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Since Richman and Walker [4] characterized modules over PID’s which 
are injective as modules over their endomorphism rings, various homological 
properties of abelian groups as modules over their endomorphism rings have 
been studied. In this paper we characterize the torsion-free abelian groups, A, 
of finite rank which are projective as modules over their endomorphism 
rings, E. The main results include the following. 

THEOREM 2.4. The following are equivalent: 

(a) A is E-projective and generated by two elements; 
(b) A is E-projective; 
(c) A is E-quasi-projective; 
(d) for each prime p E 2, A, (A localized at p) is E,, (E localized at p) 

cyclic projective; 
(e) A is a genus summand ofE. 

* This paper is the product of a seminar during the Special Year in Algebra at the 
University of Connecticut. 
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THEOREM 2.8. A is E-projective if and only if 

(1) Hom,(C, A) = Hom,(C, A) where C = center E, and 

(2) A z JO M where J is a faithful projective ideal of C and M is a 
C-module. 

Finally, it is shown (Theorem 2.11) that A is E-projective if and only if A is 
nearly isomorphic to a group B which is cyclic and projective as a module 
over its endomorphism ring. Such groups B have been characterized by Reid 
and Niedzwicki [3]. 

1. DEFINITIONS AND PRELIMINARIES 

Unless otherwise stated, all groups are abelian and torsion free of finite 
rank. In particular, A is always a torsion-free abelian group of finite rank, 
E = E(A) is the endomorphism ring of A, and C the center of E. The 
concepts of quasi-isomorphism and near-isomorphism are used repeatedly. 

DEFINITION 1.1. (a) The groups A and B are quasi-isomorphic if there 
is a monomorphism f: B + A such that A/f(B) is finite. 

(b) The groups A and B are nearly isomorphic if for each n E Zt, 
there exist f, E Horn@, A) and g, E Hom,(A, B) such that f, g, = m . 1,) 
g, f, = m . 1, for some m E Zt with (n, m) = 1. 

Another important notion is that of an E-ring. There should be no 
confusion caused by this (unrelated) second use of the letter E. 

DEFINITION 1.2. A ring S with identity is an E-ring provided every 
endomorphism of the abelian group (S, +) is left multiplication by some 
element of S. 

These rings have been studied by Bowshell and Schultz [5,6]. 
Finally, we quote for reference two useful results. 

THEOREM 1.3 (Reid and Niedzwicki [3]). Let B be a group. Then B is 
cyclic and projective as an E(B)-module tfl B = S 0 K where S is an E-ring 
and K an S-module such that Hom,(S, K) = Horn&S, K). 

Note. In this case (I,, 0) generates B as an E-module. 

PROPOSITION 1.4 (Vinsonhaler 171). If A is E-quasi-projective, then A is 
quasi-isomorphic to some B which is E(B) cyclic and projective. Furthermore, 
A is generated by two elements as an E-module. 

Remark 1.5. These two results say that if A is E-projective, then there is 
O#nEZ and B=S@K as in Theorem 1.3 such that nAEBGA. 
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2. THE CHARACTERIZATION 

The first characterization of E-projective groups is a list of equivalent 
properties. This result, Theorem 2.4, is preceded by three preliminary ones. 

LEMMA 2.1. Let R be any ring with 1 and M a cyclic, quasi-projective 
R-module.IfM=RmforsomemEM,andL=ann,(m)={rER~rm=0), 
then for each x E M, there is an 1 E L such that L(l + 1)x = 0. 

Proof Define f: M+ M/Lx by f(m) = x + Lx. This is an R- 
homomorphism, which by quasi-projectivity lifts to g E Hom,(M, M). Then 
g has the form g(m) =x + lx for some 1 e L. It follows that L(x + lx) = 
L(l +l)x=0. 

LEMMA 2.2. Let R be any ring with 1 and M a cyclic, quasi-projective 
R-module. If (*), there is a Jnite set X GM such that Vr E R, rX = 0 3 
r = 0, then M is projective. 

