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ABSTRACT To estimate theoretically how suited different freezing techniques are for freezing of freeze-etch specimens,
it is necessary to know the relationship between specimen cooling rate and the resulting average ice crystal size. Using a

somewhat simplified theoretical analysis, we have derived the approximate ice crystal size distribution of nonvitrified
frozen aqueous specimens frozen at different cooling rates. The derived size distribution was used to calculate the
relationship between relative change in average ice crystal size, (Al/l), and relative change in specimen cooling rate

A(dT/dt)/(dT/dt). We found this relationship to be (Al/l) = -k * A(dT/dt)/(dT/dt) where k = 1.0 when specimen
solidification takes place at about -60C, and k t 1.3 when it takes place at about -400C.

INTRODUCTION

Ice crystal growth during specimen freezing represents one
of the main limitations of freeze-etch electron microscopy.
The specimen freezing technique that yields the smallest
ice crystals normally gives rise to the most useful electron
micrographs. The importance of using a high cooling rate
during specimen freezing to obtain small ice crystals has
long been recognized (Moor, 1964). However, to evaluate
the practical importance of a certain increase in specimen
cooling rate, the mathematical relationship between ice
crystal size distribution and specimen cooling rate must be
known. Using a somewhat simplified theoretical analysis
we have derived the approximate ice crystal size distribu-
tion of aqueous specimens frozen at different cooling rates.
To our knowledge no other theoretical study addressing
itself to this problem has been published.

GLOSSARY

ACXP experimentally determined fracture plane area of an ice
crystal.

aI(To), a2(TO) coefficients in Taylor expansion of log J(T) around
temperature To.

b1(TO), b2(TO) coefficients in Taylor expansion of log U(T) around
temperature To.

Cl, C2 mathematical expressions given by Eq. 5 and 6, respec-
tively.

Ij (i = 1, 2, 3 and 4) mathematical expressions given by Eqs.
12, 17, 24, and 29, respectively.

5(Ts) - (l/X)v.
J(T) ice crystal nucleation rate.
k(Ts) proportionality factor relating relative change in specimen

cooling rate and relative change in ice crystal diameter.
I ice crystal diameter.

(l/X)N number average ice crystal diameter (dimensionless).
(l/X)v volume average ice crystal diameter (dimensionless).

Dr. Kopstad's current address is the Department of Pathology,
Regional Hospital, N-7000 Trondheim, Norway.

N(Ts) total number of ice crystals per unit volume in the
solidified specimen.

PN(i) (i = T, 1, l/X) the number of ice crystals formed per unit
volume in the interval (i, i + di).

PA(l) average number of fractured ice crystals with diameter in
the interval 1, 1 + dl per unit fracture plane area.

P2(r) relative number of ice crystal fracture plane with radius r
in the interval r, r + dr.

P'(r/X) area fraction of the specimen freeze-fracture plane made
up of ice crystals with fracture plane radius in the interval
r/X, r/X, + (dr)/X.

PAA(r/ii),Xp experimentally determined area fraction PA(r/x).
Pv(l/X) solidified specimen volume fraction made up of ice crys-

tals with diameter in the interval l/X, l/X + dl/X.
P(l; r)i (i = I, II) probability of getting an ice crystal fracture

plane with radius r provided that the fracture goes
through an ice crystal with diameter 1.

r radius of an ice crystal fracture plane.
T temperature.

TM specimen melting temperature.
TN nucleating temperature of an ice crystal.
Ts specimen solidification temperature.
AT e TN- T.

ttime.
U( T) ice crystal growth rate.

x integration variables or mathematical expressions defined
in Eqs. 36 and 5 1.

a(Ts, T) 1 -

a( Ts, T) (n = 0, 1, 2. . .) nth approximation of a.
#(Ts, T) solidified volume fraction of the specimen.

6 Dirac's delta-function.
iq parameter chosen experimentally according to Eq. 53.
A characteristic length of the physical problem being ana-

lyzed (Eq. 32).
t parameter depending on the relationship between the ice

crystal growth direction and the orientation of the ice
crystal lattice axes.

