But, this clearly implies that q is P-as. C’, ‘. Q.E.D. 

THEOREM 4.2. Let w(t) E Bm(W) for each t in J and assume C, E 
sup,,./ Ilw(t)llP < co. Assume for each p E [2, co): 

(i) the map t + w(t) is continuously differentiable into BP; 
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(ii) there is a constant K’ such that 11 w(t) - w( t’)ll gp < K’ 1 t - t’l and 
II@(t) - +(t’)ll Bp < K’ ) t - t’l for all t, t’ E J. 

Suppose that X: Iw” -+ r( TOWN) is a linear map with compact support, q0 E LQN 
is a fixed point, and for each t let q(t) be the solution to the It6 stochastic 
differential equation 

4(t) = -Vq(t)) dw(t) with q(t)(O) = qO. (4.6) 

Then there is a version of q(t) f or each t, such that U.S. the process (t --t q(t)): 
J+ W([WN) is continuous. Furthermore this version of q is as. C’, ‘, the map 
t + q(t) is differentiable into BP for each PE [2, co), and Q(t) is a Brownian 
semimartingale satisfying the stochastic differential equation 

4(t) = Wdt)) d+(t) + X’(q(t)Kdt)) dw(t). (4.7) 

Finally for each p E [2, co), there are constants K, = K,( C,, K’, X) such 
that 

llq(+qV)ll.~~Kp It--‘I, (4.8) 

and 
l14(t)-4(t’)lliw~Kp It--‘I. (4.9) 

Proof In this proof Kp will denote a generic constant depending only 
onp, C,, K’, and X. The value of Kp will vary from place to place. 

According to Theorem 4.1, there is a constant Kp such that 
/[q(t)-q(t’)llBP<Kp Ilw(t)-w(t’)ll.p<Kp It-t’1 which proves (4.8). By 
Burkholder’s inequality (Lemma4.1) 114(t)-q(t’)llSP<cP [[q(t)-q(t’)llBP, 
so that llq( t) - q( t’)ll Sp 6 K, It - t’l. Therefore by Kolomogorov’s Lemma 
(Lemma 4.4), there is a version of q(t) such that a.s. (t + q(t)): J+ W([WN) 
is continuous, and hence the map (t, s) + q(t)(s) is also continuous P-a.s. 
We now take q(t) to be such a continuous version. 

Let g(t) denote the solution to the stochastic differential equation 

4(t) = X(q(t)) d4t) + x’(s(t)K4(t)> dw(t) with 4(O) = 0, (4.10) 

where q(t) is the solution to (4.6). (I do not claim yet that 4 is the 
derivative of q.) 

Remark 4.2. Note that Eq. (4.10) has global solutions. To see this fix 
t and let W(t) ES X’(q(t))( .) dw(t), so that W(t) is a Horn@“, RN)-valued 
Brownian semimartingale. Also set J(t) s 1 X(q( t)) dG( t). With this 
notation Eq. (4.10) may be rewritten as 

4(t) = J(t) + j dw(t) 4(t) (4.11) 

to which one may directly apply [Pr, Theorem 7, p. 1971. 
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We now proceed by proving the following assertions: 

(i) both supteJ 114(t)llHP and SUP,,~ Ild(t)llBP are finite for all 
PE cz a); 

(ii) 
t,, f,eJ; 

(iii) 
t,, t,EJ; 

(iv) 
(VI 

Step 

there exists K, such that llQ(ti) - 4(tz)ll HP <K, It, - t, I for 

there exists K, such that llQ(ti) - Q(t2)/lBP <K, (t, - t, ( for 

4 is the derivative of q in the 11. II Hp norm; 
4 is the derivative of q in the 1) . )I gp norm. 

(i). By (4.10) and Lemma 4.l(iii) and (iv’) one finds that 

l-s 
l14(t)ll;P(s) d C II~(f)ll ;pcsj + C IIw(t)ll ;m j 

0 
114Wll~,,,~, ds’, 

where C is a constant depending on p, and the sup-norm of X and its first 
derivatives. If we knew l/4( t)ll HP(sJ were finite for each s, then it would 
followfromGronwall’sinequalitythat l/cj(t)ll,,pdK(C IIG(t)llHP, C IIw(t)llBm), 
where K is a function increasing in its arguments. This technicality is easily 
overcome by replacing g(t) by 4(t)” where d is the first exit time of the 
process Q(t) from a large ball. (It then follows from (4.10), that ljQ(t)“l/HP(Sj 
is also bounded.) By the same argument above it follows 

l14(~)“ll~P(s) < c II4~)“ll ;p(,y) + c IIw(~)“ll ;m . 5 ,: lMt)“ll ;,vcs,) ds’ 

G c llwll;,,,, + c IIWwl;cc . s ,: ll4(~Yll ;pcs,) ds’, 

for which Gronwall’s inequality yields 114( t)“ll HP Q K( C II I+( t)ll HP, 
C 11 w(t)llem), independent of the stopping time 0. Finally, letting the size of 
the ball tend to infinity, it follows that l/4(t)llHP< K( Ilw(t)llHP, Ilw(t)llBm) 
which is bounded since II k( t)ll HP d )I 6( t)ll gP and II w( t)ll Bm are bounded by 
hypothesis. 

Now it is easy to estimate j14(t)llBP from (4.10) using Lemma4.1 to find 

where l/r+ l/r‘= l/p. This shows that ll(i(f)llsP is bounded, since it has 
already been shown that l1411H, is bounded and by hypothesis )ItiIlgP and 
11 wII B” remain bounded. 

Step (ii). In order to simplify notation, write qi for q(ti), cji for Q(ti), 
wi for w(ti), and $i for +(ti) for i = 1 and 2. Using the differential equation 
(4.10) for Q(t), we have 
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442 - 41) = CNq,) - Wqdl dG1 + Wq,) 4k, - &I 

+ CX’(q,)(Q,)-X’(q,)(9,)1 dw, 

+ J-‘(q2K42 > dCw, - %I. (4.12) 

From (4.12) and Lemma 4.1 it follows that 

1142-4 II 1 HP(s) G Ilm1)-m2Nsys) I/k, IINqs) 

+ ll~(42)llsys, IlkI -“ii* IIsqs) 

+ j CX’(q1)(4,) -X’(q*K42)1 dw, ~1 HP(s) 

+ IlJf’(m42)lIs’(s) IICW, - W*lIIH’~(S)~ (4.13) 

where l/r + l/r’ = l/p. Using the given estimates on w(t), G(t), the fact that 
X is globally Lipschitz, 1x1 and IX’1 are uniformly bounded, the estimate 
that ~~~~~H~ Q C< co, Eq. (4.8), Lemma 4.1, and Theorem 4.1, it follows that 
the first, second, and fourth terms on the right hand side of (4.13) are 
bounded by a constant times It, - t, I. Thus 

II42 - 41 II HP(s) d K, I t2 - t, I + 
ID 

C~‘(q1)(41> -X’(q*K42)1 dw, 
HP(s)’ 

and so using Lemma 4.l(iv) 

1142 - 41 II &) G K It2 - t, I’ 

+ Kl; IlX’(ql)<4l> -~‘(qd(~2)~i&s~~ h’. t4.14) 

Because X is C” with compact support it follows that 

Ix’(q1)<4,)-xl(q2)(42)1 G I-n~IK4, -&)I + IC~‘(q1)-~‘(q*)l <4*>l 

~c141-421+c191-421 1421. (4.15) 

By (4.14) (4.15) and the inequality 

II 142 I . 14, - q2 I II SP G 1142 II S’ II41 - q2 II s” 

dcr ll42ll~r llq~-q2lls~,GK It,--21, 

where l/r + l/r’ = l/p one finds 

II42 - 01 II &) Mt,-W’+C~; ll41-42ll~p(,~,~~’ 

W~~-W’+C~.C~; ll~,-42ll~p(,~~d~‘. (4.16) 
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Gronwall’s inequality applied to (4.16) shows II& - 4r II kP < K, It, - t, I, 
which completes step (ii). 

Step (iii). By (4.12) and Lemma 4.1, 

1142-41 IlBP< II~(c!,)-~(q,)lls~ II+, IIt?‘, 

+ II~(q2)lls~ Il”ii, -k* IIB’. 

+ Il~‘(q,K4, > -~‘(q*K4*)l/s l/w, IIB’. 

+ ll~‘(92KQ2)lIS’ IIWI -w*IlB’,, (4.17) 

where again l/r + l/v’ = l/p. Using similar arguments as above it is easy to 
see that the first, second, and fourth terms on the right hand side of (4.17) 
may be estimated by a constant times I t2 - t, I. The third term in (4.17) 
may be estimated with the help of Lemma 4.1 as 

ll~‘(q,K4,> -X’(9*K42>IIs IlWl IIB’, 

GC II M-411 + 1421 d41-q2I IIS’ 

d cc, 1142 - 41 IIw+ II42 119. II41 - q2 IIs9 

< K It, - t, 1 + ck . ck’ 1142 II Hk 114, - q2 11 Hk’ 

GK, It,--t,I, 

where l/k + l/k’ = l/r. Hence, putting all the estimates together shows that 
Ilk2 - 4r IIBP < K, I t2 - t, 1, which is the third assertion. We may now apply 
Kolmogorov’s Lemma to conclude that the process 4 has a version such 
that a.s. (t + Q(t)): J+ W( RN) is continuous. We now assume that such a 
continuous version of 4 has been chosen. 

Step (iv). Fix t EJ, A #O, and set Q = [q(t + A) - q(t)]/A. For nota- 
tional simplicity set q = q(t), w=w(t), cj=q(t+A), G=w(t+A), 
kit, = [w(t + A) - w( t)]/A. Also for any function f: KY + V, where I/ is a 
finite dimensional vector space, set J“(a, b) = JAf’(u + tb) dt, for all 
a, b E R”. This function f’(u, b) satisfies J“(a, 0) =f’(a), and f(a + b) = 
f(a)+J“(a, b)b, for all a, b in R”. 

chim. IlQllHP is bounded independent of t and A. 
To see this consider 

dQ = (X(q) dG - X(q) dw)/A 

=f{CX(q)+R’(q,A-Q)<A-Q,ld~-X(q)dw} 

= X(q)[dG - dw]/A + F(q, A . Q)(Q) dti 

= X(q) dG, + F(q, A . Q)(Q) dE. (4.18) 
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Recall that X has compact support so that q(t) remains in the ball 
containing the support of X and the initial point qo. Therefore, A . Q = 
q-ij is also bounded for all A. From these last comments, (4.18), and 
Lemma 4.1 one can estimate 

From (4.19) and Gronwall’s inequality it follows that IIQllHP < Kp 113, IIBp. 
So it suffices to show that )I+, IIgP is bounded independent of t and A. But 
by the fundamental theorem of calculus in the Banach space BP(lR”) we get 

II+(r)- 4~)ll.p dz 

f+A 

IT- tl dr <K’ lAl/2, (4.20) 

where hypothesis (ii) of the theorem was used to get the last inequality. 
Since K’ is independent of t and A, (4.20) implies [Iti, IIgp is uniformly 
bounded which proves the claim. 

We now may finish the proof of step (iv). Set E = Q - 4(t), then by (4.10) 
and (4.18) 

dc = X(q) d[tiA - k] + x’(q, A. Q)(Q) d% - xl(q)(cj) dw 

=X(q)d[k,-+]+B’(q,A.Q)(cj+~)d+X’(q)(cj)dw 

=X(q)d[tiA-kl+ [R’(q, A.Q,(4)-X’(q)(4)] d@ 

+X’(q)(Q) d[w - W] + x’(q, A. Q)(E) d@. (4.21) 

The second term “divided” by dG in the last line of (4.21) may be rewritten 
as 

1 
= 

s s 0 
dr ~duX”(q+urAQ)(rAQ,~) 

= T”(q, AQKAQ, 4). 
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With this (4.21) becomes 

d& =X(q) d[tiA - k] + X”(q, AQ)(AQ, 4) d@ 

+X’(q)(4) d[w-w] +X’(q, AQ)(&) dG. (4.22) 

Using Lemma 4.1, the claim that IlQll HP is bounded, parts (i)-(iii), and 
(4.20) it follows from (4.22) that 

II&II &(*, Ilk,-+ll;p+ IIld.Ql 14111~, 

~K,l~lpC~+~llQll~~~ll4ll~~~~p+ll4.lls~1+K,~~Il~ll~,,,.,~~’ 

GKp IW+j; ll4&,~#~‘]> 
[ 

(4.23) 

where l/r + l/r’ = l/p. By (4.23) and Gronwall’s inequality, it follows that 

II~IlwAKp IAl, (4.24) 

i.e., II [q(t+d)-q(t)l/d -4(t)llHP <K, IdI. Hence, for all PE C2, co), q(t) 
is HP-differentiable with the derivative 4(t) solving the stochastic differen- 
tial equation (4.10). Because II . )I sP < cP II . /I HP, it follows from Lemma 4.5 
(using (4.9)) that our version of q is already CT’,‘. 

Step (v). By (4.22), (4.20), and Lemma 4.1, it is easy to estimate 

+ c 11411s~ lb- MB’,+ c ll4,s~ lI4lB’, 

<CK’A/Z+Cc,11&{A IlWll~~~+IIw-WII~~~} 

+ cc, II4”’ II4Iw,r (4.25) 

where 4 = 4(t). Hence, hypothesis (ii) of the theorem, the fact that l/411H, is 
bounded, and (4.24~(4.25) imply that ~~.s~~BP < K, . A-which proves that q 
is also BP-differentiable with 4(t) solving (4.10). Q.E.D. 

COROLLARY 4.2. Keep the hyposthesis of Theorem 4.2. Then all the 
conclusions of theorem 4.2 remain valid if the It8 differential equation (4.6) 
is replaced by the Stratonovich differential equation 

4(t) = JJq(t)) Ml) with q(0) = qO. (4.6’) 

For the proof it will be useful to have the following: 
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LEMMA 4.6. Suppose that V and W are finite dimensional vector spaces. 
Let F:IW+n,.,Sp(V), G:[W+flpa2SP(W), and R: V+Iw be given 
functions, and assume that R is smooth with compact support. Let r(t)= 
RoF(t)= R(F(t)). 

(i) If F and G are SP-continuous for all p E [2, co) then so are F@ G 
and r. 

(ii) If F and G are SP-Lipschitz for all p E [2, CO) then so are F@ G 
and r. 

(iii) Zf F and G are SP-differentiable for all p E [2, 00) then so are 
FQG and r. The derivatives are given by (d/dt)(F@G) =P@G+ FOG, 
and i= R’(F)(P). 

(iv) Furthermore, if P and G are SP-continuous (Lipschitz) for all 
PE [2, co), then (d/dt)/(F@G) an i are also SP-continuous (Lipschitz) for d 
all p E [2, 00 ). 

Proof: (i) and (ii). To simplify notation, let ii = i(ti), pi = k(ti), 
Gj = G(tj), and Fj = F(ti) for i = 1 and 2. Then by Holder’s inequality, 

llFOG(tl)-FOG(tz)llsp~ IIF,-F,OG,Nl.p+ IIFzO(G1-Gdllw 

where l/r + l/r’ = l/p, and C is a constant such that IA @ BJ < C IAJ . IBI., 
This inequality clearly proves the assertions in (i) and (ii) involving F@ G. 
The assertions in (i) and (ii) involving r(tj are trivial, because 

Il~l-~2/lS~~~II~~-E;II~~~ 
where K is a Lipschitz constant for R. 

(iii) Let E(h)= ll[F@G(t+h)-F@G(t)]/h-FOG(t)-F@G(t)lls,, 
then as in the ordinary proof of the product rule one finds 

E(h)< II Cl;(t)@ {G(t+h)-G(t)llh-~(t)}ll.p 
+ II { CF(t+h)-F(t)llh-~(‘(t)} @G(t)lls~ 

;[F(t+h)-F(t)l@[G(t+h)-G(t)1 

Let r and r’ be such that l/p = l/r + l/r’, it then follows from Holder’s 
inequality that 

E(h)<C IIF(t)ll,r IlG(t+h)-G(t)l/h-~(t)ll,~, 

+ C IICF~t+h)-~~~~ll~-I’~~~ll.~ IlG(t)lls~~ 

+C ;[F(t+h)-F(t)] 
!I II 

II CG(t + h) - G(t)1 IIs’,> 
S’ 

which tends to zero as h -+ 0, proving (d/dt)(FQ G) = P@ G + F@I 6. 
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To see that r(t) is differentiable, use Taylor’s theorem to conclude for all 
x, y E V that 

IR(y)-R(x)-R’(x)(y-x)l 6Klx-y12, 

where K is a bound on the second derivatives of R. Insert y = F(t + h) and 
x = F(t) and divide by h in this last inequality and then take the Sp-norm 
of both sides of the result to conclude 

i Ilr(t+h)-r(t)-R’(F(t))(F(t+b)-F(t))ll,, 

<K IIF(t + A) -W&h 

Since F is differentiable the right member of this last inequality tends 
to zero as h tends to zero. This clearly concludes the proof of (iii) 
because II(l/h)R’(F(t))(F(‘(t+h)-F(‘(t))-R’(F(t))~(’(t)llsp is bounded by 
K /(F(t + h) - F(t))/h - k(t)11 sP which tends to zero as h --) 0, where K is 
now a bound on R’. 

(iv) The assertions in (iv) follow from (i)-(iii). To apply (i)-(iii) for the 
i(t) case, left F(t) + R’(F(t)) and G(t) + k(t) and notice that the assertions 
involving F@ G hold for B(F, G), where B: Vx W + Z is any bounded 
vector-valued bi-linear form. Q.E.D. 

Proof of Corollary 4.2. As in the proof of Corollary 4.1, Eq. (4.6’) may 
be written as the It8 equation 

dq=X(q)dw+ Y(q)COOOl ds, (4.26) 

where Y(q)[A @B] = (l/2) Cr= i X’(q)(X(q) Ae,) Be, is a smooth vector 
field on RN with compact support. Again A and B are in End(W) and (ei} 
is the standard basis for KY. As before let I’- End( KY) @ End(R”), 
8: Wx V+~(YW”) be given by J?(q)((a, u))=X(q)a+ Y(q)u (uER” and 
u E V), and W(t)(s) - (w(t)(s), jc O(t)(s’) @ O(t)(s’) ds’). Then Eq. (4.26) 
can be written in Ito form as 

4(t) = %4G) dW(t) with q(t)(O) = qo, (4.27) 

where W(t) is an R” x V-valued Brownian semimartingale in Bm(IW” x V). 
To finish the proof one needs only to replace R” by R” x V in Theorem 4.2, 
and to verify that W(t) still satisfies hypotheses (i)-(iii) of Theorem 4.2. 

Now if W= (w, f u ds) where w =lO db +J a ds is an W-valued 
Brownian semimartingale and u is a continuous adapted V-valued process, 
then dW= (0,O) db + f (a, u) ds. From this it follows that 

II WIBp= IIOIIsp + lIta, u)IIsp G IIOIIsp + IIaIIsp + IIuIIsp 

= lI4lm + II~IISP. (4.28) 
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So by (4.28), in order to verify the corresponding hypothesis (i)-(iii) of 
Theorem 4.2, it suffices to show with o(t) 3 O(t)@ O(t) that: 

(i) t + u(t) is differentiable in SJ’( V) with d(t)= d(t)@O(t) + 
O(t) 0 d(t); 

(ii) v(t) and z!(t) are SP-Lipschitz on J; 
(iii) Ilu(t)llSm is bounded for t EJ. 

Now (iii) is obvious, since Ilu(t)llsm <C. IlO(t)l < C. Ilw(t)lli,, and (i) 
and (ii) follow from Lemma 4.6. Q.E.D. 

LEMMA 4.7. Suppose that F(t) and G(t) are Brownian semimartingales 
for each t, and for each p E [2, CO) the functions F and G are Br-dtfferen- 
tiable. Then the path of Brownian semimartingales Z(t) E j F(t) 6G( t) is also 
BP-differentiable for all p E [ 2, CO ) and the derivative process Z(t) is given by 
Z(t) = j P(t) 6G( t) + j F(t) 6G( t). Furthermore zf P and G are BP-continuous 
(Lipschitz) for p E [2, a~), then so is Z. (This lemma still holds true if F(t) 
and G(t) are vector-valued processes, in which case the multiplication should 
be replaced by the tensor product or some bilinear form.) 