Proof Let M= Rm, m EM, and L = arm,(m). It suffices to show R -+* 
Rm --t 0, where f (r) = rm, has a splitting. Let X = {x, ,..., x,,} s M satisfy (*). 
Using Lemma 2.1, pick 1, E L such that L( 1 + I,) x, = 0, and inductively, 
&EL such that L(1+1,)[(1+l,~,)~~~(l+l,)x,]=Ofor l(k<n. Then 
(1 + lJ(1 +1,-J ..* (1 + 1,) = 1 + 1 for some ZE L. Note that (1 +1)x, = 
(1 + l’)(l + l&(1 + l,-,) a.. (1 + l,)xk, where (1 t 1’) = (1 + 1,) . . . 
(ltZ,+,).Sincel’EL,(1tl)x,=(1t1’)(1tI,)~~~(1+l,)x,=(1+l,).~~ 
(1 + 4)x,. Thus L(1 t l)xk= 0 for 1 <k< n. By (*), L(1 + 1) = 0. 
Therefore g: Rm + R given by g(m) = 1 f 1 is an R-homomorphism and 
fg= 1 onRm. 

The next lemma is a generalization of part of Theorem 3.1 of [ 81. 

LEMMA 2.3. If A is E-quasi-projective, then A/n4 is E-cyclic for each 
O/nEZ. 

Proof First we show that if Z is a maximal ideal of finite index in C, the 
center of E, and k is a positive integer, then A/I&A is E cyclic. To prove this 
it suffices to show A/IA is E cyclic, for if A = Ea t IA, then IA = IEa t Z*A 
and A = Ea t I*A. Repeating this argument gives A = Ea t PA for all 
positive k. 

Suppose (ni = xi t IA 1 1 < i 6 n} is a minimal set of E generators for 
A/IA, n > 1. Note ]C/1] < co implies A/IA is bounded, thus finite, so 
minimal generating sets exist. Let H be given by H/IA = ET?, n Gin,* Efi. 
Then H is an E-submodule of A and A/H = UO V, U = E.?, , and V = 
Cyz2 Ezj, where fi = Xi + H. This is a non-trivial E decomposition because 
of the minimality of {Xi}. 
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Let u, v be the projections of A/H onto U, V and, by quasi-projectivity, 
choose u’, V’ E C with l7u’ = uII, l7v’= vl7, where n:A-,A/H is the 
natural map. Finally, let T = {fE C ) f(A) G H}. T is an ideal in C 
containing the maximal ideal I. But T = C is impossible, for then A = H, 
contradicting the minimality of {ni}. Thus, T = I. 

We have U’U’ E T, so u’ E T or u’ E T. Thus, U = (0) or V= (0), a 
contradiction. This shows that A/IA and, hence, A/IkA is cyclic for Z a 
maximal ideal of finite index in C. 

To complete the proof, let n E Zt , and J/nC be the Jacobson radical of 
C/nC. Then .I = I,I, * .* Ik, I, distinct maximal ideals of C. Since C/nC is 
Artinian, J” = Zy . . . 1: s nC for some m E Z+. Then A/JmA z Of=, A/IyA 
is E cyclic since each summand is cyclic and the Ii)s are distinct maximal 
ideals. Thus, A/n4 is E cyclic. 

THEOREM 2.4. Let A be a reduced torsion-free group offinite rank. The 
following are equivalent: 

(a) A is E-projective and generated by two elements. 

(b) A is E-projective. 

(c) A is E-quasi-projective. 

(d) For each prime p E Z, A,, is E,-cyclic and projective. Here A, = 
Z, @A, E, = Z, @ E, denote the usual localizations. 

(e) For each n E Z+ there exists f E Hom,(A, E) and 
g E Hom,(E, A) such that gf= m . 1, where m ‘5 Z+ and (m, n) = 1. (A is 
said to be a genus summand of E-see [ 11.) 