THEORY

When the temperature of an aqueous specimen is reduced below the
specimen's melting point, ice crystals may begin to grow from a few
special nucleation sites (heterogeneous nucleation) or the water molecules
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themselves may give rise to the nucleation sites (homogeneous nuclea-
tion). These processes may occur simultaneously, but in most biological
specimens the nucleation process appears to be mainly homogeneous
(Mazur, 1966).

During homogeneous nucleation the nuclei form spontaneously as a
result of thermal movement of the water molecules. For the probability of
further growth of a given nucleus to exceed the probability of size
reduction, the nucleus must exceed a certain critical size (Gibbs, 1928),
which is temperature dependent and decreases as the temperature is
lowered. At about -400C the critical size equals the average water
molecule cluster size. Liquid water below about -400C can be viewed as
consisting fully of ice crystal nuclei with size exceeding the critical size.
Below about -400C solidification of liquid water therefore takes place
without any significant ice crystal growth. This is commonly referred to as
specimen vitrification. Vitrification of pure liquid water and aqueous
specimens has been reported (Venkatesh et al., 1974; Briiggeller and
Mayer, 1980). True vitrification, however, occurs to at most a minor
fraction of specimens frozen using freezing methods well suited for
freeze-etch electron microscopy.

In the unsolidified parts of the specimen there is, at any temperature
below the specimen melting temperature, a certain probability of forma-
tion of ice crystal nuclei with size above the critical value. This implies
that the time between ice crystal nucleation and full specimen solidifica-
tion, i.e., the time interval in which an ice crystal can grow, will vary from
ice crystal to ice crystal. The longer this time interval is, the larger the
associated ice crystal in the fully solidified specimen will be. The ice
crystals of a frozen aqueous specimen therefore exhibit a size distribu-
tion.

presented by Riehle (1968) and the expressions given in Eqs. 1 and 2 is
zero for both T = TO and T- TO = 50C. Note that parameters J(TO),
a,(TO), a2(T0), U(TO), bI(TO), and b2(TO) generally are solute dependent.

Assuming that the ice crystal growth rate is the same in all directions
relative to the ice crystal lattice axes, the ice crystal diameter, I(T), of an
ice crystal that nucleated at temperature TN will, at temperature T, be

1TN U(T')
dT

dT'

IfTN U(T') d T'.
dT

dt

(3)

Eqs. 2 and 3 yield for (TN- T) < 5(OC)

(TN, T) =
2U(T) (TN
dT

di

T) [1 + C, (TN- T)

(4)

where

C, = (b, ln 10)/2

C2 = (b, ln 10)2/6 - b2(In 10)/3.

(5)

(6)

Specimen Solidification
We will assume in the following that the nucleation process is homoge-
neous, that vitrification can be ignored, and that the specimen cooling
rate, IdT/dtl, is kept constant throughout the specimen during the
freezing process. We will further assume that the average number of ice
crystal nuclei per unit time and unit volume in the liquid part of the
specimen (the nucleation rate), A(T), can, through Taylor expansion of
log 1(T) around temperature To, be expressed as

J(T) = J(TO) 10-al(To).(T- To)-a2(To).(T- To)2

The solidified volume fraction, Ws(T5, T), at temperature T of a
specimen which becomes fully solidified at temperature Ts is

f( TS, T) TM J(TN) * a(TS, TN)

-*~ - I (TN, T)3| dt | dTN (7)

where

(1) a(Ts, T) = 1 - #(TS, T) (8)
for T < TM where TM is the specimen melting temperature and T -To
50C. Likewise we will assume that the ice crystal growth rate, U( T), can
be expressed as

U( T) = U( To) 10+b(TO) (T- To) -b2(T) (T- To)2 (2)

where T < TM and T - TO < 50C. Numerical values of a1(TO), a2(TO),
bl(TO), and b2(TO) for pure water obtained from the data summarized by
Riehle (1968) are shown in Table I. Parameters a,, a2, b,, and b2 have
been determined by requiring that the deviation between the graphs

and t is a parameter depending on the relationship between the ice crystal
growth direction and the orientation of the ice crystal lattice axes. When
the growth rate is independent of the growth direction t = v/6, whereas
for ice crystal growth only along three axes perpendicular to one another
and the same along all three axes t = 1.