Proof Write dF= A db + u ds, and dG = C db + y ds, so that 

dZ=FdG+$d[F,G]=FCdb+{Fy+fAC}ds, 

where A . C = Ci (Ae,)(Ce,) and {ei}l= 1 is the standard basis for R”. By 
Lemma 4.1 the BP norm is stronger than the Sp norm, so the process F is 
SP-differentiable for all p. Hence by Lemma 4.6, FC and (Fy + (l/2) A . C} 
are SP differentiable for all p E [2, 00) with the derivatives given by the 
product rule. Therefore by the definition of the BP-norm, Z is Bp-differen- 
tiable for all p and the differential dZ of Z is given by 

dZ=[PC+FC]db+{I’y+Fj+&kC+A.C]}ds. 

This last expression is easily seen to be the same as I’6G + F SG as claimed 
in the lemma. The continuity (Lipschitz) assertion for Z also follows from 
Lemma 4.6 and the explicit formula for dZ given above. Q.E.D. 

COROLLARY 4.3. Let q(t) be an RN-valued Brownian semimartingale 
such that t -+ q(t) is BP-differentiable for all p E [2, CO), and let o be a 
smooth l-form on RN with compact support. Then the path of Brownian 
semimartingales Z(t) = J w( 6q( t) ) is BP-differentiable for all p E [2, 00) 
with derivative 

i(t) = j- dM4(t), h(t)) + j. d(d4(t))) 

= dd4(t)> Q(t)) +N&t)>lb. I 
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(InformaUy this may be written (d/dt)(o<dq)) = (do)(g, 6q) +&o(Q)):) 
Furthermore, ~$4 is BP-continuous (Lipschitz) for all p E [2, CO) rhen so is 2. 

The proof of this corollary will be given after the following lemma. 

LEMMA 4.8. Let q(t) be an RN-valued Brownian semimartingale such that 
q(t) is BP-differentiable for all p E [2, co) and let f: RN -+ Iw be a smooth 
function with compact support. Then F(t)=f(q(t)) is a Brownian semimar- 
tingale which is BP-differentiable for all p E [2, co) and p(t) = df (g(t)) z 
f’(q(t)) 4(t). Furthermore, if4 is BP-continuous (Lipschitz) for allp E [2, GO) 
then so is I? 

Proof Write dq(t) = A(t) db + a(t) ds, so that A and a are SP-differen- 
tiabie. Then by It&s Lemma, 

dF(t) =f’(s(t)) A(t) db + Cf ‘(q(t)) a(t) + Y(q(t))(A(t) 0 A(t) > 14 (4.29) 
where Y(q)(A @ B) = (l/2) CJ”(q(t))(Aei, Be,) and (ei} is the standard 
basis for [w”. From Lemma 4.1 we know that I(. 11 sP < cp /I +Ilgp, and hence 
q(t) is SP-differentiable for all p E [2, a). Repeated application of 
Lemma 4.6 shows that f’(q(t)) A(t), and [f’(q(t)) a(t) + Y(q(t)) 
(A(t) @ A(t)) J are SP-differentiable for p E [2, co). So by the definition of 
the BP-norm, it follows that F is BP-differentiable for all p E [2, 00). The 
fact that the BP-derivative of F is given by f’(q(t))<Q(t)) follows from the 
fact that this is the correct formula for the weaker SP-derivative, see 
Lemma 4.6. The continuity and Lipschitz assertion of the lemma are 
proved in a similar way. Q.E.D. 

Proof of Corollary 4.3. Without loss of generality we may assume that 
o =f dg, where f is a P-function on [WN with compact support, and g 
is linear. Let z,(do) = (do)(u, .), that is, 1, is interior multiplication by 
VETR~. Now dw=dfr\ dg, and hence do(Q,6q)=(l,do)(6q)= 
df (4) &goq) - dg<Q) a(foq). Set F(t) =f(q(t)) and G(t) =g(q(t)), then 
by assumption (using g is linear) G is BP-differentiable for all p 2 2, and by 
Lemma 4.8, so is F(t) with k’(t) = df (Q(t)). Thus 

dw(~,6q)=(14do)(6q)=~‘6G-&SF. (4.30) 

Now by definition of Z(t) = 1 o( 6q( t) ), Z(t) = j F(t) 6G( t). Therefore, 
by Lemma 4.7, Z is continuously differentiable and i(t) = j k(t) 6G(t) + 
s F(t) 6&(t). So from this expression for 2 and (4.30) one has 

i(t) - j dcu(d(t), &j(t)) = j [F(t) h&(t) + e(t) M(t)1 = j W(t) c(t)) 

= ~lT(q(t)) d~<Li(t))l =dci(t)>lb s 
as claimed. The continuity and Lipschitz assertions directly follow from 
Lemma 4.7. Q.E.D. 
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5. GEOMETRIC AND NON-GEOMETRIC FLOW EQUATIONS 

We now assume that we have the following data: 

0) (Q, 9, {%.>,,,, 6, P) is a filtered probability space satisfying the 
usual hypothesis and b is an IJY-valued Brownian motion with respect to 
the filtration { Fsj as in Section 3; 

(ii) (M”, V, g, o, uO, h) is a smooth compact n-dimensional Rieman- 
nian manifold with metric g, a g-compatible covariant derivative V, a fixed 
base point o E M, a fixed orthogonal frame U, E O,(M), and a C-function 
h: [O, l] -+ [w” such that h(0) = 0. 

DEFINITION 5.1. The geometric flow equation (associated to h) is the 
differential equation 

ck(t)=H(o(t)).h, (5.1) 

where g: Iw + YM is a path of semimartingales, and H( .) is the horizontal 
lift operator in Theorem 3.3. We assume here that P-a.s. the function 
((t, s) + a(t)(s)): R x [0, l] + M is C’*O. 

Remark 5.1. Since h is C’ and H(a(t)) is a semimartingale, H(a( t)) . h 
is also a semimartingale. Therefore, if IJ solves (5.1) then necessarily 6(t) is 
a TM-valued semimartingale. It seems that the most general possible h one 
might allow (for general manifolds) is a semimartingale. In this paper h is 
assumed to be a C’ deterministic function. 

EXAMPLE 5.1. (a) Take M= Iw”, o = 0, and V = to the usual covariant 
derivative on TR”. Then upon identifying T[W” with Iw” x Iw”, H( .) = id. 
Therefore the solution to (5.1) is 

a(t) = a(0) + t . h. (5.2) 

That is, (5.1) just generates translations by h. 

(b) Take M = G to be a Lie group, o = e = id in G, U, : [w” + g = Lie(G) 
(the Lie algebra of G) to be a fixed frame, and let V be the covariant 
derivative for which the left invariant vector fields are covariantly constant. 
In this case H(o(t)) = L,,,,,, where L,(I): G + G is left translation by 
a(t)-L,,,,g = a(t)g. Again the solution to (5.1) may be found explicitly, 

a(t) = o(0) &, (5.3) 

where h(s) = u,h(s) E 8. 
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(c) This is the same as example (b), but now take V to be the 
covariant derivative for which the right invariant vector fields are parallel. 
Then in this case the solution to (5.1) is 

o(t) = e%(O). (5.4) 

The transformations in Example 5.1 have been highly studied when 
a(0) is a Brownian motion and more recently when a(O) is a Brownian 
Bridge process. In particular, one is interested in whether the law of a(t) 
is equivalent to the law of a(O). Example 5.1(a) is the domain of the 
classical Cameron-Martin formula, see [CMl, CM2, Mar] and also 
[Grl, Gi, Kl-K3, Ra, Kul-Ku4]. The quasi-invariance for the flow (5.1) 
in Examples 5.1(b) and (c) is discussed in [AH, Shl, Sh2, Fr, MMl, Gr4]. 

In an effort to convince the reader that the solution to Eq. (5.1) is the 
correct generalizations to the formulas in (5.2))(5.4) let us briefly discuss 
two other possible alternatives. A more thorough discussion can be 
found in Section 10. One alternative to (5.1) which coincides with 
Examples 5.1(a)-(c) is to use the exponential function. Explicitly, define 
a(t) = exp(tH(a(0)) h), where exp: TM -+ M is the geodesic flow associated 
with the covariant derivative V. But this “shifting” procedure suffers from 
two serious problems. The first is that in general the map T,(a,) z 
exp(tti(a,) h) is not a flow on the space of semimartingales. The second is 
that in most cases the Law(T,(cr,)) will not be equivalent to the Law(o,) 
when 6, is a Brownian motion on M. See Section 10 for more details. 

A second possible curve shifting technique is to use the flow of a given 
s-dependent vector field. Explicitly, let X: [0, l] -+ r(TM) be an s-depen- 
dent vector field on A4 such that X(O) = 0. Now for any vector field 
YE r( TM), let err denote the flow on A4 generated by Y. With this nota- 
tion, define the shift T,(o,) of crO by T,(a,)(s)~erX’“‘(o,(s)). This prescrip- 
tion again reproduces (5.2)-(5.4) after an appropriate choice of vector field 
X depending on h. This procedure is considered in [MM1 ] in the special 
case that M is a homogeneous space. In this case T, is always a flow on 
W(M), but in general T, will not leave Brownian motions on M quasi- 
invariant. In Section 10 it is shown that in order for T, to leave the Wiener 
measure quasi-invariant the vector field X(s) must be a Killing vector field 
for each s. In other words, erX’“’ should act isometrically on M. Of course 
the generic manifold does not admit any non-trivial Killing vector fields, 
and this shifting technique is then useless. 

Notation 5.1. Suppose Q is an imbedded submanifold of some 
Euclidean space IW”’ and that q, E Q is a fixed base point. Let Y”Q-denote 
the space of Brownian semimartingales in Q that start at q. which are also 
in B”([WN). (If Q = [w”, M, or O(M), then q. = 0, o, u,, respectively.) The 
space ywQ is equipped with the topology of convergence in the BP-norm 
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for all p E [2. co). (Note p # co here.) So a function q: R + Yp30Q is said to 
be continuous if it is BP-norm continuous for all p E [2, co). We say q is C’ 
if: (i) for each T>O, suplrlGr llq(t)llBm < 00, and (ii) 4 exists and is 
continuous in the BP-norm for each p E [2, cc ). It is not required that 4 be 
in B”(RN). 

Remark 5.2. If q: J+ Y’“Q is C’, then it follows that q is BP-Lipschitz 
for all p E [2, co). Therefore by Kolmogorov’s lemma (Lemma 4.4), we can 
choose a version of q such that P-a.s. (t, s) + q(c)(s) is continuous. In the 
sequel, such a version will always be chosen. 

We now restrict our attention to the spaces 9’*M, and 9”O(M), where 
an imbedding of A4 into RN has been chosen and fixed once and for all. By 
Lemma 2.2, the imbedding of A4 into RN induces an imbedding of O(M) 
into RN x Hom(R”, W”). The next proposition is a regularity result for 
solutions to (5.1). 

PROPOSITION 5.1. Suppose that 0: Iw -+Y”M is a Cl-solution to (5.1) 
then in fact 6 is BP-Lipschitz for all p E [Z, co ). 

ProojI Since G is C’, (r is BP-Lipschitz for all p E [2, co). Therefore, by 
Corollary 4.1 and our method of constructing H(o) in Theorem 3.2, it 
follows that t -+ H(a(t)) is BP-Lipschitz for all p > 2 (see Lemma 7.3(i) 
below). The lemma now follows, because c?(t) = H(o(t))h and Lemma 
4.1 (vi) gives 

Il~(tl)-~.(f2)ll~P~C,,r’ IIff(dtl)) -H(dQ)IIw llhllw,, 

where l/r + l/r’ = l/p. Q.E.D. 

The following theorem is the stochastic analogue of Theorem 2.2. 

THEOREM 5.1. Let CK J+ Y”M be a C’function satisfying (5.1), and set 
w(t)=Z-‘oH(a(t)). Then w: J -+ Y”(lW’) is a C’-function and satisfies 

G(t) = j C(w(t)) Bw(t) + h, (5.5) 

where for any Brownian semimartingale (w), 

with 
C(w) = A(w) + T(w) (5.6) 

and 

where u=~FoZ(W). 

4~) = 1 Q,<h, a~), (5.7) 

T(w) = @,(h, . >, (5.8) 
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Proof: We will closely imitate the proof of Theorem 2.2. First notice by 
Theorem 3.3 that u = H(a). Therefore by the method of construction of 
H(a) in in Theorem 3.2 and by Corollary 4.2, it follows that u(t) is C’ in 
Y”O(M) (see the proof of Lemma 7.3(i) below for more details). By 
Corollary 4.3 it follows that w(t)=Z-‘(u(t))=f 9(&(t)) is C’ in Y”R”. 
In fact because of Proposition 5.1, we know that r+ and ri are in fact 
BP-Lipschitz for all p > 2-but we will not need this property. By definition 
u is horizontal (o(&) = 0), thus by Corollary 4.3, 

0=~0(6u)=do(ir,su)+s(w(~))=P(ti,6u)+6(o<li)), (5.9) 

where the second equality is a result of the second structure equation 
(Lemma 2.1) and the fact that w A w(ti, 6~) = [w(ti), w(&)] =O. Now 
a(ti, 6~) =a(+ B(Gw)(u)) =SZ,(h, 6w), since n(ti, .) only depends on 
the horizontal component of ti which is equal to B(h)(u). (Note: 
anti = 6 = uh = rc* B(h)(u), see Section 2 for the notation.) So (5.9) may be 
rewritten as 

w<4f)> = - j f-Ju(r) (h, dw(f)> = - A(w(t)), (5.10) 

because ti(t)(o)=o~T,~O(M) and hence w(a(t)(O))=O. 
Now again use Corollary 4.3 to differentiate the equation w = ZZ’(u) = 

j 9(6u) with respect to t to get 

~(l)(s)=f~d9(li(t),6u(t))+9(2i(l))l”,. 
0 

(5.11) 

Using the first structure equation (Lemma 2.1) and arguments like those 
used to go from (5.9) to (5.10) (5.11) may be rewritten as 

k(t)(s) =~‘O,,,,(h, &w(t)) -j-i o(ti(t)) dw(t)+ h(s). (5.12) 
0 

The theorem follows from Eqs. (5.6t(5.8), (5.10) and (5.12). Q.E.D. 

The next theorem is the converse of Theorem 5.1 and is the stochastic 
analogue of Theorem 2.3. 

THEOREM 5.2. Suppose that w: R + Y” BY’ is a Cl-function that satisfies 
(5.5). Zf o E ~0 Z(w), then cx R -+ Y”M is a C’-function satisfying (5.1). 

Proof. Let u(t) = Z(w(t)), so that a(t) = x 0 u(t). By Proposition 6.3 
below, ti(t) is automatically BP-Lipschitz for all p E [2, co), and hence by 
Corollary 4.2, u: R + YmO(M) is C’. By Lemma 4.8, e: R + Y”M is also 
C’. Define l=S(zi), E=o(ti), and A=A(w)=jQ,(h, dw), where for 
notational simplicity the t-variable is also being suppressed. Our goal is to 
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show that t=h, since then ti==7C*ti=~Q(ti)=~h=H(cr)h as desired. To 
prove 5 = h, we will follow closely Theorem 2.2 and show that the semimar- 
tingales (4 - h, A + E) satisfies a linear stochastic differential equation. 
Because (5 - h, A + E) = 0 if s = 0, it will follow that (t - h, A + E) = 0. 

Start by computing the differential of 5 using Corollary 4.3, 

d~=d(9(ti))=d9(Su, ti)+i (9(Su)) 

=d9<6u,ti)+-$(dw), (5.13) 

where 9(&) = d(l-l(u)) = dw was used in the last equality. Using the first 
structure equation (0 = d$ + w A 9) and computing as in the proof of 
Theorem 5.1 we find 

since o( 6~) = 0. Combining the formula for dt with that of dk from (5.5) 
(dG=A 6w+O,(h,6w)+dh) yields 

d(t-h)=(A+E)6~+0,(6~,5-h). (5.14) 

Again using Corollary 4.3 and the fact that w( 6~) = 0, compute 

O=~w(6u)=dw(ri,6u)+d(w<ri))=R(lj,6u)+dE. (5.15) 

Because S(ti) =& and 9(6u) =6w, (5.15) may be rewritten as 
0 = sZ,(<, 6w) + dE, which when added with Q,(h, 6~) - SA = 0 yields 

d(A+E)=Q,(h-&6w). (5.16) 

For each fixed t, (5.14) and (5.16) are a coupled pair of linear stochastic 
differential equations for (l(t) - h) and (A(t) + E(t)) with initial conditions 
t(t) - h = 0, and A(t) + E(t) = 0 at s = 0. By uniqueness of solutions to such 
equations we see that t(t) -h = 0 and A(t) + E(t) = 0 P-a.s. This proves the 
theorem. Q.E.D. 

6. EXISTENCE AND UNIQUENESS FOR THE NON-GEOMETRIC FLOW 

In this section an existence and uniqueness theorem for the “non- 
geometric flow equation” (5.5) of Theorem 5.1 will be proved. Hence, by 
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I’heorems 5.1 and 5.2 this will also prove existence and uniqueness for the 
‘geometric flow equation” (5.1). The following section is devoted to 
proving directly existence and uniqueness for the geometric flow equation 
(5.1). 

The first step in the proof is to reformulate the non-geometric flow equa- 
tions (5.5), see Proposition 6.1 below. For the purposes of this section it is 
important to remember that a Cl-function w: J-r Y” [w” is equivalent to 
giving a pair of processes (0, a): J+ S”(End(lR”) x KY), such that (0, c() is 
S* continuously differentiable for all p > 2 and suprtJ ( 11 O(t)\1 sZ + 
lI~l(t)ll~~} < 00. Of course w is related to (0, CI) by w(t) = l O(r) db 
+ j u(t) ds. 

DEFINITION 6.1. Suppose that f: O(M) + V (V= a vector space) is a 
Cm-function, let S’: O(M) + End([W”, V) be defined by f’(u)(a) = 
df(B(a)(u)) for all UEO(M) and UEIR”. We will callf’ the horizontal 
derivative of j 

Remark 6.1. The two main examples of interest are f(u) = 52, ( ., . ), 
andf(u)= O,( ., .), in which casef’(u)(u) will be denoted by s2:(u, ., .) 
and @‘,,(a, ., . ), respectively. 

DEFINITION 6.2. Let A and BE End([W”) = Hom( [w”, KY), a E [w”, and 
x E O(M). Define 

n 

6) fi,(A, a, B) = c Q:(Aei, u, Bei), 
i= 1 

(6.1) 

n 

(ii) G,(A, a, B) = c OL(Ae,, a, Bei), and (6.2) 
i=l 

(iii) Ric,(u, A, B) = i sZ,,(u, Ae,) Be,, (6.3) 
i=l 

where {e,} is the standard basis for [w”. 

Remark 6.2. If 0 is an orthogonal matrix and A = B= 0, then the 
brmulas (6.1~(6.3) are independent of 0. The reason for the terminology 
Ric, in the (6.3) is that Ric, (a, 0, 0) = Cy= 1 Q,(u, e,) ej is essentially 
:he Ricci-tensor when 0 is orthogonal. 

PROPOSITION 6.1. 5’uppose that w: .I+ 9’” W, and (0, a): J-+ 9’” [w” is 
defined by 

w(t)=IO(l)db+[a(r)ds. (6.4) 

SO/l 1012-6 
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Then Eq. (5.5) is equivalent to the pair of differential equations 

d(t) = C(w(t)) O(t) (6.5) 

and 

k(t) = C(w(t)) 4t) + R(w(t)), (6.6) 

where C(w) is defined as in Theorem 5.1 and R(w) is defined to be 

R(w)=~{Ric,(h,O,O)+~,(O,h,O))+h’, (6.7) 

where w is the Brownian semimartingale w = s 0 db + 1 a ds. The derivatives 
in (6.5) and (6.6) are to be taken in the SP-topologies for all p E [2, co ). 

Proof: Insert the expression (6.4) for w(t) into (5.5) to get 

d db + oi ds = C(w)[O db + CI ds] + 1 dC(w) dw + h’ ds, (6.8) 

where the t is now also being suppressed from the notation. By (5.7), (5.8), 
ItG’s Lemma, and 6~ = B( 6w)(u), 

dA(w) = Q,(h, 6~) = Q,(h, dw) + &(dw, h, dw) 

=L2,(h,Odb)+(Q,(h,cr)+~&(O,h,O)}ds, (6.9) 

and 

dT(w)=d(O,(h,~))=0:(6w,h,~)+O,(dh,~) 

= O:(dw, h, .) + $‘;(dw, dw, h, .) + O,(dh, .) 

=0:(0db,h,.)+{O:(cr,h,.) 

+ O,(h’, .) + @:l(O, 0, h, .)} ds, (6.10) 

where 0: (0, 0, h, . ) = xi 0: (Oe,, Oe,, h, . ), and 0” is the horizontal 
derivative of 0’. 