Proof. (a) + (b) + (c) is obvious. 
(c) * (d) First, A, is ED-quasi-projective. Given K an E,,-submodule of 

A, and f E HomEp(Ap, A,/K), use the fact that A is E-finitely generated 
(Proposition 1.4) to find an integer m with (m, p) = 1 such that M(A) G 
A + K/K r A/A r7 K. By quasi-projectivity, mf lifts to g E C = Hom,(A, A). 
Then (l/m)g E HomEp(Ap, A,.,) provides a lifting of $ 

Second, A, is Ep cyclic. To prove this assertion, first note that since A is 
reduced, there exists k E Zt such that kX # X for all non-zero subgroups X 
of A (Lady [ 21). For any set of prime integers S, let As = Z, Oz A, Es = 
Z, Oz E, where Z, is the integers localized at S. 

We show As is Es cyclic for any finite set S such that S 2 
(p 1 p divides k}. Let n, =ZT{p(pES}.Then,foreachfEE,, l-n,fisa 
unit of Es. To prove this write f = (l/m) g, g E E, m E 2, (m, n,) = 1. Let 
h = (m - n, g) E E. Then h is manic, since n, Ker h = Ker h. Furthermore, 
h(A) is p-pure in A for all p E S, so there is an 1 E Z with (1, n,) = 1 such 
that LA s h(A) s A. (Note that since A is torsion free of finite rank, any 
monomorphism h: A + A has A/h(A) finite.) Therefore, h, and hence 
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1 - n,f, are units in E,. Thus, n,Es c J(E,)-the Jacobson radical of the 
ring Es. (This last assertion, with a slightly different proof, appears in [9].) 

By Lemma 2.3, A&A is E cyclic, so that A,/n,A, is Es cyclic. Hence 
A,=E,u+n,A, for some uEA,. Since A, is finitely generated and 
ns E, c J(E,), it follows from Nakayama’s lemma that A, = E, u. 

Finally, let p be a prime and S = S, U { p}, where S, = {p ] p divides k}. 
Then Z,, = (Z,h, A, = (A,), and EP = (Es),. Consequently, A, is EP cyclic 
since A, is E, cyclic. 

Now let X be a maximal Z-independent set in A, and apply Lemma 2.2 to 
conclude that A, is E, cyclic projective. 

(d) * (e) We use induction on the number k of distinct prime factors 
of rep:’ . . . pp. Again, by [ 21 there exists an integer n, such that n,X # X 
for all non-zero subgroups X of A. We can assume wolog that n, 1 n, so that 
(*): nX # X for any non-zero subgroup X of A. 

For k= 1, n-p:, and there is a split exact sequence O+ K + EP, + 
A,, -+ 0 by (d). Hence there exist f E Hom,(A, E), g E Hom,(E, A), and a 
positive integer m such that gf = m . 1, with (m, p,) = 1. 

For k>2, let n,=p:‘, n,=p:2=.. pp. By induction there exist fi, fi E 
Hom,(A, E), and g,, g, E Hom,(E, A), and positive integers m, and m2 such 
that g,f, = m, . 1, with (m,, nl) = 1, i= 1,2. Let r= (m,n:, m,nT). Then 
(r, n) = 1 and there exist a, b E Z such that am, ni + bm, n: = 1 (mod n). Let 
f =anzfi+bn,fi and g=nzg,+n,gz. Then (gf- l)(A)crzA. This says 
that Ker gf is divisible by n. Since Ker gf is pure, n Ker gf= Ker gf and 
Ker gf = 0 by (*). Furthermore, (gf - l)(A) E n4 implies that &(A) is p- 
pure for all p/n. Thus there exists m E Z, (n, m) = 1 such that mA c 
gf(A) c A. Then (gf)- ’ is defined on mA and [mf gf -’ g] f = m e 1,. This 
completes the proof. 