At the solidification temperature, Ts, the specimen is fully solidified,
i.e.,

N(TS, Ts) = 1. (9)

TABLE I
THE NUMERICAL VALUES OF PARAMETERS a,(T), a2(T), bl(T), AND b2(T)

T/°C -6 -10 -15 -20 -25 -30 -35 -40 -45

al/(OC) -250 -50 -.15 -5 2.0 1.6 1.2 0.8 0.6

a2* 102/(oC2) 104 _103 -100 -10 4.1 4.1 4.1 2.2 2.2

b,- 102/(°C) 0 0.43 2.8 4.0 5.1 5.6 6.4 7.1 7.4

b2* 10/(oC2) 6 2.4 1.2 1.2 0.5 0.8 0.7 0.3 -0.3

The numerical values of parameters a, (T), a2(T), b, (T) and b2(T) for pure water were obtained partly by using the analytical expressions for J(T) and
partly by reading off the ordinate, slope and curvature of the graphical presentations of J(T) and U(T) given by Riehle (1968).
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Eqs. 8 and 9 yield

a(Ts, T) =
1 _ (Ts, T)

#(TS, Ts)

Eqs. 1, 4, 7, and 10 yield

a(Ts, T) = 1 - [10-(a.-3b,)(T-Ts)-(a2+3b2)(T-TS)2I

*I,(T)III(Ts) (I11)

where

Tf TM {lO-a(TN -T)-a2(TN -T)2 a(TS, TN) (3TN

* [1 + CI(TN - T) + C2(TN - T)2]3IdTN. (12)

Change of integration variable to AT = TN - Tin Eq. 12 yields

I (T) = JM T 1AT a2ATZa(T T + AT)[1

* AT3(1 + CIAT + C2AT2)3]d(AT). (13)

Because a, t 2 (Table I) the integrand in I, (T) and 1,(Ts) is negligible for
AT > 3. For TM - TS 2 60C and TM- T> 40C (Eq. 13) we therefore
have

I (T) f-- [10 a-AT-a2AT a(Ts T + AT)

* AT3(1 + CIAT + C2AT2)I1d(AT). (14)

Parameter a( TS, T) can be solved from Eqs. 11 and 14 using an iterative
procedure where aC(Ts, T) denotes the nth approximation of a((Ts, T)

ao(Ts, T) = 1 (15)

a°n(TS, T) = - 1o-(a -3b,)(T- TS) -(a2-+ 3b2)(T- TS)2

- I2(Ts, T, n) (16)

where

I2(TS, T, n)

,([1O-ajAT-a2AT KT)Z T3f [l0oa.Ta2AT . an- (Ts, T + AT) AT3

f [10 .oa~Tn-I (Ts, Ts + AT) AT3

-(1 + CIAT + C2AT2)3id (AT)
-(1 + CIAT + C2AT2)i]d (AT)

(17)

a,As a check of the validity of Eq. 16 a( Ts, Ts) may be calculated. Because
the whole specimen is solidified for T = Ts, a(Ts, Ts) is expected to be
equal to zero. For n _ 1 Eq. 16 yields

a.(TS, TS) = 0

as required.
The iterative procedure further yields

atI (Ts, T) = 1 - 10-(a.-3b,)(T-Ts)-(a2+3b2)(T-TS)2

(18)

(19)

This means that the deviation between a1(Ts, T) and 2(Ts, T) is less
than 2-3% for any Ts and T. Because it can be shown further that the

(10) iteration process converges rapidly, we will in the following use the
approximation:

a(TS, T) c al(Ts, T). (22)

a,(Ts, T) calculated using the parameter values given in Table I is shown
in Fig. 1.

For Ts 60C Eqs. 1,2,4,7,9, 19, and 22 yield

8 J( TS) U( Ts) 3(T) 1 (23)

a,* dT4
dt

13(TS) = JI TS)a x-(a2/a2)x2

- 10 12 3(bil/al)Jx-[2(a2lai)+(3b2laI)1x2}

X3*1 + C x + x2 dx. (24)l a, a,

Using the numerical values given in Table I it can be shown that

0.20 < I( Ts) < 0.25. (25)

(See also Table II.)
Eq. 23 can be used to determine Ts for a given specimen cooling rate.

Note that J(Ts), U(Ts) and a, generally are solute dependent.