Thus using d[C(w)]=dA(w)+dT(w), (6.9), and (6.10) one finds 

dC( w) dw = 0, (h, dw ) dw + 0; (dw, h, dw ) 

=Ric, (h, 0, 0) ds+g,(O, h, 0) ds. (6.11) 

Noting that the BP-nom on w =j 0 db +j c( ds is equivalent to the 
SP-norm on (0, a), the lemma is proved upon inserting (6.11) into (6.8) 
and then comparing the db and ds terms on both sides of the result. Q.E.D. 

Remark 6.3. Let C = sup,, O(,,,,, I@,( ., .)I. Notice that C(w)=A(w)+ 
T(w), where A(w)(s) E so(n) and T(w)(s) E End(W) such that 1 T(w)(s)1 d 
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C IhI m independent of w, S, and the random sample point. Lemma 6.1 
below and this observation imply that any solution to (6.5) and (6.6) has 
the property that O(t)(s) is uniformly bounded provided O(O)(s) was 
uniformly bounded. With O(r) uniformly bounded, it follows from the 
definition of R(w(t)) that R(w(t))( ) s remains uniformly bounded. This 
in turn will imply (by Lemma 6.1) that CI must remain bounded. (See 
Corollary 6.1.) 

LEMMA 6.1. Let Y=R” OY End(P), and assume that A:J+so(n), 

T: J + End(W), and R: J + V are all continuous maps, where J= [ - 1, 11. 
Let a, E V be a fixed vector and define ~1: J+ V to be the unique solution to 
the ordinary differential equation 

c?(t) = A(t) a(t) + T(t) a(t) + R(t) with or(O) = a,. (6.12) 

Then 
(i) I~I,~(I~,l+IRl,)~iT’Q, (6.13) 

where ITI, =supIEJ IT(t)\, and JRI, =supItr IR(t)l. (Notice this estimate 
is independent of the size of A-intuitively A supplies only a rotation term.) 

(ii) Now also suppose that A: J+ so(n), T: J + End(W), and 
R: J+ V are another collection of continuous maps and that Cr denotes the - - - 
solution to (6.12) with A, T, and R replaced by A, B, R. Then there exists a 
constant K=K( IclOl, ITI,, [RI,, ITI,, [RI,), such that 

la(t) - i(t)I < K j; { IA(z) -A(z)1 + IT(z) - T((z)l 

+ /R(t)-R(Z)/ ) ds 1. (6.14) 

(Notice that the constant K is independent of A and 1. This is crucial to later 
applications.) 

Proof (i) For simplicity assume that t a&the case t 60 is similar. 
Let U: J-+ O(n) be the unique solution to 

ti(t) = A(t) U(t) with U(0) = id E O(n) (6.15) 

and set Z(t)= U(t)-’ U(Z), then 

i= U-‘TUZ+ U-‘R and Z(0) = a,. (6.16) 

Because U(t) is orthogonal, we have that Ia( = IZ(t)l, so it suffices to 
show that Z satisfies the estimate (6.13). From (6.16) one easily finds 

lZ(t)l d la, I + I’ C IT(z)1 . lZ(z)l + lR(t)l 1 dz. 
0 

This last equation and Gronwall’s inequality (Lemma 4.3) yields (6.13). 
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(ii) In this argument K will denote a constant depending on ( la, 1, 
] TI cc), (RI co, ( Tl oo, 181 m ). The different K’s in a string of inequalities may 
vary from place to place. 

Let U and Z be defined as above and define 0 and Z analogously with - - - 
(A, T, R) replaced by (A, T, R). Then 

Ia-Iii/ = JUZ- O.ZI < IUI IZ-ZI + IU- 01 IZI 

~lz-ZI+KIU-01, (6.17) 

where we have used part (i) to replace 121 by K. Estimate the U-term: 

lU(t)- B(t)\ = lU(t)-’ O(t)-Zl 

d ./I ; ; [u(z)-’ O(T)] / dz 

= I t Iv(z)-’ [A(T)-A(T)] O(s)1 h 
0 

= s ' IA(z)-A(r)1 dr (6.18) 
0 

Now to the Z term. From (6.16) we see that 
--- 

Ii-il=IU-'[TUZ+R]-8-'[TUZ+R]( 
--- 

d)U-'-Dp'//TUZ+Rl+/TUZ-TUZJ+JR-RJ 

~KIU-0l+IT-TIIUZI+ITIIUZ-~2l+IR-RI 

~KlU-O(+K(T-T(+K(UZ-57ZI+IR-Rl 

<K[IU-oJ+IT-TI+IU-ul IZI+lZ-ZI]+IR-R( 

<K[IU-ul+IT-TI+lZ-ZI+IR-RI]. (6.19) 

Upon integration of this inequality from 0 to t, and an application of 
Gronwall’s inequality it is seen that 

+ IT(T)- T((z)l + II?(z)-R(r)l]dz 

<K I ; CI~T)-A(T)I 

+ IT(T)- T((z)l + II?(z)-B(z)/ ]dz, (6.20) 
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where (6.18) was used in going from the first to the second inequality. The 
result follows by combining (6.17), (6.18), and (6.20). Q.E.D. 

DEFINITION 6.3. A l-parameter family of End(W) x W-valued pro- 
cesses (O(t), a(t)) solves (6.5) and (6.6) pointwise if the following 
conditions are verified. 

(i) P-as. the function (2, s) + (O(r)(s), X(~)(S)) is C’,“. 
(ii) Let w(t) = s O(t) db + f a(t) ds. There exists versions of u(t) of 

Z(w(t)), and A(t) of A(w(t)) such that P-a.s. the maps (t, s) + u(t)(s) and 
(t, s) + A(t)(s) are Go. 

Let R(t) be the version of R(w(t)) found by inserting O(t) and u(t) into 
Eq. (6.6). Let T(t)= O.,,,(h, .) (a version of T(w(t))), and C(t)=A(t)+ 
T(t) (a version of C(w(t))). Notice, with these choices, P-as. the map 
Cl, s) + (R(t)(s), T(f)(s), C(t)(s)) is c+O. 

(iii) There is a fixed set R, c Sz of full measure such that on 52,, 
(O(t)(s), a(t)(s)) verifies pointwise (6.5) and (6.6) with C(w(t)) and R(w(f)) 
replaced by C(t) and R(t). 

COROLLARY 6.1. Let (O(t), u(t)) be a l-parameter family of 
End(W) x KY’-valuedprocesses which solves (6.5) and (6.6) pointwise, and set 
w(t)=jO(t)db+Jcr(t)ds. Zf Ilw(0)l(.~=IIO(O)llsm+Ila(O)llsm~Oo, then 
IlO(t)l 6 IIO(ON.F ecihim, and lIw(t)llBm = Ilo(t)llS~ + Il~:(~)ll.~ G C, for 
all.tEJ, where C,=C,(Ih’l,, Ilw(0)llBm) and C-su~,~~(~) I@,(., .>I. 

Remark 6.4. Throughout the paper I will make repeated use of the 
following measure theoretic fact. Let f: U x 0 --t V be a measurable map 
where U is a subset of Rk and V is a normed vector space. Suppose 
that for each w l a the map x -+f(x, o) is continuous, and there is a 
constant C, such that for each XE U, P({o: If(x, w)l <C,})= 1, 
then P( {co: supXs U If(x, o)l <C,})= 1. Indeed, if D is a countable 
dense subset of U, then it is clear that P(sZ,) = 1, where 
52, - {o: supXsD If(x, o)l < C,}. But by continuity, for all w E n, one has 
sup,,,If(x,o)l<C,. Since, 520cSZv~{o:~~p,EuIf(x,~)I~C,} and 
our a-algebra is P-complete, it follows that Q2, is measurable and that 
P&2,) = 1. 

Proof of Corollary 6.1. For t E J, let A(t), Z’(t), R(t), and C(t) be as in 
Definition 6.3. Notice that A(t)Eso(n), and on Q,, IT(t)1 o. < C IhI,. 
(I will omit the statement “on 52,” in the future.) So by Lemma 6.1(i), 
lo(f G lO(O ecihlm, from which it follows that 

Ilo(t)llSm G llW)IIs~ ecihim. 



328 BRUCE K. DRIVER 

Also it is easy to show there is a constant K such that 

IR(t)l,dKIO(t)l~ I~l,+I~‘l,b~II~~~~II~~.~2C’h’r W,+lW,, 

where in the second inequality we used the estimate on 0 just proved. 
Therefore we may apply Lemma 6.1 (i) to (6.6) to get 

llcr(t)lls= < ( llcr(0)llsu + K IlO(O) e2c’h’m Ihl, + lh’l,) ec”‘lm. 

The lemma now easily follows with 

Co= (2 Ilw(0)llBz + K IIw(O)II& lh’l, + lh’l,) e3c“h’lz (6.21) 

because PI, G WI,, and Ilw(~)lIsm = Ilo(t)llBm + I14f)llem. Q.E.D. 

After proving some basic estimates (Proposition 6.2) on A(w), T(w), and 
R(w), we will see that the w: J-t Y”R” in the above lemma is in fact C’ 
and ti is BP-Lipschitz for p E [2, a). Furthermore, this w satisfies (5.5), or 
equivalently (6.5) and (6.6) with derivatives taken in the SP-topologies. 

PROPOSITION 6.2 (Basic Estimates). Let 0 < C, < 00 be a fixed constant 
and suppose that w and W are in Y” [w” with 11 wIIBz d C, and llW[l B= < C,. 
Also assume that I h’l v? < C,. Then for all p E [2, co ) there exists a constant 
K= K(p, C,) such that: 

0) II~~~~-~~~)II~r~~Il~-~llHP; 
(ii) 114~) - A(~)l < cp K Ilw- 41 w<cpKIlw-WIIgP; 

(iii) /IT(w)- T(G)llHP < K llw-GllHP; 
(iv) IIT(T(w)ll.p~c,KIlw-~ll,,~c,Kllw-wll.,; 
(~1 II~~~~-~~~~ll,~~~Il~--ll.~; 

(vi) lIC(w)-C(~)ll,,dKIlw-wll,,; 
. . 

(Vll) IIC(w) - C(W)ll.sP 1 p <c Kllw-~ll,,~c,KIlw-wllB~. 

Remark 6.5. If 0 and 0 are restricted to be orthogonal matricies, then 
estimate (v) above can be improved to an HP-estimate as in (i) and (iii). 
We will not need this improved version of (v). 

ProoJ: Throughout this proof K will denote a constant depending only 
on C,, p, and the underlying geometrical data. Let u = Z(w), U = Z(W), 
A = A(w), and A= A(G). By Corollary 4.1 there is a constant K such that 
Ilu-till,p<Kllw-till,p and llu-till gp d K II w - WI1 Bp. These inequalities 
will be used frequently along with the obvious inequalities that 110 - 011 Sp 
d IIW-- WIIBP, @i From t6.9111 -~IIsp~Ilw-~llBp, and lhl,dIh’l,~C,. 

dA=Q,(h,dw)+fd,(O,h,O)ds 
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with a similar equation holding for &. Thus 

d(A-~)=O,(h,dw)-SZ,(h,d~)+1{S2,(0,h,O)-52,(~,h,~)}ds. 

Therefore 

lb-All,,,< j- {Q,(h,dw)-Q,(kdw)} II HP 

+ Q,(h, d(w - W)) 
II HP 

+ $ 
III 

{&(O, h, 0) -i&&T& h, o)} ds’ 
II 

. (6.22) 
HP 

The three terms on the right side of (6.22) will be estimated separately. 
The first term is estimated using Emery’s and Burkholder’s inequalities 

(Lemma 4.1(i) and (iii)), 

{Q,(h, dw) -Q,(k dw)} 
II 

bKllwllH= IIQ,(h>.>-Qu(k >ils~ 
HP 

GK tIwIiH= lhl, lb--ilsp 

6c,KilwilH~ lhl, ilW--ilm, 

where the first K is dependent on the norms and the second K includes the 
Lipschitz constant for the function u -+ Q, ( ., . ). The second term is easily 
estimated using Emery’s inequality: 

Q,<k W-W} II G llQ,(k.)Ils~ Ilw-4lw~KIhlm llW--iIHP. 
HP 

Now for the third term, by elementary estimates it is easily seen P-a.s. that 

Isz,(0,h,0)-~R,(~,h,~)I~ISZ,-52,1 lhl,C;+I& lhl2CJO-Ol 

<Klu-iQl+KIO-01, 

from which it follows that twice the third-term of (6.22) can be estimated 
by 

KI/u-tills,+K s’ IO-OIds 
II 0 II 

<KC, I~~-~~~H~+KIIw-~I~H~ 
LP 

6 K Ilw-@llHP. 

This finishes the proof of (i). Part (ii) follows from (i) with an application 
of Burkholder’s inequality. I will omit the proofs of (iii) and (iv), since they 
are similar to the proofs of (i) and (ii) with Eq. (6.10) used in place of (6.9). 
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By elementary estimates one has P-as. that 

which implies 

This proves (v). Finally, (vi) and (vii) are a direct consequence of (i)-(iv) 
and the definition C(w) = A(w) + T(w). Q.E.D. 

COROLLARY 6.2 (Regularity). Keeping the same notation and hypothesis 
as Corollary 6.1, the function w: J -+ 9” R” is in fact C’ with G BP-Lipschitz 
for all PE [2, CD). Furthermore, this w satisfies (5.5), or equivalently (6.5) 
and (6.6) where the derivatives are now taken in the SP-topologies. 

Proof: First notice that 

IIC(W)ll.P Q lIC(w) - W)ll,P + IIc(o)II.~ 

provided II w II Bm GC,. In particular IIC(t)ll,, = IIC(w(t))llsP < K, < co for 
all tEJ. Since IO(t)-O(t’)l <ji’ IC(w(z))l IO(r)/ dz<C,jf IC(w(z))i dz 
for all t’ > t, it follows that 110(t) - O(t’)llSP < C, s:’ IIC(W(Z))~/.~ dz < 
K It - t’l. Similarly, since R(w) is bounded when 0 and h are bounded, 
it follows that Ilcr(t)-cr(t’)llSP 6 K It- t’l. Therefore, Ilw(t)- w(t’)llBP < 
K It - t’l for all t, t’ E J. That is, w is BP-Lipschitz. By Proposition 6.2(vii) 
it follows that C(t) = C(w(t)) is SP-Lipschitz. 

Now let h > 0, and set E(h) = II [O(t + h) - O(t)]/h - d(t)llsp, where d(t) 
is the pointwise derivative. Using the fundamental theorem of calculus 
pointwise, we learn 

[O(t+h)-O(t)]/h-b(t)=;jt’+h [C(z)O(z)-C(t)O(t)]dz. 

Consequently 

e(h)$;j 

t+h 

IIC(z) o(z) - C(t) Q(t)ll,p dz f 
1 

s 
f+h 

s- 
h f C~II~~~~-~~~~ll.~~+KIIC(z)-C(t)ll.~ldz 

1 
s 

f+h 

<- 
h t 

Klz-tl dz<Kh, 
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where Holder’s inequality (with l/r + l/r’ = l/p) was used in the second 
inequality along with the boundedness of C(r) in the S’norms. The argu- 
ment also works for h ~0, so that E(h) <K (hi. This shows that O(t) is 
SP-differentiable with derivative given by C(t) O(t). A similar computation 
would show that a(t) is also SP-differentiable with derivative given by 
C(t) a(t) + R(t). Therefore, w(t) is BP-differentiable and satisfies (5.5). 

To show that G(t) is BP-Lipschitz, we start with the easy estimate, 

Id(t)-d(t’)l < IC(t)-C(t’)l co+ IC(t’)l IO(t)-O(t’)l, 

where C, is the constant in Corollary 6.1. 
From this estimate and Holder’s inequality one finds 

where l/p = l/r f l/r’. Since for each p E [2, co), w is BP-differentiable, it 
follows w is BP-Lipschitz. Hence by Proposition 6.2, C(t) = C(w(t)) is 
SP-Lipschitz for all p E [2, co). These comments and the above displayed 
estimate clearly imply that d is SP-Lipschitz. The proof that & is 
SP-Lipschitz is similar. Q.E.D. 

The next proposition along with Corollary 6.2 shows that the pointwise 
notion and “SP-notion” (in Proposition 6.1) of the solution to (6.5) and 
(6.6) agree. 

PROPOSITION 6.3. Suppose that w: J-, Y” R” (w(t) = 1 O(t) db + 
j IX(~) ds) is a function such that (O(t), u(t)) satisfy (6.5) and (6.6) with 
derivatives taken in the SP-topologies (p E [2, co)) as in Proposition 6.1. 
Further assume SUP,,~ Ilw(t)llgm < 00, then w: J-+Y”R” is C’ and the 
derivative li, is BP-Lipschitz for p E [2, 00). Furthermore, it is possible to 
choose a version of (O(t), a(t)) such that (O(t), cl(t)) solves (6.5) and (6.6) 
in the pointwise sense of Definition 8.3. 

Proof: Let C(t) and R(t) be versions of C(w(t)) and R(w(t)), respec- 
tively. Since w is BP-differentiable, w is BP-continuous on J. Therefore by 
Proposition 6.2, t + C(t) and t + R(t) is SP-continuous for all p E [2, co). It 
now follows (with a Holder’s inequality argument) from (6.5) and (6.6) 
that d(t) and c?(t) are SP-continuous for all p. Thus w: J + 9’” R” is C’, 
and hence w is BP-Lipschitz. So by Proposition 6.2, C(t) and R(t) are 
SP-Lipschitz for all p. Going back to (6.5) and (6.6), we can now conclude 
by a Holder’s inequality argument that d(t) and k(t) are in fact 
SP-Lipschitz-i.e., n$ t) is BP-Lipschitz. 

Because ti is BP-Lipschitz, Lemma 4.5 asserts the existence of C’, ’ ver- 
sions of O(t) and a(t) which will still be denoted by O(t) and a(t), respec- 
tively. Also using Lemma 4.4, Lemma 4.5, and Theorem 4.2, we may choose 
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version A(t) and u(t) of A( w( t)) and I(w(t)), respectively, such that 
(t, ~)+A(t)(s) is continuous, and (t, s) -+ u(t)(s) is Cl,‘. Now let C(t), 
R(t), and T(t) denote the versions of C(w(t)), R(w(t)), and T(w( t)) 
described in Definition 6.3. It is easy to see that the pointwise notion of the 
derivative of (0(t), a(t)) and the SP-notion of the derivative agree P-as. 
Therefore from (6.5), we know for each t that P-as. b(t) = C(t) O(t), where 
the derivative is now taken pointwise. Since both sides of this last equation 
are continuous processes, it follows (in the standard way) that there 
is a fixed subset 0, c Q of full measure such that on 52,, 
d(t)(s) = C(t)(s) O(t)(s) for all (t, s) EJX [0, I]. A similar argument shows 
that CI satisfies (6.6) pointwise. Q.E.D. 

We now come to the first proof of existence and uniqueness of solutions 
to equations (6.5) and (6.6). 

THEOREM 6.1. Let h: [0, l] -+ R” be a fixed Cl-function with h(0) =O. 
Suppose that w, = s 0, db + s CI, ds is a Brownian semimartingale in 9’” R”. 
Then in the class of all differentiable functions w: R -+ Y”R” such 
that su~~,~..Il~(~)ll~~ < co for all T > 0, there is a unique member (w) 
satisfying (5.5) and w(0) = w,. (Equivalently if (O(t), x(t)) is defined by 
w(t) = s O(t) db + s cc(t) ds, then there exists a unique solution (O(t), cc(t)) 
to (6.5) and (6.6) with O(O)= 0, and ~(0) = cc, such that 
suplrlGT [ jiO(t)l/sm + Il~(t)l/s~] < co for all T> 00.) This solution (w) has 
the property that ti is BP-Lipschitz for all PE [2, co). Furthermore, if 
T:: Y”R” + Y” R” is defined by Tf(w,) = w(t), then Th is a flow on 
Y” R” in the sense that T: 0 T:(w,) and T:,,(w,) are indistinguishable. 

Proof First let me make some initial comments and reductions. The 
theorem will be proved with R replaced by J= [ - 1, 11. It should be clear 
to the reader that any other compact interval would work just as well. 
From existence on compact intervals and uniqueness, it is easy to conclude 
the existence of a solution w on all of R. The fact that T: is a flow on 
Y” R”’ is a direct consequence of uniqueness of solutions by the usual 
O.D.E. proof. Finally we have already seen that any solution w: J+ 9’” R” 
to (5.5) is necessarily C’ and li, is BP-Lipschitz, see Corollary 6.1, 
Corollary 6.2, and Proposition 6.3. So it suffices to consider only Ci-func- 
tions w: J + Y” R”. (It is readily verified by a scaling argument that 
J= [ - 1, l] in Corollary 6.1, Corollary 6.2, and Proposition 6.3 can be 
replaced by [ - T, T] provided h is replaced by T. h in all of the estimates.) 