(e) * (a) Letfl, f2 E l-km&% E), g, , g, E Hom,(E, A) satisfy g,fi = 
m, s 1,, g2f2 = m, + 1, with (m,, m,) = 1. Write am, + bm, = 1 for some 
a, b E Z. Now define fi A -+ E 0 E by f(x) = (@‘r(x), bf2(x)) and g: E @ 
E -, A by g(y,, yz) = gr(yr) + g2(y2). Thenf and g are E-maps and gf= 1,. 
Thus A is a summand of E @ E, and therefore is E-projective, and generated 
by two elements. 

The idea of the last argument (e) =P (a) is due to Lady. 
We next obtain an “internal” characterization of the E-projective groups 

involving faithful projective ideals in E-rings. Again some preliminary 
lemmas precede the main results. 

The next lemma holds for an arbitrary abelian group A. 

LEMMA 2.5. Regard A as a right C module via ac= ca for a41 a E A, 
c E C. Then for FE Hom,(A, E) there exists f E Horn&A, C) such that 
IF(x)(Y) = xf tu> f or all x, y E A. Conversely, if f E Hom,(A, C), then 
F(x)(y) = xf ( y) defines F E Hom,(A, E). 
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Proof. Define f( y): A -+ A by f( u)(x) = F(x)(y). A routine check shows 
that f(y) E C and that y -+ f(y) is a right C-module homomorphism. The 
converse is clear. 

We are grateful to R. Wiegand for calling our attention to the result in the 
next lemma. He has proved a more general result using a different argument. 

LEMMA 2.6. Suppose there exist x, . .. x, E A andf, . . . f, E Hom,..(A, C) 
such that (1) CT= 1 fi(xi) = 1 E C. Suppose also that (2) n(R 1 x . . . x R,) c 
Cc_R, x *a* XR,forsomenEZ+ with each Ri a Dedekind domain. Then 
A E J 0 K where J is a faithful projective ideal in C and K is a C-submodule 
of A. 

Proof. Let R=R,x -se X R, and, for 1 < j < t, let r;rj: R + Rj be the 
natural projections and Pj = (Ker ZZ]) n C. Then Pj is a proper prime ideal of 
C. Let Z = (r E C 1 rR c C}. Clearly Z is an ideal of C and n E I. Hence C/Z 
is finite. Let M,, M, ,..., it4, be a finite list of distinct maximal ideals of C 
such that 

(a) If M is a maximal ideal of C and Z E M, then M = M, for some k. 

(b) For each 1 <j < r, there is a k such that Pi c Mk. 

For each 1 < j < s, choose bj E (nk, jM,)\Mj. Also, using property (l), 
we can choose i, such that &(xlk) 6$ M,. Define g = xi= i bkfik E 
Horn&, C), and J = g(A). It suffices to prove J is a faithful, projective ideal 
of C since A -+g J+ 0 will then split. 

Note that for all k, (*) g(x,,) = bk&(xik) # 0 (mod Mk). In particular, by 
(b), J&Pi for l< j<t, SO that J is faithful: rJ=O*rJGPj*rEPj or 
J c Pj + r E Pj for all j, and r = 0. To prove that J is projective, it suffices to 
prove that the localizations J, of J are projective in C, for all maximal 
ideals M of C. If M = M, for some k, then by (*), J & M. Thus, J, = C, in 
this case. If M # Mj for all j, then by (a) Z G$ M. Consequently, JIM is an ideal 
of C, = R,. Since R is hereditary, so is R,, and JIM is therefore projective. 

LEMMA 2.1. Let S be a commutative ring with J and K ideals of S such 
that 

(1) J is a projective generator of the class of S-modules. 

(2) K is projective and S/K is Artiniun. 

Then us S-modules, J 0 K z S 0 JK. 