Ice Crystal Size Distributions
The total number of ice crystals, N(Ts), per unit volume in the solidified
specimen

N(TS) = JTMPN( TS, T)dT (26)

where PN(TS, T) is the number of ice crystals formed per unit volume in

1.0

a2(TS, T) = 1 - [1 - al(Ts, T)] - I2(TS, T, 2). (20)

The numerical values given in Table I can be used to show that FIGURE 1 The unsolidified volume-fraction, a,, of the specimen vs. T-Ts
for solidification temperature TS = -25(OC) (-), and TS = -40(OC)

(21) (- ).
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(T-Ts)/ (°C)

1.00 -< I2(Ts, T, 2) :.S 1.06.
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TABLE II
THE NUMERICAL VALUES OF INTEGRALS I3(TS), I4(TS), AND IS(Ts)*

TS(0C) -6 -10 -15 -20 -25 -30 -35 -40 -45

13(Ts) 0.20 0.20 0.20 0.20 0.21 0.21 0.21 0.25 0.23
14(Ts) 0.22 0.22 0.22 0.21 0.21 0.20 0.19 0.18 0.15
15 (Ts) 1.8 1.8 1.8 1.8 1.9 1.9 2.0 2.1 2.1

*Obtained using the numerical values of a, a2, bl, and b2 given in Table I.

the temperature interval T, T + dT

dT _
PN(TS, T) = J(T) * a(Ts, T) .

where

(27) X 2I 14C,§(I)-1] C1 0

Eqs. 1, 22, 26, and 27 yield

N(TS) J(TS) M(TS) (28)
dT

I4(TS) = j(Tm S)aIT x-(a2/a2)x2

O-[2-3(bj/a,)lx-[2(a2IaI)+(3b2la?)Jx2} dx. (29)

For the numerical values given in Table I

C, = 0.
(36)

Number average ice crystal diameter using the numerical values given in
Table I for Ts =- 250C.

(37)

The solidified specimen volume fraction, Pv(l/X), made up of ice crystals
with diameter in the interval (I/X), (I/X) + d(l/X) is given by

(30)

(See also Table II.)
The relative number of ice crystals, PN( 1), with diameter in the interval

1, 1 + dl

dT
PN[Ts,T(l)I -yd

PN(1) N(=

Ignoring terms of order (TN- T)3 and higher, and introducing

Eq. 4 yields

2U(T)
x

dT

a,
| - dt

TN- T 2I 1+ 4§(C I

I]

dT 1I C, I1 -1/2

di aXa a1I \X

(1)3 1N
( (A) N 9)

x _A) 1(A A

(38)

Using the numerical values given in Table I the size distributions PN(I/X)
and Pv(l/X) are shown for Ts - 250C in Fig. 3. The volume average ice
crystal diameter is given by

(39)(A)v I5(TS) =

( V ( (A)

Numerical values of I5(Ts) obtained using the parameter values given in
Table I are shown in Table II.

(32) For l/X) I Eq. 33 becomes

TN -TS-S *
a, X2

1051(33)

(34)
X/(nm)

Parameter X is a characteristic length of the physical problem being
analyzed. It is convenient to express other lengths, such as ice crystal size,
relative to this characteristic length. Fig. 2 shows the numerical value of X
vs. T for pure water using the parameter values given in Table I. Note that
U(T) and a, are generally solute dependent.

Eqs. 1, 18, 27, 28, 31, and 34 yield

Nl alXa2x 10 -(2aI -3b,)x-(2a2+3b2)X2

PNVA= M(TS) -* A / <

102

(35)

II

(40)

-40 -30 -20 -10
T / (°C)

FIGURE 2 Parameter X for pure water vs. temperature T for specimen
cooling rate, dT/dt |, equal 103 (°C/s) (-), and 10' (OC/s) (-----).
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Eqs. 44 and 47 yield

(48)

FIGURE 3 The ice crystal size distributions PN(I/X) (-), and Pv(I/X)
(-----) vs. I/X for Ts =- 25(OC).

X(X [J2,;XPN (X (X X;X) dX X

Eqs. 35, 45, and 48 yield

A(X) (A)3 f a;[j0 x1a2X2 - O-(2a,-3b,)x-(2a2+3b2)X2]

(i + al~~) 1/2 ( 21/2 ()

The volume average of TN-TS

(TN -TS)v (1)-
a, A V

Table II and Eqs. 40 and 41 yield for Ts = - 250C

(TN -TS)V 0.9 (OC)

which means that the nucleation of the average solidified specimen ice
crystal took place only -0.90C above the solidification temperature Ts.