Let C=SwuEO~M~ l@,(~,.>I, and C, be the constant in Corollary 6.1 
defined in (6.21). Let X denote the set of Cl-functions w: J + 9’” R” 
(w(t)=iO(t)db+Scc(t)ds)such that w(O)=w,, jlO(t)llsm < 11O(O)JIs” eclhlJ; 
and b4~)llem Q Co for t E J. By Corollary 6.1, Corollary 6.2, and 
Proposition 6.3, any solution to the differential equation (5.5) with initial 
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conditions w, must be in X. We may and do assume that versions for 0 
and CI have been chosen to be jointly continuous in (t, s), see Lemma 4.5. 
We now define a function L: X + X as follows. For w(t) = j O(t) db + 
j a(t) ds, define 0, and tlr as the solutions to the ordinary differential 
equations 

4(t) = C(4t)) O,(t) with O,(O) = 0, (6.23) 
and 

&l(t) = C(w(t)) al(t) + Ww(t)) with a,(O) = a,, (6.24) 

where we make the convention that versions of Z(w( t)), T(w(t)), C(w(t)), 
and R(w(t)) have been chosen to be P-a.s. jointly continuous in (t, s). 
These equations may be solved for each fixed sample point and for each 
fixed s. Because of continuous dependence (of solutions to ordinary dif- 
ferential equations) on parameters it follows that (t, s) + (O,( t, s), cr(t, s)) 
is C1xo P-a.s. Set L(w)(t) z wr(t) = 1 O,(t) db + j al(t) ds. With no essential 
modification, it follows by the same arguments in Corollaries 6.1 and 6.2 
that wr = L(w) is back in X. In fact, even more is true. By the same proof 
as in Corollary 6.2, there is a constant K = KP independent of w E X 
such that wr = L(w) is BP-Lipschitz with Lipschitz constant K-i.e., 
IIL(w)(t)-L(w)(t’)ll.,<K, It-?‘1 for t, ~‘EJ, and WEX. 

The key feature of L is that if w: J+ 9’” R” is a solution to (6.5)-(6.6) 
with w(0) = w,, then w is a fixed point for L in the sense that P( (L(w)(t) = 
w(t) for t E J}) = 1. To verify this statement, recall from the proof of 
Proposition 6.3 that if w(t) = J O(t) db + j a(z) ds solves (5.5) where 
(O(t), a(t)) are chosen to be P-a.s. jointly continuous in (t, s), then 
(O(t), a(t)) solves (6.5) and (6.6) in the pointwise sense. It is now clear that 
solving (6.23) and (6.24) will yield (O,(t), al(t)) = (O(r), a(t)) P-a.s. We 
have used the fact that any two versions of C(w(t)) or R(w(t)) which are 
P-a.s. jointly continuous in (t, s) must be identically equal on a set of full 
P-measure. 

The strategy of the proof is to choose a w. E X, define w, = L(“)(wO), 
where L(“’ means L composed with itself n-times, and then show that 
w=lim n--rca w, exists and solves the differential equation (5.5). To show 
uniqueness of the solution and existence of the limit w, we will show that 
L’“’ is a contraction in BP for some sufficiently large n. This will follow 
from the next claim: 

CLAIM. There is a constant K = K(p), independent of w, and w2 in X such 
that 

lIL(w,)(t)-L(w,)(t)ll.p~K 1; Ilw~(~)-wz(~)llwd~ 1, (6.25) 

for all t E J. 
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Proof of Claim. For simplicity assume that t 3 0. Let Wi( t) E L( wi)( t) = 
s /giC;i db + J ii(t) d f or i= 1,2. By Lemma 6.l(ii) and the fact that 

W m < C (hi co for any Brownian semimartingale w, it follows that there 
is a constant K independent of wi and w2 in X such that P-a.s. 

lo,(t)(s) - %(t)(s)1 G K j; C Mw,(z)(s)- A(w(~))(s)l 

+ I Qw,(t))b) - T(w,(~))(s)ll dT. 

Consequently letting K vary from place to place, 

Ilk, - ~z(t)llw G K j; C IIA(wl(t)) -4w(r))ll,~ 

+ II T(w,(~)) - ~(wz(~))lls~l dz 

G K I ; Ilw,(~) - wz(~)IIw dz> (6.26) 

where Proposition 6.2 was used in the last inequality. The last K in (6.26) 
now depends on p and C,. Similarly one finds by Lemma 6.1 and Proposi- 
tion 6.2 that 

(Iii,(t)--cc,(t)ll.p<K j; Ilw,(~)-w,(~)ll~pd~. (6.27) 

In the application of Lemma 6.1 we have used Remark 6.4 to guarantee 
the existence of a constant K, independent of w EX such that P-a.s. 
suplsJ IR(w(t))j m d K,. Clearly (6.25) is a consequence of (6.26) and (6.27) 
proving the claim. 

Iterating (6.25) leads to 

IIL’“‘(w,)(t)-L(“)(w,)(t)ll.,~yK” Itl”/n!, (6.28) 

where Y = sup,,-, Ilw2(t) - w,(t)ll gp < 2C,. This immediately proves unique- 
ness of solutions. Indeed if wr and w2 are two solutions, then since 
wi=L(“)(wi) for all n, it follows from (6.28) that Ilwl(t)-w2(t)llBP< 
2C0K” It) “/n! , which tends to 0 as rr + co. To prove existence, choose 
w0 E X, for example, take we(t) = w, for all t. Define w, = L(“)(w,,), then 
(6.28) shows that 

IIW n+ I(t) - w,(t)llBP = IIL’“‘(w1)(t) - ~‘“‘(%)(t)llm 
<2C,K” Itl”/rt!. 

This last inequality shows that w, is BP-Cauchy uniformly in t, since 
C,“=, 2C,K” I tl”/n! < co. Thus w(t) E BP-lim, -t m w,,(t) exists uniformly in 
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t and is a BP-continuous function. In fact, since each w, is BP-Lipschitz 
with the Lipschitz constant independent of n, w is also BP-Lipschitz. It is 
also clear, by passing to a subsequence to get uniform in s almost sure 
convergence of O,(t) and CI,( t), that 11 w(t) 11 Bm Q C, for all t E J. 

To finish the proof it suffices by Proposition 6.3 to show w: J -+ Y” [w” 
is differentiable in the BP-topologies and that w(t) = [ O(t) db + s a(t) ds 
satisfies (5.5). Or equivalently O(t), and u(t) are SP-differentiable and 
satisfy (6.5) and (6.6). For this fix a p 2 2, the function 
r + C(w,(r)) O,, i(r) is SP-continuous and hence SP-Riemannian 
integrable. Using the same argument as in Lemma 4.5 and the definition of 
L, it is easy to show that 

O,+,(t)-O,=!*:C(w,(r))O,+I(r)d~ (P-a.s.), (6.29) 

where the integral is a Riemannian integral in Sp. We now estimate the 
difference between the right member of (6.29) and fb C(w(r)) O(r) dz, 

CC(wn(z)) On+ l(z) - C(w(r)) O(~)l dz II sp 

d s ’ IlC(w,(~)) On+ l(z)- C(w(r)) O(~)llsp dz 
0 

+ Co j-; IIC(w,(~)) - C(w(~))ll,p dz 

GK I ; IIw,+1 (T) - w(z)IIw, 4 

where l/p = l/r + l/r’ and K = K(C,, SUP,,~ IIC(w(t))ll,,). Since 
Ilw,+,(~)--w(~)IIB’~+ 0 uniformly in r as n + co, this last inequality shows 
that the right-hand side of (6.29) converges to f& C(w(z)) O(r) dT in the 
Sp-norm. Since the left-hand side of (6.29) converges to O(t) - 0, in 
the Sp norm, it follows that 

O(t) = 0, + j-’ C(w(z)) O(r) dr. 
0 

(6.30) 

So by the fundamental theorem of calculus it follows that 0 is Sp differen- 
tiable with derivative d(t) = C(w(t)) O(t). A similar argument shows that c1 
is SP-differentiable and that o! satisfies (6.6). Q.E.D. 
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COROLLARY 6.3. Let h: [0, 1 ] -+ [w” be a Cl-function such that h(0) = 0, 
and suppose that o, is a B”-Brownian semimartingale with values in M such 
that a,(O) = o. Then there is a unique Cl-function a: [w + Y”M, such that 
(5.1) holds (8(t) = H(a(t))h) and a(0) = a,. Furthermore, the function 
T:: Y”M-+ Y”M defined by T:(a,) = a(t) is a flow on Y”M. 

Prooj Existence follows from Theorems 5.2 and 6.1. The uniqueness 
assertion follows from Theorems 5.1 and 6.1. The property that Tf is a flow 
again follows from uniqueness in the usual way. Q.E.D. 

Remark. In Proposition 7.1 below it will be shown that any differen- 
tiable function a: [w + Y”M solving (5.1) is automatically C’ with d 
BP-Lipschitz for all p E [2, a). 

7. EXISTENCE AND UNIQUENESS FOR THE GEOMETRIC FLOW EQUATIONS 

The purpose of this section is to give a more “direct” proof of 
Corollary 6.3. This section may be skipped without loss of continuity. The 
reason for including this section is that the techniques used may be useful 
in the future. 

The idea of the proof is to imbed M into [WN for some N, .and use a 
standard Piccard iteration scheme to solve the equation 

c+(t) = H(a(t))h (7.1) 

as an equation in [WN. Then with the aid of Theorem 2.4, it will be shown 
that the solution a(t) found this way actually takes values in M. 

In this section, it will be assumed that M is an imbedded submanifold of 
[W”’ for some N. We also suppose that (Y, g, rc, J’, P) has been chosen as in 
the proof of Theorem 3.2. Recall that Y is an open neighborhood in IW”’ 
containing M, rr: Y + M is a C”-map such that rc/ ,,, = id, g is a metric on 
Y which extends the metric on M, r is a connection l-form on [WN such 
that V = d+ r on TM, and P(x) = Z’(X). (Note well: in this section rt is a 
function on Y and not O(M).) Also write V for the covariant derivative on 
TY defined by d + r. We assume that (Y, g, rc, r, P) has all the properties 
guaranteed by Theorem 2.3. It may further be assumed, by shrinking Y to 
a relatively compact subset of Y if necessary, that the function T(x) = rl TX ,, 
for x E Y is bounded along with all of its derivatives and that the metric g 
is comparable to the Euclidean metric on I?“. The metric g is said to be 
comparable with the Euclidean metric if there is a constant E > 0 such that 
~*1u1*~g(u~,u~)~~~~(v~*/n for all VEIR~ and x in Y. Recall that v, 
denotes the tangent vector (d/dt)10 (x + tv). 

For any semimartingale a with values in Y starting at o E M, let u = H(a) 
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denote the semimartingale with values in End(R”, RN) found by solving the 
stochastic differential equation 

su+r(a)(so) u=o with u(0) = u,. (7.2) 

If 0 is a semimartingale in M, it follows from the proof of Theorem 3.2 that 
H(a) is the horizontal lift of (r to O(M), written in non-intrinsic form. 
Moreover because r is g-compatible, the linear maps U(S): R” + RN 
(SE [0, 11) solving (7.2) are isometries with respect to the Euclidean inner 
product on R” and the inner product g,(,, = gl T,(,j ,, on RN, where 0 is now 
any semimartingale in Y starting at OEM. Therefore, because g is com- 
parable to the usual metric on RN, it follows that 

lu12-C lue,1241E-2~g~(uej,uei)=E~2, 
i n i 

where {e,} is the standard basis for R”. This shows that the semimartingale 
u= H(a) remains uniformly bounded independent of CJ with the bound 
Ill <&-I. 

LEMMA 7.1. Let o be any continuous semimartingale with values in Y 
starting at o E M, then P(o) H(a) = H( II 0 a). (Recall that P(o) = 7~’ 0 o, and 
this P does not denote the probability measure P.) 

Proof Define 6 = n 0 0, u = H(o), and U = P(o)u. It suffices to show 

su+r(q(s~) u=o, (7.3) 

since U(O) = P(o) U, = u,. By Ito’s lemma, 

6u=P’(a)(Ga) u+P(a)Su=dP(&)u-P(o)T(a)(Ga) u. 

But by Theorem 2.3(iv), dP - PT= - n*T( . ) P, which combined with the 
last equation gives 

hi= -7~*r(s0) P(a) U= -r(n, 6~) ii= -r(66) ii. 

This last equation is the same as (7.3). Q.E.D. 

LEMMA 7.2. Suppose that o:[w+Y”Y (a(t)=o+JO(t)db+jcl(t)ds) 
is a differentiable function (in the BP-topologies). Then a(t) is a solution to 
(7.1) iff (O(t), a(t)) solves 

d(t) = C(a(t)) O(t), (7.4) 
and 

i(t) = C(o(t)) a(t) + R(dt)), (7.5) 
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where C(o(t)) and R(o(t)) are defined as follows. For any a = o + s 0 db + 
suds in Y”Yset 

and 

C(a) = -r(a){ .) H(o) h (7.6) 

R(a)rfx [T(a)(Oei) r(a)(Oe,)-r’(o)(Oei, Oei)] H(o)h+H(o)h’. 

(7.7) 

(The derivatives in (7.4) and (7.5) are to be interpreted in the SP-sense for 
all pE [2, oo).) 

Proof: For notational simplicity, write u(t) for H(a(t)) and suppress t 
from the notation. Then if (r solves (7.1) one has 

dk=ddb+&ds=d(uh)=&.h+zu?h= -Qa)(ba)uh+uh’ds 

= - r(o)(da) uh - fT’(o)(da, da) uh 

+ ;I-(a)(dcQ Qo)(da) uh + uh’ ds 

= -I’(a)(Odb)uh+{-T(a)(o:)~h+~~[T(a)(Oe,)~(a)(Oe~) 
I 

- $r’(o)( Oe,, Oei)] uh + uh’} ds. 

= C(a) 0 db + [C(o) CI + R(a)] ds. 

Equating the db-terms and the ds-terms on both sides of this last equation 
yields (7.4) and (7.5). Q.E.D. 

Equations (7.4) and (7.5) are the analogues of (6.5) and (6.6) of the last 
section. Equations (7.4) and (7.5) have the disadvantage of being non- 
intrinsic; however, they are analytically simpler than (6.5) and (6.6). This 
is because the coefficient C(a) is bounded independent of O. Indeed, 
IC(a)l G ME-’ IhI,, where M is a bound on K 

LEMMA 7.3. Suppose that a and 6 are Y”Y-Brownian semimartingales, 
and that p E [2,co ) then there is a constant IC independent of G, h, and p and 
constants K, = K(p, 116 - ollgm, Ilc?--ollBm) for PE [2, co) such that 

(i) IIff(~)-~(411B~~Kp II~-dBp for PE CT co); (7.8) 

(ii) IIw~)-~,II.~~~Cl+ Il~--oll;,l; and (7.9) 

(iii) lIWa)hll.,<~ lh’l;C1+ ll~-4I;,1. (7.10) 

In (ii) and (iii) above p = 00 is permissible. 
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Proof. Let U(o) = (a, H(a)), then U solves the Statonovich differential 
equation aU(o)=F(U(a)) 60, where F(x, u)a= (a, -T(x)(a)u) for XE Y, 
LZEFP, and UE Hom(R’“, RN). Equation (7.8) is now seen to be a direct 
consequence of Corollary 4.1 applied to the equation for U. Notice that the 
only way compactness entered Theorem 4.1 and Corollary 4.1 was to 
guarantee that the vector field X and all of its derivatives were Lipschitz 
But our Z satisfies this condition and hence so does the function F. 

To prove Eq. (7.9) first express (7.2) in It8 form, 

du= -T(a)(do) u+i i {(r(a)(Oe,))*-r’(o)(Oei, Oe,)} ds, 
i= 1 

where {ei} is the standard basis for R”. Use the boundedness of 
u = H(a), Z, and Z’ along with Lemma 4.1 to conclude 

where C is a constant independent of [T. Equation (7.9) is an easy 
consequence of this inequality, since II011 sp < )I g - 01) gp and x( 1 + x) < 
const.( 1 + x2) for all x > 0. 

To prove (7.10) write u = H(o) as u, + j A db + 1 B ds and compute 

d(uh) = A db h + [ bh + uh’] ds, 

from which it follows 

since IH(a <s-l, Ihl, < Ih’J,. Equation (7.10) is an easy consequence 
of this last displayed equation and (7.9). Q.E.D. 

The next proposition is the analogue of Proposition 6.3. Now that C(o) 
is bounded independent of (T, the B”-boundedness assumption that was 
used in Proposition 6.3 is no longer necessary. The following jazzed up 
version of Gronwall’s inequality will be used in place of Lemma 6.1(i). 

LEMMA 7.4. Let (V, /I. 11) be a normed linear space. Assume that 
f~ (-a, a) + V is a differentiable function and there are constants E 2 0 and 
~2Osuch that Ilj(t)ll~K-Ilf(t)ll+&fortEZ-(-a,~). ThenforaZZtEZ 

Ilf(t)ll GeKir’ [ Ilf(o)ll +E Iti 1. 

Proof Because f is differentiable, f is continuous and so for each 
TE (0, a), M, = suplrl c T [If(t)11 is finite. Let V* denote the continuous dual 
If V and let I( . I( also denote the induced norm on V*. Choose A E V* 
ruch that \lAll = 1 and set g(t) = A(f(t)). Then g: I--+ [w is differentiable 

80/110/2-7 
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with g(t) = A(j(l)) and hence /g(t)1 < /f( ?)I[ < M, for ItJ < T. Apply 
Theorem 8.21 of Rudin [Ru] to g to find 

Therefore, 

n(f(t)) =dt) =.&do) + j; c!?(z) dT. 

Q Ilf(o)ll + K j’ Ilf(T)ll dT + E ItI, 
0 

from which it follows, by taking the supremum over 1 E I’* with I[;111 = 1, 
that 

Ilf(f)il d Ilf(o)ll + 8 IfI + K j; Ilf(T)ll dT 1. 

(Notice that t + Ilf(t)ll is Bore1 measurable, since it is the pointwise limit 
of the Bore1 functions F,(t) = n Ilf(t + l/n) -f(t)11 . 1 1t: 111 <+ Iln).) The 
lemma now easily follows from Gronwall’s inequality, Lemma 4.3. Q.E.D. 

PROPOSITION 7.1 (Regularity). Suppose that o: R + 9” Y (o(t) = o + 
@(t)db+Ja(t)d) s IS a differentiable function which satisfies (7.1), then G 
is C” (in the BP-topology) and t -+ 6(t) is BP-Lipschitz for all p E [2, CD). 
Furthermore, it is possible to choose oersions of O(t), a(t), C(t) = C((T(I)), 
and R(t) = R(cr(t)) such that (7.4) and (7.5) hold pointwise P-a.s. 

Proof Recall that I C(o)1 < K ) hl oo, where K depends only on g and r. 
So by (7.4), Ild(t)llSP<~ lhl, IIU(t)ll.p for all t and PE [2, co). Thus by 
Lemma 7.4, IlO(t)l 6 jIO(O)JI., eKfthlm for all t E Iw and p E [2, a). Letting 
p tend to infinity in this last estimate yields 

IlU(t)l < IIO(0)llsm eKrlh’a. (7.11) 

It is now easy to conclude from (7.7) that there exists a constant C, 
independent of c(t) and h such that 

IIWdt))lls~ d Co WI, Cl + IlW)ll&J 

< C, Ih’( m [ 1 + l/0(0)/l ia e2K I” thtu]. (7.12) 

Now apply Lemma 7.4 with p < co using (7.5) and (7.12) to find, after 
letting p + co, the estimate 

Ila(t)ll sm 6 eK If’ Ih’m { Ila(0)ljs~ 

+ C, Ih’l, ItI [I + IlO(O)ll~, e2K’r’ ‘“lm]}. (7.13) 
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From (7.11) and (7.13) one can show at the expense of increasing IC that 

Ila(t)-ollB, 6 K-e”“’ I”‘= [l + IlOO-Ojl~m]. (7.14) 

In particular this shows that SUP,,~ Ila(t) - 011~~ < co for any solution to 
(7.1), where J is any compact interval. For definiteness take J= [ - 1, 11. 

Knowing that Z=sup,,, Ilo(t)--ll Bz < cc allows us to apply Lemma 
7.3(i). By Lemma 7.3, Burkholder’s inequality, and the boundedness of 
h’, I’, f’, H(o) and O(t), it can be shown that there is a constant 
K,, = K(Z,p, lh’l,) such that 

IIC(dt))- C(4t))ll.v SK, II~~)-~~)IIBP (7.15) 

llR(a(f))-R(a(~))ll., GK, Ildt)-4r)llw (7.16) 

for t, r E .I. (See also Lemma 4.6.) Since 0 is BP-differentiable, (7.15) and 
(7.16) show that C(r) = C(a( t)) and R(t) = R(a(t)) are also BP-continuous. 
The remainder of the proof may be completed using the same techniques 
as those in the proof of Proposition 6.3 with (6.5) and (6.6) replaced by 
(7.4) and (7.5). Q.E.D. 

We are now ready to solve (7.1) by the method of Piccard iterates. For 
a Cl-function 0: [-r, r] -+ ymY, let L(g): [-r, r] -+ ya‘[WN be the 
Cl-function defined by 

L(a)(t) = o. + j-’ H(a(z)) h dz, (7.17) 
0 

where now all integrals are to be interpreted as Riemann integrals in BP for 
all p E [2, co). The next lemma collects a number of estimates involving the 
function L. 

LEMMA 7.5. Let T>O, K be as in Lemma 7.3, PE [2, co), P=K Ih’l,, 
and for 0: [ - T, T] + 9’” Y set 

Kp(o)-P.L-l+ sup IbO-oll;,J (7.18) 
111 < T 

Suppose that o, ol, and oz are Cl-functions from [ - T, T] + y4”” Y, then L 
satisfies the following inequalities: 

6) IIL(a)(t)-o,IIsP<~P’ IhI, )tl (p= 00 ispermissible); (7.19) 

(ii) IlL(o)(t)-L(a)(r)llBP <K,(a) It--t1 forafl t, TE C-T, T]; (7.20) 
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(iii) IIL(a)(t) - 00 IIBP G K,(o) T; (7.21) 

(iv) IIL(o,)(t) - ~(~d(f)llBP G cp J’ Ila,(z) - ~2(~)IIBP &. 3 (7.22) 
0 

Proof Since the BP-norm dominates the SP-norm for p < cc, it is 
permissible to estimate IIL(a)(t)-o,IIsp by IJt, IIH(a(r))hljspdrl. This 
immediately implies (7.19) for p < co, since IIH(a(r)) All., d K’ IhI oc. So 
by passing to the limit p + co, (7.19) holds for p = co. The second estimate 
follows from (7.10), the definition of K, in (7.18) and the estimate 

The third estimate is a consequence of (7.10), the definition of K, in (7.18) 
and the inequality 

IIUa)(t)- ~OIIBP d J’ IIff(4~)) hllm h . 
0 

For (iv), one estimates 

IIUa1Nt) -ufJJ(~)ll,P d j’ II Cff(a,(~)) - ff(~*(~))l hll.!J d7 
0 

<2c, lh’l, 
IJ 

’ IW(~l(7)) - ff(aA7))ll.P d7 
0 

< c, 
/j 

’ Ibl(7) - a2(7)IILsr d7 3 
0 

(7.23) 

where the second inequality is a consequence of Lemma 4.l(vii), and the 
last inequality is a consequence of (7.8). Q.E.D. 

PROPOSITION 7.2 (Local Existence). Let h: [0, 1) + R” be a Cl-function 
such that h(O)=O, u0 be a Brownian semimartingale in M such that 
a,(O) = 0, and I(o0 - 011~~ < co. Then there is a constant T= T(a,, h) such 
that there exists a Cl-function o: [ - T, T] -+ 9’” Y solving (7.1) with 
a(0) = a”. 

Prooj For T > 0 let X, be the set of C’-functions 0: [ - T, T] -+ 9” Y 
such that o(O)= g,, and sup,,,< T Il~(t)--~Il., < 1. By (7.19) with p= cc 
and the compactness of M we see that L(a)(t) E Y” Y provided that 
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IfI ~4I~l,, where p is the distance of M to the compliment of Y. By the 
triangle inequality )I G( t) - 011 Bm 6 1 + II co - o(I B1 for all cr E X,. Hence for 

then SU~,~~~K,((T)<K< co, where /I and K,(a) are defined in 
Lemma 7.5. Consequently by (7.21), I/L(o)(t) - crO llem d K ItI and hence 
IIUa)(t) - 00 II BZ < 1 provided ItI < l/K. As a result of these comments L 
maps X, back into X, provided T is less than l/K and &p/It+/ (a. Also 
notice that the constant C, which occurs in (7.22) may be chosen to be 
independent of g1 and cr2 E X,. 

To summarize the above paragraph, for T sufficiently small L maps X, 
back into X, and L satisfies, for all PE [2, co), (7.20) and (7.22) with 
constants C, and K, which can be chosen to be independent of g, rr,, and 
cr2 in X,. 

We now fix a T<min{l/K, ~p/Ihl,}. Define a,(t)=a, for tE C-T, T], 
so that go E X, and let a,(t) = L(“‘(a,)(t), where L(“) is the n th iterate of 
L. Because of (7.22), it follows (as in the proof of Theorem 6.1) that on 
converges uniformly in the BP-norms for p E [2, co) to a Lipschitz function 
0: [ - T, T] -+ 9’” Y. It is also clear from (7.22) that L(a) = G, i.e., 

a(t)=a,+ ‘H(c$s))hd~. 
s 0 

But this last equation shows cr: [ - T, T] + Y” Y is a C’-solution to (7.1). 
Q.E.D. 

It is now easy to give the second proof of Corollary 6.3. 

Proof of Corollary 6.3. First we start with the uniqueness assertion of 
Corollary 6.3. Suppose that 0 and 8: [ - T, T] + Y” Y are two necessarily 
Cl-solutions of (7.1) with initial condition 6,. According to Lemma 7.4, 
there is a constant C, depending on c1 and g2 such that (7.22) holds. Now 
using L(o,)=o, and L(a,)=a,, iteration of the inequality (7.22) shows 
err = rr2 just as in the proof of uniqueness in Theorem 6.1. (See the 
argument starting at Eq. (6.28).) 

Suppose that T is as in Proposition 7.2, so there exists a necessarily 
unique Cl-solution 6: C-T, T] + yaY to (7.1) with values in Y. By 
Proposition 7.1, d is B”-Lipschitz for all p E [2, co). By Lemma 4.8, 
6 - rco 0: C-T, T] + Y”A4 is a Cl-function for which 6 is also BP- 
Lipschitz for PE [2, co). (Recall in this section rc maps Y to M and not 
O(M) to M.) We will now see that (5 also satisfies (7.1). Since, 5 is differen- 
tiable, it suffices to identify the derivative of 6 with H(o)h. With the aid of 
Kolmogorov’s Lemma we may assume that versions of G, 5, H(o), and 
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H(5) have been chosen to be P-as. C’s ’ as functions of (t, s). For these 
versions we have 

c+(t) = P(a(t)) c?(t) = P(o(r)) H(o(t))h = H(5(t))h, 

where the last equality is a consequence of Lemma 7.1. Thus 6 is also a 
solution to (7.1) with initial condition a(O) = n 0 o(O) = n 0 o0 = go, where 
n 0 6, = o0 because o0 is in M and nl M = id on A4. (In fact by uniqueness, 
(T = 5.) So we have shown for T= T(c,, h) > 0, there exists a unique 
solution cr: C-T, T] + Y”M solving (7.1) and a(O) = go. 

Up to now only intervals C-T, T] centered about t = 0 have been con- 
sidered, but it is clear because Eq. (7.1) is autonomous that we may equally 
well center the interval about any other t, in R. So as is standard in 
ordinary differential equations, it is possible to construct (using uniqueness 
and local existence) a “maximal” solution (a) to (7.1) with o(O) = (T,. By 
standard arguments, this maximal solution (a) will be defined on all of R 
provided d does not blow up in finite time. But (7.14) clearly rules out any 
finite time blow up. Q.E.D. 

8. QUASI-INVARIANCE OF THE FLOW 

One purpose of this section is to show the solution to (5.1) with initial 
condition a(O) = go equal to a Brownian motion has the “quasi-invariance” 
property, i.e., the law of o(t) remains equivalent to the law of oO. Recall 
two measures P and Q are said to be equivalent if they are mutually 
absolutely continuous with respect to one another. The other purpose of 
this section is to use (5.1) to construct a flow on W(W) rather than a flow 
on the space of Brownian semimartingales Y” W’. As mentioned in the 
Introduction, these two issues are closely related. In order to solve both of 
these problems it is necessary to assume that covariant derivative (V) has 
the following skew symmetry condition. 

DEFINITION 8.1. The covariant derivative V is said to be torsion 
skew symmetric (TSS) if for each m E M and UE T,,,M the map 
(w + T( v, w )): T,,,M + T,,,M is skew symmetric with respect to the metric 
Ln=glTmM. An equivalent condition is that for each frame u E O(M) and 
UER”, the map (b + @,(a, b)): R” -+ R” should be a skew-symmetric 
linear transformation. 

EXAMPLE 8.1. (a) If V is the Levi-Civita connection, then V is TSS 
because the torsion is zero. 

(b) Suppose G” is a compact Lie group with Lie algebra 8, and 
choose an Ad,-invariant inner product (( ., -)) on 8. Define a metric (q) on 
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G by the formula q(L,.a, L,,b)=(a,b), where a,b~g, gEG, and L, is 
left multiplication by g E G. Clearly L,: G + G acts isometrically, and 
because ( ., .) is Ad-invariant, it also follows that the right multiplications 
~R,l,sG act isometrically. If V is the left covariant derivative on TG (see 
Example 5.1(b)) then V is TSS. The reason is that upon identifying Iw” 
with 9 (so that a frame u at g is now an isometry from 9 to T,G) one 
finds for ueO,(G) and a, bE9 that @,(a, 6) = -O-‘[Oa, Ob], where 0 
is the orthogonal transformation on 9 such that u = L,. 0. Therefore, 
0, (a, . ) = - 0 - ’ adon 0 which is skew-adjoint on 9 for all a E 9 because 
of the Ad,-invariance of (., .). 

(c) Keeping the same notation as above but now take V to be the 
right covariant derivative on TG (See Example 5.1(c)), then V is TSS. Here 
@,(a, . ) = 0-l ad,,O, where now 0 is the orthogonal transformation 
such that u = R,. 0. (The change in sign comes from the definition of the 
Lie-Bracket in terms of left invariant vector fields rather than right 
invariant vector fields. The function (g + g-l): G + G transforms right 
invariant vector fields to left invariant vector fields.) 

(d) Suppose that (G, q) is as in part (b) and that H is a closed sub- 
group of G. Let M= G/H = {gH: g E G} be the homogeneous space of right 
cosets. For g E G set g = gH, and let p: G + M be the canonical projection 
p(g) =g. Then p: G + M is a principal bundle with structure group H. 
Let A be the Lie algebra of H, and R’ be the orthogonal compliment 
of R in 9 relative to (., .). Then for each ge G, the map 
Pk)=P*Lg*I,@ : AL + TgM is an isomorphism. M can be made into a 
Riemannian manifold by requiring p(g) to be an isometry for each gE G. 
(See [KN, pp. 154-1551.) Similar to the Lie group case, it is convenient to 
identify Og(M) with the set of isometries u from 4’ to T,M. Given the 
above data, there is a natural connection 0 on p: G + M defined by 
0<5,> = w,,‘tg),, where uR denotes the orthogonal projection of a E 9 
onto A. The A-valued l-form (W) is easily seen to be a connection l-form 
using the fact that Ad,, leaves both A and A’ invariant for all h E H. Let 
O(A’) denote the orthogonal transformation on R’ and Ad: G + O(g) 
denote the adjoint representation of G. Then Ad(H) leaves A’ invariant, so 
Ad: H -+ O(A’) defined by Ad(h) is an orthogonal representation of H. 
Taking O,(M) to be the set of isometries (u) from RI to T,M,’ the map 
p: G -+ O(M) defined above is a principal bundle morphism covering the 
identity of M such that p(gh) = p(g) Ad(h). 

The morphism p and connection 0 on p: G + M induce in a standard 
way a unique connection (w) on O(M), such that (r, =p*o, see [KN, 
Proposition 6.1, p. 791. The connection (0) has the property that a path 
u(t) in O(M) over a(t) in M is horizontal iff u(t) = p(g(t)) 0 where 
OE 0(&I) and g(r) is an o-horizontal path in G. The reader may now 
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verify that for all g E G and a, b E A’ that Open) (a, b) = - [a, b] RI, where 
[a, b],, denotes the orthogonal projection of [a, b] onto AL. It is now 
easily seen that (b + OP(g) (a, b)): A’ + Al is skew symmetric. 

The next proposition explores the relationship between a TSS covariant 
derivative (V) and the Levi-Civita covariant derivative (V). 

PROPOSITION 8.1. Let (A4, g) be a Riemunniun manifold and suppose that 
V is a metric compatible TSS covuriunt derivative on M. Let v denote the 
Levi-Civitu covuriunt derivative on M. Then for v E TM 

(i) V,=V,+fT(v,.), 
where T is the torsion tensor of V, and (8.1) 

(ii) the Lupluciun constructed using V is the same us the Lupluciun 
constructed using the Levi-Civitu covuriunt derivative 7. 

Remark. This proposition shows that the notion of a V-Brownian 
motion and a V-Brownian motion agree. However, if V # V, the horizontal 
lift operators Hv and H’ will be different. These observations seem to play 
a crucial role in Gross’ paper on logarithmic Sobolev inequalities on loop 
groups [ Gr4]. 

Proof. (i) Let A’, Y, Z be in T,,,M, and let A(X) be the operator on 
T,,,M such that V, = V, + A(X). Because V is torsion free, it follows that 
T( X, Y) = A(X) Y - A ( Y) X. From the metric compatibility of V and V 
one learns that A(X) is skew adjoint on T,,,M. Using these two properties 
it is easy to show 

&(A(X) Y, Z)=g(T(X Y>, Z)-g(T<Y, Z>,J3+g(T(Z,X), Y>. 
(8.2) 

To verify (8.2) just expand the right member of (8.2) in terms of the 
A’s and simplify. Because of the skew symmetry properties, T( Y, Z) = 
-T(Z,Y)andZ~T(Y,Z)isskewsymmetric,O=-g(T(Y,Z),X)+ 
g( T(Z, X), Y). Therefore (8.2) simplifies to 

WA(X) K Z> =g(T(X V, Z>. 

Since Z is arbitrary, this proves part (i). 
(ii) Let {E,}y=, b e a local orthonormal frame near m E M and f be 

a P-function on M. Then by definition the Laplacian (A) constructed 
from V, 
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By part (i), V,#E,=V,,E,+ (l/2) T(Ei, Ei) = V,,Ei, so that the above 
displayed equation may be written as 

which is the definition of the Levi-Civita Laplacian. Q.E.D. 

The next two lemmas will enable us to determine when solutions to (5.1) 
have the quasi-invariance property. The second of the two lemmas is a 
corollary of Girsanov’s theorem along with Novikov’s criterion. This 
lemma will be used to prove quasi-invariance of the flow (5.1) when V 
is TSS. 

LEMMA 8.1. Let w = s 0 db + j a ds be a Brownian semimartingale, 
where 0 is an n x n matrix valued continuous predictable process and a is an 
W-valued predictable process. If the laws w and b are equivalent, then the 
process 0 is O(n)-valued P-a.s. 

Proof. Let pw = w* P and p = b, P (Wiener measure) denote the laws of 
w and 6, respectively, on W([w”). Recall that if Q is a manifold and 
GWLE LO, I] is a Q-valued continuous process, then X may also be viewed 
as a function from 52 to W(Q) by setting X(o)(s) = X(s, w). Also recall that 
X, P denotes the measure on W(Q) such that X, P(f) = P(f 0 X) for all 
bounded measurable functions f: W(Q) + R. 

Let 5,: W(R”) -+ II%” denote the coordinate map t,(x) =x(s) where 
x E W(rW*). (I will write 5, or r(s) interchangeably.) Since {tS}SE [,,, i, is a 
Brownian motion with respect to p, the quadratic covariation process 
[(‘, c’](s) = 6, s w h en computed relative to p. Since pL, is equivalent to p, 
[l’, t’](s)= 6,s still holds relative to CL,. From this it follows (see 
Corollary 8.1 below) that [w’, w’](s) = Otis P-a.s. Now, [w’, w’](s) can 
also be computed directly to find 

[w’, w’](s) = j’ [O(s’) O”(S’)]~ ds’. 
0 

Thus one finds that the P-a.s. 1; [O(s’) O”(S’)]~ ds’= hijs. Taking the 
derivative of this last expression implies P-a.s. that [O(s) O”(S)]~= 6,. 
That is, O(s) Otr(s) = I. Q.E.D. 

LEMMA 8.2 (Girsanov’s Theorem). Let w = SO db + f a ds be a Brownian 
semimartingale such that (0, a) is a predictable O(n) x W-valued process. 
Assume there is a non-random constant C > 0 such that P( j: 1 a(s ds < C) = 1, 
then u = b, P and uL, = w* P are equivalent. 
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Proof: I will follow closely the proof in Protter [Pr, Theorem 21, 
p. 1111. First define the square integrable martingale M, = JS, a . 0 db and 
set 

Z,=exp(-M,-i[M,M],)=exp 

It is standard and easy to verify that dZ,= -Z,dM,, so that Z is a 
local martingale. Since [M, M], =!A II+)~’ dsb C, P[exp(f[M, MJ1)] < 
ec’* < 00. Therefore by Novikov’s criterion (see [RY, Proposition 1.15, 
p. 308]), Z is actually a martingale and in particular P(Z,) = P(Z,) = 
P(l)= 1 for all s. 

Define Q = Z, . P, i.e., Q is the probability measure on 52 such that 
dQ/dP = Z, . Since Zi > 0 P-as., the measures P and Q are equivalent. Let 
/? be the P-martingale p =j 0 db, and notice that [ai, p’](s) = 6”s. By 
Girsanov’s theorem (see [Pr, Theorem 20, p. 109]), the process 

is a Q-local martingale for each i E { 1, 2, . . . . n >. Since the measure P and Q 
are equivalent, quadratic covariations computed with respect to P or Q 
give the same answer. Therefore [wi, w’] = 6iis relative to Q. We may now 
use Levy’s theorem [Pr, Theorem 38, Chap. II] to conclude that w is a 
Q-Brownian motion. 

We now know that w,Q =p = b,P. Thus given any bounded 
measurable function f: W( [w”) + [w, it follows that 

W(b)) = Q(f(w,) = W,f(w)). (8.3) 

Suppose that f: JV(lR’) --f [w is a non-negative measurable function. By 
(8.3) and the fact that Z, >O P-a.s. it is trivial to verify that the 
following statements are equivalent: (i) ~JJ”) = 0, (ii) P(f(w)) = 0, 
(iii) P(Z,f(w)) = 0, (iv) P(f(b)) = 0, and (v) p(f)=O. The equivalence of 
statements (i) and (v) above clearly implies that pw and p are equivalent. 

Q.E.D. 

Remark 8.1. It will be useful to note that P(Z:) < 00 for all r E Iw. To 
see this first notice that 

(8.4) 
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By Novikov’s criterion U, is still a martingale and in particular P( U,) = 1. 
The second term (V,) in (8.4) is bounded by exp(Cs lr2 - r//2), and hence 

P(Z:)<exp(Cs Jr’-r1/2)< 03. (8.5) 

COROLLARY 8.1. Keep the same assumptions and notation as in 
Lemma 8.2. Let p = dpwL,ldu be the Radon-Nikodym derivative of ,uL, with 
respect to p, and let J? be the a-field generated by the random variables w(s) 
for s in [0, 11. Then l/p(w) = P(Z, / 2). Furthermore for each r E R, pr is 
u-integrable. (Warning: the analogous formula in the proof of the Corollary 
on p. 112 of [Pr] is missing the above conditional expectation and a proper 
interpretation.) 

Proof Suppose that f is a bounded measurable function on W(rW”). 
Then ,df) = Apf) = &(b)f(b)) = P(Z, ,o(w)f(w)) by (8.3). Because 
p(w)f(w) is &?-measurable, FL,.(f)= P(P(Z, I X)p(w)f(w)‘). On the other 
hand by definition of p,,., Uf) = P(f(w)). Hence P(f(w)) = 
P(P(Z, 1 2”) p(w)f(w)), and this holds for all bounded measurable 
functions f: W(llY) + [w. Thus P(Z, I 2) p(w) = 1 P-a.s. 