During freeze fracture of a specimen, the average numbers, P'(1), of
ice crystals with diameter in the interval 1, 1 + dl fractured per unit
fracture plane area are

PN(I) = PN(I) 1- (43)

The relative number, PA(r), of ice crystal fracture planes with radius r in
the interval r, r + dr is given by

PA (r) - f PN(I) I. P(l; r)dl

f dr f PN(I) * I * P(l; r) dr

where P(l; r) is the probability of getting an ice-crystal fracture plane
with radius r provided that the fracture goes through an ice-crystal with
diameter 1. When the ice crystal growth rate is the same in all directions
relative to the ice crystal axes (spherical ice crystals)

where x is given by Eq. 36.
Eqs. 35, 46, and 48 yield

A4(r) (r)3 [10 alx a2X -10 -(2a1-3b1)x-(2a2+3b2)X21

(1 + 8 C' r- 1/2

(42) a, X

where

2C, a, X

The distributions PA(r/X), and PA(r/X)1I for T, - 25°C are shown in
Fig. 4. In Fig. 5 is depicted PA(r/X), and the experimentally determined
PA(r/n),1xp from the freeze-fracture electron micrograph presented in Fig.
6. The radius r for the fracture plane of an ice crystal in Fig. 6 is defined
as

r== AIAXp/7

where ACXP is the experimentally determined fracture area of the ice
crystal using a planiometer. Parameter v has been chosen so that

x(A) IX)l (A) t (77) (X7)exp 7)

This corresponds to X = 1200 nm for the specimen shown in Fig. 6.

P(l; r)1 = 2r

1 (1/2) -r
(45)

For cylindrical ice crystals with diameter and length being equal and with
the cylinder symmetry axis perpendicular to the fracture plane

P(l; r)11 = b(1- 2r) (46)

where 6(x) is Dirac's delta function.
The area fraction of the specimen freeze-fracture plane made up of ice

crystals with fracture plane radius in the interval r, r + dr

PA(r) r2.pAN(r)

fOr2 PAN (r)dr
(47)

FIGURE 4 The ice crystal size distribution in the specimen fracture plane

P'(r/X),(-), and PA(r/X),,(-----).
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(49)

(50)

(51)

(52)

1.0

pA ( r/X )
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2.0

15.

1.0

0.5 F

0
r/x

2 3

FIGURE 5 The size distribution of the ice crystal fracture areas
PA(r/X)1(-) at Ts =-250C. The fracture area size distribution of the
freeze-etch electron micrograph shown in Fig. 6 is presented as columns.

Average Ice Crystal Size Cooling Rate
Dependence

The coefficient k( Ts) of the expression

dT
Adt

( =k(Ts) dT (54)

dt

has been derived in the Appendix. The numerical values of k(Ts) vs. Ts
using the numerical values of a1, b,, l3 and I5 given in Tables I and II are
shown in Fig. 7.

DISCUSSION

The approximate expression for J(T) and U(T) (Eqs. 1
and 2) are reasonably accurate for TN- T < 50C. Fig. 1
and Eq. 42 show that the major part of the specimen
solidification takes place within a temperature interval of
<2-30C. The use of Eqs. 1 and 2 is therefore well justified
for the temperature interval where most of the ice crystal
nucleation and growth take place.
The experimental size distribution PA(r) shown in Fig. 5

has approximately the same form as the distribution
calculated theoretically. A characteristic of the theoretical
and experimental size distribution is that they are both
rather narrow. A large majority of the individual ice
crystals in the fracture plane are larger than half the mean
size and smaller than twice the mean size. The theoretical
and experimental size-distributions shown in Fig. 5 have
maxima for somewhat different values of r/X. The reason
for this is that the theoretical distribution does not fall off
as fast with increasing r/X for r/X > I as the experimental
distribution does. To get adequate sampling statistics for
large ice crystals much larger fracture areas than shown in
Fig. 6 must be analyzed. Experimentally obtained size
distributions using a small fracture plane sampling area
will on average show relatively fewer large ice crystals than
a distribution obtained using a larger fracture plane sam-
pling area. This sampling error increases with increasing