Because u(p’) = P(p’(b)) = P(Z,p’(w)) = P(P(Z, 19) p’(w)) = 
P(P(Z, I &?)‘-I), the assertion that p” is p-integrable for all r is equivalent 
to the assertion that P(Z, I 2)’ is P-integrable for all real r. This last 
assertion follows from the following purely measure theoretic lemma and 
Remark 8.1. Q.E.D. 

LEMMA 8.3. Let (Q, 9, P) be a probability space. Suppose that 2 c 9 
is a sub-sigma field of 9, and Z: Q -+ [w, is an F-measurable function for 
which Z’ is integrable for all r E [w, then U’ is integrable for all r E [w, where 
U=P(ZI 2). 

Proof If r > 1, then Ii’< P(Z I A?‘) P-as. by Jensen’s inequality, so 
that P( Ur) < P(Zr) < co. It now follows from Holder’s inequality that U’ is 
integrable for all r Z 0. 

Now suppose that r > 0, then 

P(U-‘)=I” ru ++“P(U<u)du, 
0 

(*I 

which is verified by the computation 

!“o-‘ry+‘dy)=P(,- lt,,U-lj .ryr-ldy) 
0 0 

= v r~lP(U~‘>y)dy=~yryr~‘P(U<y~‘)dy 
0 

s 

m 
= ru~“+“P(U<u)du. 

0 
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Since U-(‘+ ‘) is integrable for u near infinity and P( U < U) d 1, in order to 
show P( U -‘) < 00 for all r > 0 it suffices (by (*)) to show that for all k > 0 
there is a constant C, such that P( U < u) < Ckuk. 

By Chebyshev’s inequality for all 6 > 0, P(Z < 6) = P(Z-’ > 6-l) d dkck 
where ck = P( Z- k). Hence, 

P(U<u)=P(U<u,Z<6)+P(U<u,Z~6) 

<c,cV+P(P(Z>6 1%); U<u). 

Now again by Chebyshev’s inequality, 

P(Z>6 [29)66~‘P(ZI Y?)=6-‘U P-as. 

Combining the last two displayed equations yields 

P(U<u)<c,6k+o-lP(u; U<u)~Ck6k+~--uP(U<u). 

Now set 6 = 224, and solve for P( U < u) to find 

This is the desired estimate and the lemma is proved. Q.E.D. 

THEOREM 8.1. Suppose that h: [0, l] -+ IfY is a Cl-function such that 
h(0) = 0. Also assume that the covariant derivative V is torsion skew sym- 
metric (TSS). Let w, = s 0, db + s a, ds be an KY-valued Brownian semi- 
martingale such that 0, is an O(n)-value process and [Ia, IIs= < co. Let 
w: [w -+ Y” [w” be the solution to (5.5) given in Theorem 6.1. Then the law of 
w(t) (u,(,)- w(t),P) is equivalent to u-Wiener measure on W(IY). 
Furthermore, ty p is the Radon-Nikodym derivative p - d( w( t)* P)/dp, then 
pr is p-integrable for all r E Iw. 

Proof: We may restrict t to a compact interval which for definiteness is 
taken to be .I= [ - 1, 11. Write w(t) = f O(t) db + J a(t) ds, then the pair 
(0, a) satisfies Eqs. (6.5)-(6.6) with O(0) = 0, and a(0) = ~1,. Because V is 
TSS the process T(w(t))= O,,,,(h, .) (where u(t)=Z(w(t)), see Eq. (5.7)) is 
so(n) valued. Therefore the process C(w(t)) E A(w(t)) + T(w(t)) is so(n)- 
valued because A(w(t)) is always skew symmetric. Because of Proposi- 
tion 6.3 and Corollary 6.1, we may find a version of (0, M) such that the 
solution (0) to (6.5) with O(0) = 0, is an O(n)-valued process and la(t)1 m 
is bounded by a non-random constant C independent of tE J. More 
precisely, by an application of Lemma 6.1 to (6.6) using the estimates 
(which are easily derived from (6.7) and (5.8)) 

IR(w(t))(s)l G CC W(s) + Ih’(s)l I> 
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and 

InNt))(s)l = IQ,,t,,.~,m)~ . >I G c IO)lJ 
we find that Icr(t)(s)l < Cec”‘(‘)l . [ Icr,(s)l + Ih( + Ih’(s)l ] for some 
constant C. In particular this implies there is a constant C’ such that 

s s Ia( ds’< C’eC’h’= J’ c lao( + lh’(s’)12] ds’. (*) 
0 0 

Lemma 8.2 may now be used to conclude that the laws of w(t) and P are 
equivalent for all t. Corollary 8.1 shows that pr is p-integrable for all YE R. 

Q.E.D. 

Up until now, Eqs. (5.1) and (5.5) have been used to produce a flow on 
the space of Brownian semimartingales. Now that we know that the flow 
to (5.5) in the space of Brownian semimartingales has the quasi-invariance 
property, it makes sense to try to consider (5.1) and (5.5) as flow equations 
on W(M) and W(W), respectively. In order to do this, it is necessary to 
make a digression into the properties of stochastic integrals and differential 
equations as functionals on path spaces. The discussion of the existence of 
a flow on W(M) or W(W) will begin just before Definition 8.3 below. 

Noration 8.1. Let V be a finite dimensional manifold, W(V) = 
C( [0, 11, V), and for 0 6 s G 1 let e(V) be the a-algebra on W(V) 
generated by the coordinate functions { <,,: 0 <s’ d s}, where rs(w) = 
o(s) E V for all w E W( V). For s 3 1 set e( V) = & ( V)-X1( V) will also be 
denoted simply by X(V). If Q is a measure on X(V), let %Q denote the 
completion of Z(V) with respect to Q. The extension of Q to 9” will still 
be called Q. Let X(Q)= {A ~2~: Q(A) =O> be the null sets of Q. The 
completion of the filtration (Xs( V)} with respect to Q is the filtration 
{SF} where 2’p = cr(x( V) u M(Q))-the o-algebra generated by x(V) 
and all Q-negligible sets. Finally let $F+ = nE,o sf+ E, so that { Pf+ }sao 
is a right continuous complete filtration (with respect to Q) on W(V), i.e., 
(WV, pe+ Js20, sQ, Q) satisfies the usual hypothesis (see Section 3). 

Remark 8.2. Clearly if Q’ is another measure on Y?(V) which is 
equivalent to Q then $$ = 2:’ for all s. 

Suppose that (52, IFS}, 9, P) is a filtered probability space satisfying the 
usual hypothesis and {X,>,, co, 1, is a continuous adapted V-valued process 
on Sz. (So we may view X as the function from Sz --) W(V) given by 
WER --+ (s--)X,(o)) E W(V).) The condition that A’, is Fs-adapted is 
equivalent to the function X being e/Zs( V) measurable for all s E [0, 11. 
The proof of the next lemma is easy and is left to the reader. 
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LEMMA 8.4. Assume the notation in the above paragraph. Let Q E X, P 
be the law of X on W(V), then X is @sJ.$F+-measurable for all s E [0, 11. 

Keep the same notation as in Notation 8.1 except now suppose that V 
is a finite dimensional vector space. Also assume that Q is a measure for 
which the coordinate functions {ls}s, c0, i, form a semimartingale on 
(WV), VT+ Lo, 2Q, Q). Suppose that 2 is another finite dimensional 
vector space and that {A,} is a Hom( V, Z)-valued s$?+-adapted con- 
tinuous process on W(V). Let cp be a fixed continuous version of j A d& 
so that rp may be viewed as a function from W(V) + W(Z) which is 
a:+ /g(Z) measurable for all s E [0, 11. The next proposition is a special 
case of [RW, Lemma 10.1, p. 1251 when Q is the standard Wiener 
measure. 

PROPOSITION 8.2. Assume the setup in the above paragraph-so cp is a 
fixed version of 1 A dt. Suppose { Xs} s t C0, 13 is a V-valued semimartingale on 
a filtered probability space (0, {Fs}, P) satisfying the usual hypothesis and 
X, P and Q are equivalent on s(V). Then cp 0 X is a version of 1 A(X) dX 
or written more suggestively: (s A(c) dc) 0 X = j A(X) dX. 

Proof First notice by Lemma 8.4 that X is Fs./2F+ measurable for 
each s, so that A(X) is Ys/%s(Hom( V, Z)) measurable for each s-i.e., 
A(X) is an Fs-adapted continuous Hom( V, Z)-valued process. Hence, the 
stochastic integral f A(X) dX is well defined. Similarly cp 0 X Sz -+ W(Z) is 
Ys/%,(Z) measurable for all s. In order to identify cp 0 X with j A(X) dX, we 
apply [Pr, Theorem 21, p. 573 to learn for each E > 0 that 

Q( I SUP cps- 2 As,(L,+,-L,,) s i=l 
as K-tco, (8.6) 

where si=sr=s.i/Kso that O=sO<s, <sz< ... <sK=s is a partition of 
[0, s] for each K. Since X, P is equivalent to Q, we may replace Q in (8.6) 
by X, P, and use the fact that t,(X) = X, to find 

(VOX),- 5 (AoX),;(X,,,+,-X,,,) as K-a. 
i= 1 

(8.7) 

But again by [Pr, Theorem 21, p. 571 we know that 

s4X)d~- f (AoX),i(Xs,,+,-X,,, 
)I > 

‘E 
r=, 

-0 as K+co. (8.8) 

The proposition now follows from (8.7) and (8.8). Q.E.D. 
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COROLLARY 8.2. Keep the same notation and assumptions as in Proposi- 
tion 8.2 and for definiteness take V= [WN. For i, jE { 1, ,.., N} let rl/” be a 
fixed version of [<‘, (‘1. So that $“: W(W”) -+ W(W), and each $” is 
2:+ /&( iw) measurable for all s E [0, 11. Then *Go X is a version of 
[Xi, Xi], i.e., [c’, 5’10 X= [X’, Xi]. 

Proof By definition of the quadratic covariation (Cc’, (‘I), Ic/” is a ver- 
sion of l’<j- tb. <‘, -J gi dtj- J ejdl’. Let pp” be a fixed version of s ri dtj 
for each i and j. Then $ij is indistinguishable from IC = l’tj- cb. <{ - rp” - 
cpj’. With the aid of Proposition 8.2 we find that rco X is a version of 
XiXi - X; . X6 - f Xi dXj - s Xj dX’ which is a version of [Xi, Xi]. But 
since X, P is equivalent to Q it easily follows that rc 0 X and $“o X are 
P-indistinguishable. Therefore $” 0 X is also a version of [Xi, Xi]. Q.E.D. 

COROLLARY 8.3. Keep the same assumptions and notation as in 
Corollary 8.2. Let Bi(lRN) denote the set of bi-linear forms on [WN taking 
values in some fixed finite dimensional vector space. For each sf+-adapted 
Bi([WN)-valued process (G) and any RN-valued semimartingale (Y), set 

j- G( Y)(dY, dY) s c s G,(Y) d[ Y’, Yj], 
q 

where G,(w)=G(o)(e,, ej) with (e,} the standard basis for IWN and 
o E W(IWN). Suppose that II/ is any fixed version of s G(t)(dc, dl). Then 

is a version of s G(X)(dX, dX), i.e., (IG(t)(d<, dt))o X= 
&;YX)(dX, dX). R ecall we are assuming that X,P is equivalent to Q. 
(Actually it does not matter that G is adaptedfor this lemma.) 

Proof Let Gi’ be fixed versions of [t’, (‘1 for each i and j. Then II/ is 
Q-indistinguishable from &J G, d$“. We can now use the Riemann sum 
approximation argument as in Proposition 8.2 and the fact that $‘/o X and 
[x’, Xi] are P-indistinguishable to conclude that $0 X is indeed a version 
of JG(X)(dX, dX). (In this case the Riemann sums approximating 
f G;,(l) d$” ‘11 wi converge uniformly Q-a.s.) Q.E.D. 

COROLLARY 8.4. Keep the same assumptions and notation as in 
Corollary 8.2. Now assume that u = xi tli dx’ is a one-form on IWN, and cp is 
any fixed version of ~a(S~)~~~~c(~(5)s<~. Then rpoX is a version of 
Ju(6X)=CiJui(X)6Xi, i.e., (Ja(S<))oX=Jcr(SX). 

ProoJ: For any [WN-valued semimartingale Y, by definition of the 
Stratonovich integral and It&s lemma, j a( 6Y) = xi j a,(Y) dY’+ 
fZ:i,jS (aju;)(Y) dCY’> Yil, w h ere aj = a/axj. Therefore cp is a version of 

1 J ai(O &‘+ i C S a,ui(O dC5’, 5’1. 
I 0 
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So it follows from Proposition 8.2 and Corollary 8.3 that cp 0 X is a version 
of 

7 j cl,(X) dX’+ + 1 j a,Lx,(x) d[X’, A-j] 
ij 

which is a version of j c((6X). Q.E.D. 

The next proposition is a special case of [RW, Theorem 10.4, p. 1261 
(see also [IW, Theorem 3.1, p. 1781) when Q is the standard Wiener 
measure on W([WN). 

PROPOSITION 8.3. Keep the same setup as in Proposition 8.2 with V= RN 
for definiteness. Suppose that F: RN x RK + Hom(lWN, RK) is a Cm-function 
and that q: W(RN) -+ W(W”) is a %‘se, /xs(lRK) measurable function for 
s E [0, l] which solves the Stratonovich differential equation 

b = F(5,4) St with q(0) = qO, (8.9) 

where q0 is a fixed point in RN. Then q E qo X is an (Q, {e}, P)-semimar- 
tingale solving the Stratonovich differential equation 6q = F(X, q) 6X with 
q(0) = qO. (Again by Lemma 8.4 all processes are appropriately adapted for 
the statement to make sense.) 

Proof First notice that for any RN-valued semimartingale (Y), 
the Stratonovich differential equation 64 = F( Y, 4) 6 Y is equivalent to 
the ItB differential equation dq = F( Y, q) dY+ G( Y, q)(dY, dY), where 
G(Y,q)(a, b)=i(d/dt)10 [F(Y+ ta, 4+ tF(Y, q)a) b]. So by assumption 
q: W( IWN) -+ W( [WK) satisfies 

q = qo + j F(t, 4) & + j (35, qK& 4 >. 

By Proposition 8.2 and Corollary 8.3, q = q 0 X is P-indistinguishable from 

qo+ j (F(L q)oW a+ j (G(t, q)oW(dX dJ3. 

Since F( 5, q) 0 X = F( X, 4) and G( 5, q) 0 X = G( X, q), 4 satisfies 

S = qo + j” F(X, 4) dX+ j G(X, q)(dX, dX) = qo + j- F(X, 4) 6X. Q.E.D. 

From now on let p denote the standard Wiener measure on W([w”), and 
v denote the Wiener measure on W(M) such that v( W,(M)) = 1. Now for 
each s E [0, 11, let b(s) (c?“(s)) denote the coordinate function on B’(lR”) 
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(on W(M)) given by o -+ w(s) for UE W(R”) (OE W(M)). With these 
definitions, ( W(R”), {$f+ }, p) and (W(M), {2:+ }, v) are filtered prob- 
ability spaces which satisfy the usual hypothesis and 6 is a Brownian 
motion on the first and 0, is a Brownian motion on the second. It is well 
known that 2s”, = %‘,“, and J?‘:+ = s:, but we won’t need this here. We 
also define y z H(c,), v = Z(6), p a probability measure on the “interpolat- 
ing” path space W(O(M)). (See Theorem 3.3 for the definitions of Z and ZZ.) 
Let U(s) denote the coordinate function U(s)(o)=o(s) on W(O(M)). 
Therefore (W(C)(M)), {2’y+ >, y) is also a filtered probability space on 
which WL co, 11 is a semimartingale because of the following lemma. 

LEMMA 8.5. Let (Q, {e}, P) b e a filtered probability space satisfying 
the usual hypothesis, and V be a finite dimensional manifold. Assume that 
X,: 52 -+ V is a V-valued semimartingale on ($2, { qv}, P). Let y = X, P be the 
law of X on W(M) and tS: W(V) --$ V be the coordinate function 
c,(o) = o(s) for each SE [0, 11. Then (5,) is a V-valued semimartingale 
defined on (W(V), (s??:+ }, y). 

Proof: Let f be a Cm-function on M. We must show that f 0 5 is a real 
semimartingale on (W(V), {%,Y+ }, y). But this follows easily using the 
“good integrator” definition [Pr, Definition, p. 443 of a semimartingale 
and fact that f 0 X is a semimartingale. The key points to note are: (i) 
(using the notation in [Pr, pp. 43443) for each simple { %I+ J-predictable 
function H and E > 0 

Y( IZfo,W)I > &I= P( lZfAH4 > ~1, 

and (ii) by Lemma 8.4, X: Sz + W(V) is FJ2:+ measurable for each s the 
process Ho X is (Fs} predictable. The reader can now easily finish the 
proof. Q.E.D. 

Remark 8.3. One description of the measure v is the law ([rr 0 Z(d)], p) 
of n(Z(6)) with respect to ,u. Another description of v is the measure con- 
centrated on W,(M) such that {6,Js)},,ro, i, is a Markov process with 
transition kernel given by the heat operator G?“~. Here A is the Laplacian 
in Definition 3.7 which according to Proposition 8.1 is the same as the 
Levi-Civita Laplacian because V is TSS in this section. 

DEFINITION 8.2. Let I: W(R”) -+ W(O(M)) be a fixed version of Z(d), 
i: W( O(M)) + I#‘( R”) be a fixed version of the stochastic integral 

and R: W(M) --) W(O(M)) be a fixed version of H(5,). (See Theorem 3.3 
for the definition of Z and H, and Definition 2.1 for the definition of the 

SSO/llO/2-8 
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canonical l-form 9.) Let Y = n 0 I where rc: O(M) -+ M is the canonical 
projection and let @Z I^0 f;i. 

Remark 8.4. Because of Lemma 8.4, for each s E [O, 11, 1 is $,“+ /9:+ 
measurable, i is ST+ /$,“, measurable, and R is %z+ /9y+ measurable. 
Consequently fat each s E [0, 11, Y: W(R”) + B’(M) is $‘s”, /2,‘+- 
measurable and Y: W(M) + W(R”) is 91, /2.:+-measurable. 

THEOREM 8.2. Let (52, {E}, P) he a filtered probability space satisfying 
the usual hypothesis. 

(i) Suppose that {b(s): Sz -+ [w”} is an 9*-semimartingale such that 
b, P is equivalent to u, then I(b) and 10 b are P-indistinguishable. 

(ii) Suppose that {o,(s): 52 + M} is an ys-,-semimartingale such that 
oO. P is equivalent to v, then H(o,) is P-indistinguishable from Ro rsO. 

(iii) Suppose that {u(s): Q + O(M)} is an ps-semimartingale such 
that u* P is equivalent to y, then u is horizontal and io u is P-indistin- 
guishable from I ~ l(u). 

(iv) $0 Y: W(W”) + W(rW”) is u-indistinguishable from the identity 
map (6) on W([w”). 

(v) Yo Y: W(M) -+ W(M) is v-indistinguishable from the identity 
map (6,) on W(M). 

Proof (i) By Theorem 3.1 we may consider Z(b) as the solution to a 
Stratonovich differential equation having the form in Proposition 8.3 where 
F depends only on q and not 5. So (i) follows from Proposition 8.3. 

(ii) In the proof of Theorem 3.2 it was shown that H(o,) may be 
considered as a solution to a Stratonovich differential equation having the 
form in Proposition 8.3, see Eq. (3.6). So (ii) follows from Proposition 8.3, 
and the pathwise uniqueness of solutions to (3.6). (To apply Proposi- 
tion 8.3 let l= oO, q = u, and F(o,, u) = T(oO)( .) u.) 

(iii) Let a = w in Corollary 8.4, in which case we may take cp = 0 as 
a version of 1 o(G). So by Corollary 8.4 (see the remark below), 0 = cp 0 u 
is a version of J o(&), which shows that u is indeed horizontal. To finish 
the proof of (iii), apply Corollary 8.4 again, now with c1= 9, and q = t 

Remark. Notice that A4 may be imbedded in RN for some N which 
induces an imbedding of O(M) into RN x Hom( R”, W”) as in Lemma 2.2. 
The form o may be extended to a form (W) on T( RN x Hom( R”, RN)). We 
may now view u as an RN x Hom( R”, RN)-valued process and by definition 
Jo(du)=~o(Gu) f or any O(M)-valued semimartingale u. It should 
now be clear to the reader that our first application of Corollary 8.4 in 
(iii) above was valid. Similar comments are also needed for the second 
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application of Corollary 8.4 above. Such comments in the future will be left 
to the reader to till in. 

(iv) We will apply parts (i)-(iii) above with (Sz, (ps}, P) = (W(rW”), 
{s,“, ), p). By (i), I= 10 6 is p-indistinguishable from Z(6), so that Y = n 0 Z 
is p-indistinguishable from rt oZ(6). By (ii), Ro Y is p-indistinguishable 
from Ho rc 0 Z(6) which by Theorem 3.3 is p-indistinguishable from Z(h). 
So Zn Ro Y is p-indistinguishable from ZoZ(6) which by (iii) is 
p-indistinguishable from I- ’ 0 Z(6). Because of Theorem 3.3, ZZ’ 0 Z(d) and 
h are p-indistinguishable, and hence $0 Y = 10 Ro Y is p-indistinguishable 
from 5. This proves (iv) because 6: W(lR”) -+ W([w”) is the identity map. 

(v) The proof of (v) is similar to (iv), except one now applies 
(i)-(iii) with (Sz, {E}, P) = (W(M), {2J+ }, v). Q.E.D. 

We are now ready to discuss the existence of the flows on W(M) and 
W(Iw”) generated by (5.1) and (5.5) respectively. First some more notation. 
Let G(t) = 1 O(t) &+ j a(t) ds be the solution to (5.5) with W(O) = b given 
in Theorem 6.1. (Here the underlying filtered probability space is 
(W(rW”), {2’,“, }, p) with reference Brownian motion {Z$(s)}.) So O(t) and 
i(t) solve equations (6.5) and (6.6) with O(O) = ide O(n), and $0) = 0. We 
can and do assume that p-a.s. the function (t, s) + (W(t)(s), 8(t)(s), c(( t)(s)) 
is Cr.‘, see Proposition 6.3 and Lemma 4.5. 

DEFINITION 8.3. Using the above notation, to each t E Iw and to each 
Cl-function h: [0, l] -+ [w” such that h(O) = 0, define s”(t): W(W”) + W(W”), 
O”(t): W( lRn) -+ W(O(n)), and c?(t): W( UV) + W( [Wn) by sh(t) = G(t), 
Oh(t) = O(t), and c?(t) = c1( t). 

Remark 8.5. Notice for each s E [0, 1] and t E R that s”(t) and ah(t) 
are %?r+ /yi”,( [Wn) measurable, and that Oh(t) is 2,“+ /x( O(n)) measurable. 
In fact, by Theorem 8.1, Remark 8.2, and Lemma 8.4 it follows that s”(t) 
is also $?‘,“,/A?‘,“, measurable for each s E [0, 11, and in particular 
s”(t) 0 9(r) is still %‘,“+ /s’,“+ measurable for all s E [0, 11. (Recall that in 
this section V is always assumed to be TSS.) 

The next theorem shows that ,Sh(t) is the “universal” solution to equa- 
tion (5.5) when the initial Brownian semimartingale w, = f 0, db + j a, ds 
has the property that 0, is an orthogonal process and c(, is a bounded 
process. 

THEOREM 8.3. Suppose that h: [0, l] --) [w” is a Cl-function such that 
h(0) = 0. Let (Q, { FS}, {b(s)}, P) be a filtered probability space satisfying 
the usual conditions equipped with an EP-valued Brownian motion b(s). 
Assume (as in Theorem 8.1) that w, = SO, db + s a, ds is an IJV-valued 
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Brownian semimartingale such that 0, is an O(n)-valued process and 
II% Ilsm < 00. Let w: R + Y”R” be the solution to (5.5) given in 
Theorem 6.1. Then w(t) is P-indistinguishable from S”(t) 0 w,. 

ProoJ First notice by Lemma 8.2 that w(t)* P and S”(t), p are equiv- 
alent to ,u for each t. By Lemma 8.4, w,: Q + W( R”) is 9JA?$+-measurable 
for all s E [0, 1 ] and therefore so is Sh( t) 0 w,. By Proposition 8.3, Sh( t) 0 w, 
is P-indistinguishable from 

j- O”(t) 0 w, dw, + j. ah(t) 0 w, ds 

= j-Oh(t)~w;O,db+~ [Oh(t)~w;a,+ah(t)ow,] ds. 

so 

S”(t)ow,=J-O(t)db+ja(t)ds P-as., 

where O(t) = Oh(t)0 w,. O,, and a(t) = O”(t)0 w,. c(, + ah(t)0 w,. Because 
O*(O) =id~ O(n), and &(O)=OE R”, it follows that O(0) = 0, and 
~(0) = ~1,. So in order to show w(t) = S”(t) 0 w,, it suffices to show by the 
uniqueness assertion in Theorem 6.1 that O(t) and a(t) are Sp(P)- 
continuously differentiable (for p E [2; co)) solutions of (6.5) and (6.6). 

I assert that t + Oh(t) 0 w,, and t + ah(t) 0 w, are SP(P)-continuously dif- 
ferentiable for all p > 2 with derivatives given by &(t) 0 w,, and c?‘(t) 0 w,. 
It is then clear that O(t) and c1( t) are also SP(P)-continuously differentiable 
with 

and 

d(t) = cqt) 0 w, .o, (8.10) 

i(t) E e(t), w, . a, + c?“(t)0 w,. (8.11) 

The first assertion is an easy consequence of the following claim and the 
fact that t + Oh(t) and t + ah(t) are SQ) continuously differentiable 
functions for all p > 2. 

Claim. If X: W( KY) + W(RN) is a &;/@(lR”)-measurable process 
and PE [Z, co), then for each re.(p, co), there is a constant C= C(r,p) 
independent of X such that 

llx”w,lIsqP) G c IlXII.‘(,,. 
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To prove the claim, let p = d(w,.P)/+ which exists by Girsanov’s 
Theorem (Lemma 8.2). Then compute 11x0 w, I/ sp(pj using Holder’s 
inequality, 

IIX” WCJ II P(P) = I/J4 .sP(wo*P) = llJ4 SP(pp) 

= IIx*p”P 11 U(p) 6 /I P1lP II L’,(p) II-Y Y(S)? 

where l/r’ = l/p - l/r. Set C = II pllp 1) Lr’cPj which is finite by Corollary 8.1. 
This proves the claim and the above assertions. 

Set i?(t) = Sh( t) 0 w, = j O(t) db + s a(t) ds. The proof will be complete if 
we can show O(t) = C(ti(t)) O(t) and t+(r) = C(fi(r)) LY(~) + R(ti(t)). To this 
end we first define two functions C: W([w”) + B’(so(n)) and 8: W(llV) 
which “implement” C and R. To motivate the definitions of these functions 
let X= j 0 db + s c1 ds be any IFY-valued Brownian semimartingale such 
that 0 is an orthogonal process and c1 is bounded. Then A(X) in (5.7) is 
given by 

= I Q,(x) (h, dX) + 4 I a,(,, (id, h, id) ds, 

where id is the n x n identity matrix as follows, see Eq. (6.9), and 
Remark 6.2. (See Definition 6.2 for the definition of a.) Therefore, using 
Lemma 8.2 and Theorem 8.2(ii), 

is given by 

C(X) = A(X) + T(X) = A(X) + O,(,)(h, .) 

With this as motivation define C as a fixed version of 

SOf(h, db) + $J sZi(id, h, id) ds+O,-(h, .). (8.12) 

It then follows by Proposition 8.2 and Lemma 8.2 that Co X is 
indistinguishable from C(X). Similarly, if we define (see (6.7) and 
Remark 6.2) 8: W(lR”) + FV(R”) by 

RE f{Ric,-(h, id, id) + Oi(id, h, id)} + h’ 

= ${Rici(h) + Oi(id, h, id)} + h’, 

then by Theorem 8.2(ii) and Lemma 8.2, R 0 X = R(X). 

(8.13) 
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The rest of the proof is now a simple verification. By definition, we know 
that @(t) = co s”(t) oh(t) and hence 

e(t) 0 w, = co S”(t) ~w,~o~(t)~W,=C~~(t)~O~(t)~W,. (8.14) 

From (8.14) and (8.10) we find 

d(t) = co S(t). O(t) = C(G) O(t), 

as desired. Similarly by definition, L?(C) = Co S*(t) . a”(t) + a 0 S*(t), and 
hence 

a~(t)ow,=Co~(t)~a~(t)O~(~)+ao~(t). (8.15) 

By insertion of (8.14) and (8.15) into (8.11) and using the definition of a(t) 
it follows that 

ci(t)=~o@(t)xt(t)+~~@(t)=C(ti@))~a(t)+R(iC(t)). Q.E.D. 

We can now easily prove our first version of the Cameron-Martin type 
theorem. Because, as will be shown, sh(t) is a flow on W(5Y) it is possible 
to get a rather explicit Cameron-Martin type formula for the Radon- 
Nikodym derivatives d(Sh(t),p))l& Recall again that V is assumed to be 
TSS in this section. 

THEOREM 8.4. Suppose that h: [0, l] -+ R” is a Cl-function such that 
h(0) = 0, and Sh, L@, and Oh are as in Definition 8.3. Then Sh is a jlow on 
W( ~7%“) which leaves the Wiener measure (p) quasi-invariant. More explicitly, 

(i) for all t, T E R, Sh(t + T) = S”(t) 0 ,!?(T) p-a.s., and 
(ii) d(Sh(t), ,u))ldp = Z(h, t), where 

Z(h, t) E exp c+t).O+t)db-$ j,, ,a”(-r)(s),‘ds}. (8.16) 

ProoJ: (i) Because of Theorem 8.1, we may apply Theorem 8.3 
with (Sz, {Fs}, P) = (W(R”), {s,“, }, p) and w, = sh(z) to learn 
w, = ,!?(?)a ,Sh(r) solves (5.5) with w(O)=+!?(r). But the function 
G(t)= Sh(t+ r) also solves (5.5) with the same initial condition (??(r)), 
and hence by the uniqueness assertion of Theorem 6.1, G(t) = w(t), i.e., 
S”(t + 7) = P(7) 0 P(T). 

(ii) From Eq. (8.3) of Lemma 8.2 with P = p, b = 6, and w = sh(t) it 
follows that 

At-) = /G(6) = /G(hv - t)f(s?f))) (8.17) 
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for all bounded measurable functions f: W(P) + R. Replace f by 
fo,Sh(---t) and then t by -tin (8.17) to find that 

Afcw)) = PL(W~ t)f), (8.18) 

where part (i) was used to conclude that j-0 Sh(t) 0 Sh( - t) = f ,u-as. Equa- 
tion (8.18) implies that d(,!?(t)*p))ldp=Z(h, t). Q.E.D. 

I will leave it as an exercise to the reader to verify that in the 
case M= [w” with the usual covariant derivative that (8.16) reproduces 
(1.2). One word of caution: &(o +/z)/+(w) in (1.2) is equal to 
4Wl h+ ~WV444 not dWU)* PWWPW. 

Remark 8.6. At this point the t in all of the above notation is 
unnecessary. The reader can easily verify that Fh(t) and Sh(tz) both satisfy 
(5.5) with h replaced by zh. Therefore, STh( 1) is p-indistinguishable from 
Sh(z). For this reason, we introduce the following notation. 

Notation 8.2. Let S(h) = Sh( 1): W( [w”) -+ W(rW”), O(h) - Oh( 1): W(rW“)-+ 
W(O(n)),cc(h)=~?‘(l): W([w”)-+ FV(lR’),andZ(h)=Z(h, 1): W(OV)+(O, co). 

We end this section by transferring Theorem 8.4 from IV(P) to W(M). 

THEOREM 8.5. Recall that r?,(s): W(M) + A4 was defined by 
@,(s)(w) = o(s) and {CJs)} is an M-valued Brownian motion on the prob- 
ability space (W(M), {%Jy+ }, v). Let {b(s)- !?oc?,(s)= @S},EcO, 13 be the 
fixed reference IV’-valued Brownian motion on this probability space, and 
h E C’( [0, 11, lFY) be a givenfunction such that h(0) = 0. Also let r?(t) denote 
the solution to (5.1), (d/dt) c?(t) = H(o(t))h) with c(O) = 0, whose existence 
is guaranteed by Corollary 6.3 with (52, {z}, P) = (W(M), {,%I+ }, v) and 
a, = a,. Then 

(i) a(t) = Y 0 Sh( t) 0 !@ are v-indistinguishable, 

(ii) c(t) is a flow on W(M) which leaves v quasi-invariant, and 

(iii) d(o(t),v)/dv=Z(th)o !@. 

ProojI Let a(t)= Ye,!?(t), and notice that a(t) is a {d(s)},,rO, ,,- 
Brownian semimartingale defined on ( W( KY”), {$,“, }, p). Recall that 
b(s)(o) = o(s) for 0 E W( [w”), or as a function from W([w”) to W([w”), 6 is 
the identity map. By Theorem 8.2, o(t) is indistinguishable from rc o Z(,!?( t)), 
and so by Theorem 5.2, a(t) solves the geometric flow equation (5.1), 

6(t) = H(a(t)) .h = Roe(t) .h. (8.19) 

The derivative is taken in the BP(p)-topologies, where the p signifies that 
the reference probability space and Brownian motion is ( W(FV), I%:+ }, 
{&s(s)}, p). Now right compose both sides of equation (8.19) with Y to find 

6(t)o +==Hw(t)o i.h. (8.20) 
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Set Z(t) = a(t) 0 Y= Y 0 ,Sh(t) 0 Y, then because of Lemma 8.6 below Z(t) is 
a WWh {2:+ 1, U4dh 4 B rownian semimartingale for each t which is 
BP( v)-continuously differentiable for all p E [ 2, co ).” Furthermore, the BP(v) 
derivative of Z(t) is given by (d/dt) c(t) = e(t) 0 Y. Combining these last 
remarks with (8.20) shows that a(t) solves the same geometric flow 
equation as f?(t): 

Because c?(O) = !Yo sh(0) 0 Y= Yo Y which is indistinguishable from a,, 
it follows by the uniqueness assertion of Corollary 6.3 that c(t) and 
a(t) = Y 0 Sh( t) 0 Y are indistinguishable. 

Parts (ii) and (iii) of the theorem are a trivial consequence of 
Theorems 8.2 and 8.4 and part (i) just proved. Q.E.D. 

LEMMA 8.6. Keep the same notation as in Theorem 8.5. Let X= J A db+ 
s CI ds be a (W(W), { 2s”, }, {d(s)}, p))-Brownian semimartingale, then 

X0+= Ao!@db+ uo!@ds s s (8.21) 

and hence X0 @ is a (W(M), (21, }, {b(s)}, v)-Brownian semimartingale. 
Furthermore, IIXo @II BpcvJ = IlXll BpcpJ. 

do 
P;oojI* Equation (8.21) follows from Proposition 8.2 and the fact that 
Y = Y = Y 0 so = b. To see this last statement just compute 

11x0 @II BP(~) z IIA 0 %~(vj + Ilao ~lls~~v~ = II~,P~~~~, + ll&~(e,vj 

= IIA II SP(~) + II41 v(N) = IIXII w(p), 

where we have used Theorem 3.4 to conclude that Y, v = p. Q.E.D. 

Remark 8.7. One might think that the notion of solution to Eqs. (5.1) 
or (5.5) depends on the particular choice of a reference Brownian motion. 
However, this does not seem to be the case in the above path space setting. 
The reason is that every W-valued Brownian motion (B) on ( W(lW), 
{s,“, }, ,u) necessarily has the form B = j 0 d& where 0 is an O(n)-valued 
predictable process, see, for example, [Pr, Theorem 42, p. 1551. Also 
because Y: (W(W), {s,“, }, p) + (W(M), (21, }, v) is a measure 
theoretic isomorphism, it follows that any (W(M), ($1, }, v)-Brownian 
motion (B) must be of the form B = 10 db where 0 is an $:+-predictable 
O(n)-valued process. In particular, this shows, for the path spaces W(M) 
and W(W), that the BP-norms are independent of the choice of reference 
Brownian motion. 
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9. INTEGRATION BY PARTS 

In this section we are primarily interested in the filtered probability space 
(W(M), {$z+ }, v). To simplify notation let 8~ %z+ and let” b b_e the 
R”-valued Brownian motion on (W(M), {$}, v) given by b z Y = !Po 0,. 
Again; as in Section 8, the covariant derivative V on TM is assumed to be 
torsion skew symmetric (TSS), so that all the results of Section 8 are valid. 

The purpose of this section is to use the results of Section 8 to derive an 
integration by parts formula for the “H-derivative.” For the prototype of 
this sort of result see Cameron [Cal. It was L. Gross who first emphasized 
the importance of and systematically studied the pointwise H-derivative in 
the abstract Wiener space setting. A’history of the H-derivative may be 
found in Gross’ paper [Gr3]. Before introducing the H-derivative 
appropriate to our context, we introduce the reproducing kernel Hilbert 
space H. 

Notation 9.1. Let H denote the Hilbert space of functions 
h: [0, l] * R” such that h is absolutely continuous, h(O)=O, and 
j; Ih’(s)l’ ds < co. 

In this section we fill fix a function R: W(M) -+ W(O(M)) as in Defini- 
tion 8.2 for which H(X) = Ro X for all M-valued semimartingales X with 
law(X) equivalent to v. This should help avoid any possible confusion 
between the horizontal lift operator H and the Hilbert space H. 

DEFINITION 9.1. Let D denote the set of C2-cylinder functions on 
W(M). That is, f~ D iff there is a positive integer k, a C2-function 
F: Mk -+ IR, and points sl, s2, . . . . sk in [0, l] such that f(o)= 
F(dSl), 4s2), ..*, w(sk)) for o E W(M). For any h E H, the h derivative 
(a& offE D is defined v-as. to be 

a/rf(w) = 1 fi(0)(R(w)(si) h(si))7 

i=l 
(9.1) 

where fi(O)(U) z U(F(W(Sl), O(S2), . . . . O(Si-I), *, O(Si+l), . . . . m(sk)) for 

u E T,(,,M and w E W(M). So fi is the differential of F with respect to the 
ith variable evaluated at (o(s,), o(s2), . . . . w(sk)). (It will be shown in the 
course of the proof of Theorem 9.1 below that ahf is well defined v-a.s., 
independent of the way f is represented.) 

THEOREM 9.1. Let (., .) denote the L2( W(M), gl, v) inner product. For 
h E H define 

z(h)sjl [(RicR(h)+dR(h))/2fh’].db, 
0 

(9.2) 
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where RicE(h) = RicR(Z, h,Z) = CiQR(h,ei)ei, and GR(h) = 
OA(Z, h, Z> =Ci Qk(ei, h, ei>. See Definition 6.2 for more on this notation. 
Then with respect to this inner product, a,* is a densely defined operator, the 
domain D(ax) contains D, andfor f E D 

a,*f= -ahf+ z(h)f: (9.3) 

Furthermore for each h E H and p E [ 1, CO) there is a constant cp such that 

lI4h)lluyvj G c, [j; ,h’(s),‘ds]‘-‘- 

This theorem immediately implies the following corollary. 

(9.4) 

COROLLARY 9.1. For each h E H, the dense& defined operator ah on 
L2( W(M), dv) is closable. 

Proof of Theorem 9.1. The estimate in (9.4) is easily proved by 
Burkholder’s inequality, the existence of a constant C bounding 0, and 
Ric, independent of UE O(M) (by compactness), and the Sobolev 
inequality 

[i 
’ lh’(s’)12 ds’ 

1 

112 
Ih(s)I d . (S) 

0 

So it only remains to prove (9.3). 
For the moment assume that h E Hn C’, and let C(t) be as in the 

statement of Theorem 8.5. So a(t) is a version of Y 0 Sh( t) 0 @ which is C’,’ 
v-a.s. and satisfies 

$(t)=Roa(t).h with 8(O) = 53,, 

where the derivative is relative to the BP(v)-norms. To simplify notation, 
we now drop the bars and write a(t) for S(t). (Recall that o0 = co is the 
process on W(M), such that as a function from W(M) to W(M) oO is the 
identity map.) Suppose f E D (D as in Definition 9.1) then trivially a,f = 
(d/dt)J,f(a(t)) v-as., which incidentally shows that a,f is well defined inde- 
pendent of the possible choices for k, sl, s2, . . . . sk E [0, 11, and F: Mk -+ R 
such that f(o) = F((o(s,), w(s2), . . . . m(sk)). By Theorem 8.5, 

v(foo(t))=v(f.Z(th)o!?) (9.5) 

holds for all t. In Lemma 9.1 below it is shown that (d/dt)l,f oo(t) = a,f in 
Lp(v) for all p E [l, co). It follows from Lemma 8.6, -Proposition 8.2, 
Theorem 8.2, and Lemma 9.2 below that (d/dt)J, Z(th)o Y=z(h) in Lp(v) 
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for all p E: [ 1, co). Therefore, after differentiating (9.5) at t = 0, one finds 
that 

v(a,f) = v(f.z(h)). (9.6) 

Now replace f in (9.6) by f .g where g is also in D and use ?J,(f .g) = 
a,f.g+f.a,,g to find 

(a,f,g)=(f, -~,s-mM=(f, -a/x+z(h)g)? 

which proves (9.3) for h E H n C’. 