FIGURE 6 Freeze-etch electron micrograph of a 5% glycerol solution
frozen by conventional manual dipping of the specimen into partly
solidified Freon 22 (Norgas AS, Oslo). The -Il-ul drop-shaped specimen
was mounted on a hat-shaped copper specimen holder. Specimen fractur-
ing and etching was carried out at -100°C. The etch time was I min,
6,000x.

r/X and probably is the main reason for the apparent
discrepancy between the theoretical and the experimental
ice crystal size distribution for large r/X found in Fig. 5.
When a(Ts, T) < 0.3, the specimen ice crystals on aver-
age, begin to touch one another. This phenomenon has not
been taken into account in our theoretical analysis, and
may be expected to result in a slightly broader size
distribution than predicted. Another effect for low a is
increased solute concentration in the unsolidified parts of
the specimen, which will tend to speed up the last part of
the solidification process since increased solute concentra-
tion generally increases the nucleation rate. This will tend
to make the experimentally determined size distribution
somewhat narrower than predicted by our analysis. At
what a this effect becomes dominant depends upon the
initial solute concentration. This phenomenon is closely

1.3

k
-1I.21

1.11

1.0

tI

%%

I~ ~~~ ~ ~ ~ ~~~~~I

-40 -30
TS /(OC)

-20 -10

FIGURE 7 Coefficient k( Ts) vs. Ts for pure water.
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related to the formation of the so-called eutectic lines
shown in Fig. 6. The presented theoretical analysis does not
include this mechanism. However, for 5% glycerol solu-
tions (Fig. 6), for example, the eutectic lines account for
<15% of the specimen volume and thus only to a minor
extent affect the total ice crystal size distribution. The
experimentally determined ice crystal size distribution
shown in Fig. 5 is thus reasonably well accounted for by our
theoretical analysis, which indicates that the average ice
crystal size for pure water will be reduced by 10% at
moderate cooling rates and 15% at high cooling rates,
when the cooling rate is increased by 10%. Using freeze-
etch electron microscopy for estimating the average ice
crystal size, Riehle (1968) obtained data for 5% glycerol
solution indicating a 5-10% reduction in average ice
crystal size at moderate (1i03°C s-') and a 10-20%
reduction at high (- 106 °C s '), rates of cooling as a result
of a 10% increase in cooling rate. Considering the uncer-
tainties of the numerical values of parameters a1(T),
a2(T), b,(T) and b2(T) and of the experimental data the
agreement between the theoretical and experimental
results is reasonable.

APPENDIX

Average Ice Crystal Size Cooling Rate
Dependence

Eqs. 32 and 39 yield

v- 2U(Ts) ·I(T) (Al)
dT

a,(Ts)- dt

dT
= AU(Ts) AJ5(Ts) Aa(Ts) A 2dt

~-Iv U(Ts) I5+1(Ts) a(Ts) dT
dt

{AS~ ~=-W,1d(Ts)
\ Jvt ~U ( Ts) d Ts
V

+ 1 dIs (Ts) 1I da, (Ts)
I5(Ts) dTs a,(Ts) dTs

dT
dTs dT (A3)
dT dt dTd dt

From Eq. 23

dT dTs
4[ 1 dJ(Ts)

dt | dT I J(Ts) dTs
d dt

3 dU(Ts) 1 dI3 (Ts)
+ +U(Ts) dTs 3 (Ts) dTs

4 da, (Ts)1 (A4)a, (Ts) dTs
From Eqs. A3 and A4

dT

( =) -k (Ts) (A5)

dU(Ts) I d15(Ts)k(T5) = 1-4 | U(T5) dTs + 15(Ts) dTs
1 dal(Ts) ii 1 dJ(Ts)

a,(Ts) dTs J J(Ts) dTs
3 dU(Ts)

U(Ts) dTs

1 d13(Ts) 4 dal(Ts) (A6)
+ (A6)I3(Ts) dTs al(Ts) dTs

From Eq. 1

I dJ(Ts)dJ(Ts) = -(In 10) a, (T2). (A7)
J(Ts) dTs

From Eq. 2

1 dU(Ts)U(I dUT5= + (In 10) - b(Ts). (A8)
U(Ts) dTs
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