(9.7) 

For general h E H, choose a sequence of functions h, E Hn C’ such that 
lhIh;--h’l*ds+O as n-+co, and hence by (S), lh-h,j,-+O as n+co. 
Now it is easy to show Ila,J- a,fll Lm(,j < C Ih - h, I co which tends to zero 
as n -+ co, where a,f is given by (9.1). Since 8,Jis well defined v-a.s. this 
shows rhat i3,f is also well defined v-a.s. By these comments and (9.4), one 
easily verifies that (9.7) holds for all h E H by replacing h in (9.7) by h, and 
passing to the limit n -+ co. Q.E.D. 

LEMMA 9.1. Let h E H n C’, o(t), and f E D be as above. Then for all 
p E [ 1, 00 ), k(t) = f 0 c(t) is LP-differentiable at t = 0 with k = a,,$ 

Proof. By the fundamental theorem of calculus (pointwise) 

[k(t)-k(O)]/t-k(O)=; ?6’ [&)-k(O)] dr. 

Taking the Lp norms of both sides of this equations yields 

II Ck(t)-k(O)llt-~(O)lI.,~ fj; II [hW&Nll.,dr 1. (9.8) 

Now 

'(~)-i(o)= i Cfi(a(z))(Roa(r)(si)h(s,)) 
i=l 

from which it is easy to get the estimate 

~I;(T)-~(0)),~cJR~6(5)-~~(T~J~ac~)6(5)-o(T,~,, (9.9) 

where C = C(F, h) depends on the sup-norm of F and its derivatives up to 
order two and the sup-norm of h. Take Lp norms of both sides of (9.9) to 
get 

Il~(t)-~~~~ll,P~C’CII~~a~~~--~~a,II.~+ IlfJ(z)--(T,I/s~1 
G cp 114~) - 00 II BP? (9.10) 
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where Lemmas 4.1 and 7.3 were used to get the last inequality. The con- 
stant C, now depends on p. Now c is BP-continuously differentiable and 
hence Lipschitz. Therefore, combining (9.8), (9.10), and this last comment 
shows there is a constant CL such that 

This shows k is BP-differentiable at t = 0. This proves the lemma, since in 
the proof of Theorem 9.1 it has already been noted that the pointwise 
derivative of k at t = 0 is a,jI Q.E.D. 

LEMMA 9.2. The function Z(th) is Lp(p) differentiable for allp E [l, co) 
and 

ilo I 
Z(th)= ’ [Ric7(h)+6,(h))/2+h’].db-z(h). 

ProoJ To simplify notation let O(t) = U”(t), and u(t) = d’(t), where Oh 
and CY~ are given in Definition 8.3. Set D(t)(s) = -1; a(t). O(t) db - 
(l/2) li Ia( ds’ so that Z(th) = eD(-r)cl). Let Y(t)(s) = eD(‘jcS), clearly 
it suffkes to prove that Y(t) is Sp(p) differentiable at t = 0 and that 
?(t)(l) = -z(h). 

Using Lemma 4.6 and the regularity properties of 0 and CI (see 
Corollary 6.1, Corollary 6.2, and Proposition 6.3), it is easily seen that 
D: J+ Y”lR’ is a Cl-function, and that b(t) is BP(p)-Lipschitz for all 
p E [2, co). By Lemma 4.5 we may and do assume that a version of D has 
been chosen such that (t, S) + D(t)(s) is C’,‘. Hence, pointwise ?(t)(s) = 
Y(t)(s) d(t)(s), where p-as. 

B(t)(s)= -j-i; [o(t)“cr(t)] .db--$$ Ia(t)(s’)12ds’. (9.11) 

By the same techniques used in the proof of Lemma 9.1 one has 

11 [r(t)-- y(o)l/t- ~wll.~~ f j; Iv%- fUVll,pd~ 1. (9.12) 

This last integrand is easily estimated with the aid of Holder’s inequality, 
and Lemma 4.1 as 
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where the constant C may increase from line to line, and l/p = l/q + l/q’. 
The fact that d is BP(p)-Lipschitz was used to get the last inequality. Using 
the fundamental theorem of calculus, Holder’s inequality, and Burkholder’s 
inequality one finds that 

II(Y(z) - l)llss G II y(~‘)ll sr ll~(~‘)ll sr, dz’ 

< c,, II Y(4lsr ll~,(~‘)ll~~~ dz’ > (9.14) 

where l/q = l/r + l/r’. By Remark 8.1 and a standard martingale inequality 
(see Theorem 6.10, pp. 33-34, of [IW]) there exists a constant C such that 
11 Y(t’)lj S, < C for r’ E J. Because d(z’) is B” continuous there is a constant 
C such that Il&r’)llB,, d C for z’EJ. These last two comments combined 
with (9.14) imply the existence of a constant C such that /I( Y(z) - l)lISy < 
C 1~1. Combining this estimate with (9.12) and (9.13) shows there is a 
constant C such that 

which shows that Y is BP-differentiable at t = 0. We also know that Y(0) = 
eD(O = B(O) because D(0) = 0, since ~(0) = 0. From (9.1 l), using (6.6) 
(6.7) and the initial conditions ~(0) =O, and O(0) =id~ 0(n), it follows 
that 

Y(O)(l)=d(O)(l)= -s’&(O).d~= -j-l R(b)d6 
0 0 

= - ’ [(Rici(h) + g1(h))/2 + h’] db =: -F(h). s Q.E.D. 
0 

To conclude this section it will be shown that the “infinitesimal” density 
z(h) is “highly” integrable. To simplify notation, for each h E H set 
llhll E (J; Ih’(s)l’ ds)1’2. 

PROPOSITION 9.1. There exists constants 6 > 0, and K > 1 such that for 
each h E H, v(exp(b[z(h)/ llhll I’)) < K, where z(h) is defined in (9.2). 

Proof Let N be the martingale N(s)=j; [(RicR<h)+GR(h))/2+h’] 
. db. It is easy to see that there is a constant C > 0 such that [N, N]( 1) < 
C llhll 2. Now apply Lemma 9.3 below with 6 = c/C. Q.E.D. 

LEMMA 9.3. There exists constants E > 0, and K> 1, such that for each 
continuous local martingale N (on some filtered probability space 
(52, (ets), P)) the following estimate holds: 

p(expWf/ II CN Nl 1 II Lmcpj) d K. (9.15) 
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Proof. It is clear that if C= 11 [N, N], I/ La(pj = cc then (9.15) holds 
since K> 1 by assumption. So we may assume that C < co. By the 
Dambis, Dubins-Schwarz Theorem (see [RY, Theorem 1.7, p. 171, or 
R-W, Chap. IV, Sect. 34]), on a possibly “enriched” probability space 
(9, {E}, p) there is local martingale fl and a Brownian motion 3 such 
that the laws of N and fi are the same, the laws of [N, N] and [N, fi] are 
the same, and R(s) = B( [fl, R](s)). Therefore, 

P(exp(sNT/C)) = B(exp(@/C)) = B(exp(&( [fi, #](l)))‘/C) 

< H(exp(4BE)2/C)), (9.16) 

where & = sup, G c le, (. Now B(. ) has the same law as C-‘/*8( C. ), and 
hence & has the same law as C”‘&. So (9.16) may be written as 

P(exp(&/C)) 6 P(exp(s(B:)2)). (9.17) 

But by Fernique’s Theorem (see [K3, pp. 159-1601 or [IW, p. 4021) there 
is a constant E > 0, such that K= p(exp(s(&)‘)) < co. (Notice that only the 
law of 8 enters here so that E and K are independent of the particular 
realization of the continuous Brownian motion 8.) Q.E.D. 

10. FINAL REMARKS 

In this final section I will briefly discuss the two alternative methods 
for “shifting” an M-valued semimartingale that were introduced after 
Example 5.1. In each of these strategies the existence of the shifted process 
is not at issue. However, in general, these alternative shifting strategies 
will not have the desirable quasi-invariance properties. Since the results 
of this section are negative in nature, I will only sketch the arguments 
involved. For the rest of this section it will always be assumed that the 
covariant derivative (V) is torsion skew symmetric (TSS). 

Let h: [0, 1 ] + [w” be a Cl-function such that h(0) = 0 and let 6, be an 
M-valued semimartingale starting at o. As described after Example 5.1, one 
might try to define o(t) by a(t)(s) = exp(tH(a,)(s) h(s)), where exp is the 
geodesic flow with respect to the covariant derivative V. Notice that o(t) is 
a semimartingale if crO is a semimartingale because of Ito’s lemma. Let 
T,(o,) z o(t) = exp(tH(o,)h), so that T, transforms semimartingales on M 
to semimartingales on M. In general T, is not a flow-i.e., T, 0 T, # T, + ~. 

Remark 10.1 For the Riemannian manifolds in Example 5.1, T, is 
actually a flow. The reason is because in each of these examples the 
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curvature is zero so that the map T, is the flow generated by (5.lEsee 
Remark 10.2. However, as soon as V has curvature, the map T, will no 
longer in general be a flow. This happens even on a non-commutative 
compact Lie group with the Levi-Civita connection, which is the average 
of the left and right connections. 

The other main flaw of the map T, is that it does not have the quasi- 
invariance property. I will now explain why this property fails when the 
curvature is not zero. As has been done throughout this paper, we will pull 
T, back to a mapping on P-valued semimartingales where it is easier to 
decide quasi-invariance questions. To this end set w(t) E I- ’ 0 H(a( t)). 

To simplify notation let u(t) = H(a(t)), U, E H(o,), and u(t)(s) = 
e’B(h(S))(u,(s)), h w ere B(h(s)) is the standard horizontal vector field in 
Definition 2.2. Since 0 = rco v = TCOOU, it makes sense to define the O(n)- 
valued semimartingale g(t)(s) by g(t)(s) = u(t)(s) ~ I u(t)(s). So u(t)(s) = 
u(t)(s) g(t)(s), which is just the decomposition of the non-horizontal O(M)- 
valued semimartingale (u) into a horizontal piece (u) and a “vertical” piece 
(g). It is convenient to define another KY-valued semimartingale by 
x(t)(s) = ~;~(&J(z)). The two processes w and x are related by g, namely 
w = sg 6x. Now suppose that o, is a Brownian motion on M, so that 
b= w(0) =x(O) is a Brownian motion in [w”. Because co is a Brownian 
semimartingale it follows that u, u, w, and x are all Brownian semimar- 
tingales. 

We can now understand why, in the case of nonzero curvature, the laws 
of w(t) and b are not in general equivalent. The idea is to use Lemma 8.1 
along with the non-orthogonality (to be shown) of the process O(t), where 
O(t) and cc(t) are processes such that w(t) z j O(r) db + J a(t) ds. Because 
the process g is orthogonal it will suffice to show that Q(t) = g-l (t) O(t) is 
not orthogonal. Since 

x= g i %3w={g-‘Odb+jflds=IQdb+l/?ds 

for some process 8, in order to find Q we need to find the differential (dx) 
of x. 

Start by computing di, 

d~=~9(6o)=d~(l;,6~)+6(9(~)) 

=Q(ti,Su)-WA 8(6,Su)+S(9(d)) 

=O(ti,6v)+o(Sv)t!?(ti)+dh 

=Q,(h,6x)+o(&)h+dh, (10.1) 
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where we have used the first structure equation (0 = d8 + o A 9), 
o(ti)=O, and S(fi)=h. Also compute (d/dz)o(6u)=du(ti,6u)+ 
6(w(d))=52,(h, 6x) so that 

(10.2) 

Writing x=jQdb+Jad s, and substituting this expression for x into 
(10.1) using (10.2) one finds (by comparing the coefficients in front of db) 
that Q satisfies 

C?(t) = Q,,,,<k Q(t)- > + j-; Q,(,,(k Q(T). > h dr. (10.3) 

Because x(O) = b, the initial condition for (10.3) is Q(0) = Id. 

Remark 10.2. If the curvature of V is zero then u(t) = u(t), which 
follows from the stochastic version of Eq. (2.5). In this case (10.3) is the 
same as (6.5), and Q(Z) will be orthogonal if V is TSS. 

For simplicity assume that V is the Levi-Civita covariant derivative on 
A4 so that 0 = 0. If Q(t) were orthogonal for all t, then G!,,,,(h, . ) h would 
necessarily have to be so(n) valued, since 

Qv,o,(k . > h =$ [Q(t)-’ C?Wl. (10.4) 
0 

But it is not generally true that SZ,,,,(h, . ) h is so(n)-valued, as can be seen 
by taking M to be the standard n-sphere (Y) with the Levi-Civita connec- 
tion. For M=S”, SZ,(a, b) c= (a, c)b-(b, c)a for all a, b, CE IX” and 
u E O(M), and hence lJ,,,,(h, . ) h is the non-skew symmetric linear trans- 
formation on R” 

c + (h, h)c - (h, c)h. 

Now let us consider the second alternative for a(t) introduced after 
Example 5.1. For this example let X: [0, 1 ] x M + TM be a smooth 
s-dependent vector field, such that X(O)(o) = O,-the zero vector in T,M. 
Define a(t) using the flow of the vector field X(s) by a(t)(s) = erX@)(a,(s)). 
Since, a(t)(s) is a smooth function of the semimartingale s + (s, e,(s)), a(t) 
is still a semimartingale. Similarly, if o0 is a Brownian semimartingale then 
so is a(t). Let T, be defined by T,(a,)(s) 3 a(t)(s) = e’x(s)(a,(s)), then T, is 
clearly a flow on the space of semimartingales. However, we shall indicate 
that T, has the quasi-invariance property iff each of the vector fields X(s) 
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(for SE [0, 11) is a Killing vector field. In other words, for each SE [0, l] 
the flow etx@) should be a one parameter (t) family of isometries on M. 

To investigate the quasi-invariance, again set w(t) E I- ’ 0 H(o( 2)) and 
u(t) E ZZ(a(t)). Assume that 0, is a Brownian motion’ on M so that 
b E w(O) is a Brownian motion on M, then w(t) is a Brownian semimar- 
tingale. Again let us compute d+(t), 

dli=~(B(su))=d.P(li,du)+ii(9(1)) 

=Q(zi,&4-0 A l!3(zi,6u)+6(9(ti)) 

=Q,(~,6w)-w(zi)6w+6~, (10.5) 

where c(t, s) E $(ti(t)(s)) = u-‘(t)(s) X(s)(~(t, s)). Since s + u(t)(s) is 
horizontal one finds that 

X(4 s)= 4c s)-l CJ-‘(s)(dc s)) + V6~(r,s,~b)l 

= 4c s)rl Cx’(s)(dt, s)) + Vu(,,s) &v(r)(s)~(~)l. (10.6) 

The interpretation of the last term in (10.6) requires some explanation. 
What is needed is a definition for the stochastic covariant differential. Let 
YE T(TM) be a vector field. Define Y: O(M) + R” by F(U) = U-‘Y(rc(u)), 
recall the correspondence Y--t F, from Z( YM) to the smooth functions 
9:O(M)+R” such that F((ug)=gPIP(u) for UEO(M) and gEO(n), is 
a l-l correspondence. Then given an M-valued semimartingale C(S) 
define U- ‘VgO Y = dF( 6u), where u is a horizontal lift of C. In the case of 
interest, 60 = 24 6w or equivalently 624 = B(Gw)(u). So set u-~V~~~ Y= 
dP(B(Gw)(u)). I will leave it to the interested reader to verify using these 
definitions the validity of (10.6). 

Now insert (10.6) into (10.5) to find 

Ml) = Qu,,)(5(C .I, Wf)> - w(fi(f)> sw(f) 

+ u(t)-’ CJ-‘(.)(4t)) + Vu(r)a~~(t)~(.)l~ (10.7) 

where X’(s)(m) = (d/ds) X(s)(m). 
Defining (0, a) by w(t) = s O(t) db + j IX(~) ds, one finds from (10.7) by 

considering the coefficients in front of the db terms that 0 satisfies 

d=@,(r,O.>+AO+u-‘V,,X, (10.8) 

where A = -w(C). Since O,(t, . ) and A are so(n)-valued processes, in 
order for O(t) to be orthogonal for all t we must require that the linear 
transformation on IR” given by 

a + h(S) - ’ vu,(s,rr~(s) 

580/l 10/2-9 
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is P-as. skew symmetric with the null set independent of s. Here 
uO(s) = u(O)(s). The only likely way to satisfy this condition is to require for 
each s E [IO, 11 and u E O(M) that the linear transformation 

a 4 zClV,,X(s) (10.9) 

be skew symmetric. This last condition is equivalent to requiring for each 
rn~M and SE [0, l] that the map (v-+VvX(s)): T,,,M-+ T,,,M be skew 
symmetric with respect to the metric g, i.e., g(V,X(s), u) -0 for all 
s E [0, l] and v E TM. If V is the Levi-Civita connection, then it is well 
known that this condition is equivalent to X being a Killing vector field. 
The next lemma asserts this is still true provided that V is TSS. 

LEMMA 10.1. Suppose that (M, g) is a Riemannian manifold with metric 
g, and that V is a TSS g-compatible covariant derivative on TM. Let X be 
a vector field on M, then the condition that g(V,X, v> = 0 for all v E TM is 
equivalent to X being a Killing vector. Recall that X is a Killing vector field 
iff L,g = 0, where L,g denotes the Lie derivative of g with respect to X. 

Proof. Let Y be an arbitrary vector field on M and compute 

@,x-g)< K y> = --m( K 0) - 2g( rx n v = &V,Y- t-x n y> 
= 2g(V,X+ T(X, Y), Y) = 2g(V,X, Y), 

where the last equality used torsion skew symmetric assumption on V. 
Because g is symmetric and hence so is L,g, this last equation shows 
L,g=Oiffg(V,X, Y)-0. Q.E.D. 

The condition that X(s) be a Killing vector field is very strong, and in 
fact can imply that X(s) = 0. For example, by Bochner’s Theorem (see [Bo, 
Theorem l] or [W, Theorem 1 I), if the Ricci curvature with respect to the 
Levi-Civita connection is negative definite (or at least “quasi-negative”), 
then g does not admit any non-trivial Killing vector fields. The absence of 
non-trivial Killing vector fields is what one would expect for “generic” 
metrics (g). The implication of these remarks is that in general the flow 
T,(a,(s)) = efx(s)(crO(s)) can not be expected to have the quasi-invariance 
property for any choice of an s-dependent vector field X. 

It should be noted that Lie groups and more generally homogeneous 
spaces do have metrics which admit non-trivial Killing vector fields. For 
example, if M= G is a Lie group with the metric and connection given as 
in Example &l(b), then the s-dependent vector fields X(s)(g) = L,*h(s), 
where h: [0, 1 ] 4 9 is any function, are all Killing vector fields. (Recall 
from Example 5.1 that in the case of a Lie group with the left (flat) 
covariant derivative, all three possible shifting methods agree.) More 
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generally, suppose that M= G/H is a homogeneous space with the metric 
and connection defined as in Example 8.1(d). It has already been shown in 
Example 8.1(d) that this connection is torsion skew symmetric (TSS). 
Given a function h: [0, l] -+ 8, define the s-dependent vector field (X) by 
J%)(m) = (W)loP(e lhCs)g), where m E M and g is any element in p- ‘( (m } ) 
and p: G + A4 is the canonical projection. So X(s) is the generator of the 
l-parameter flow given by the left action of ethCs) on M. Now by definition 
of the metric on M, each element of G acts isometrically on M, from which 
it follows that X(s) is a Killing vector field. Therefore, in this case the shift 
p’“‘((J,(s)) = p(s) o,(s) does have the quasi-invariance property provided 
that h(O) = 0 and h’ is L* integrable. 

The two examples in the last paragraph were studied in [MMl, Shl, 
Sh2]. In [MM11 it is also shown that the above flows have the quasi- 
invariance property with respect to any Brownian bridge measure on 
W(M) provided, of course, that h also satisfies h( 1) = 0, The reader should 
also see [AH, Fr, Gr4] on the question of quasi-invariance in the case of 
compact Lie groups. 
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