Proof. Let {M,,..., M,} be the set of maximal ideals of S containing K. 
By (1) there exist a, E J, f, E Hom,(J, S) with &(a,) &M,. Choose bi E 
ni+jMi\Mj and let g=z=,b,f,. Let h=(g,i):J@K-,S, where i is the 
inclusion map. Then Im h 2 K and, for all j, Im h & M/. Hence, Im h = S. 
Thus, JO K z S 0 B for some S-module B. 
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Let P be a prime ideal of S. Then Jp @ Kp % S, @ B, as S,-modules. 
Since J,, and Kp are projective and S, is local, Jp and Kp are free. Clearly, 
rankSp Jp < 1, ranksp(K,) < 1. Thus, rankSpEp < 1. 

Let X = J, K, S or B and A* be the second exterior power. Then 
r4o1, =4,(x,> = (0) f or all P, so A:(X) = (0). We have, therefore, 
A;(J@K)zJJsKrJK, A;(S@B)rS@,BrB. But, A;(J@K)z 
Af(S @B). Thus, B 2 JK. 

THEOREM 2.8. A is E-projective iff 

(1) Hom,(C, A) = Horn&C, A), 
(2) A r J @ K where J is a faithful projective ideal of C and K is a C- 

module. 
Proof: Assume (1) and (2) are satisfied. Note that C/J is Artinian since, 

as before, nC&J. By Lemma2.7, AOAZJ@JOK@KZCCJ*@ 
K 0 K. Apply Horn& , A) to get E @ E = Horn@, A)@ Hom,(A, A)? 
A @ Hom,(J*, A) @ Hom,(K, A) @ Hom,(K, A) as E-modules. Thus A is an 
E-module summand of E @ E, hence projective. 

Conversely, assume A is E-projective. By Proposition 1.4, A is quasi- 
isomorphic to a group B which is cyclic and projective over E’ = E(B). As 
in Remark 1.5, assume kA c B c A for some 0 # k E Z. Let C’ = center E’. 
By Theorem 1.3, Hom,(C’, B) = Homc(C’, B). If 4 E Hom,(C, A), then 
k4 E Hom,(C’, B) = Hom,,(C’, B). Furthermore, kc’ c C. It follows easily 
that ( E Hom,(C, A). This proves (1). 

To prove (2) we use Lemmas 2.5 and 2.6. Since A is E-projective and 
finitely generated (Theorem 2.4) there exist x,, x2 ,..., x1 E A and F, , 
F 2 ,..., FI E Hom,(A, E) such that for all y E A, y = z= 1 Fj(y)(xj). By 
Lemma 2.5, there exist & E Hom,(A, C) such that Fj(y)(x) = u&(x) for all 
x, y E A, 1 < j< 1. Consequently, y = z=, vfj(xj) for all y E A, and hence 
z=l &(Xj)= 1. 

By Theorem 1.3, C’ is an E-ring. Thus, C is an E-ring and there exist a 
positive integer n and Dedekind domains R, ,..., R, such that 
n(R, x ..a x R,) s CC R x a.. X R, (Bowshell and Schultz [6]). We now 
apply Lemma 2.6 to get (2). 

COROLLARY 2.9. Let S be aJinite rank, iorsion-free E-ring, J a faithful 
projective ideal of S, and K a finite rank torsion-free S-module satisfying 
Hom,(S, K) = Horn& K). Then A = JO K is E-projective. Moreover, 
every E-projective group arises in this way. 

Proof: Let QS= Q@, S, QE(S)= Q&E(S). For s E QS, define f,: 
QS -+ QS by f,(x) = sx. Since S is an E-ring, the mapping s -+ f, is a ring 
isomorphism from QS onto QE(S) which contracts to a ring isomorphism 
from S onto E(S). 
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S is a finite rank torsion-free ring and J is a faithful ideal of S. It is easy 
to show that nS G J for some n E Z+. Consequently, nE(J) c_ E(S), Thus, 
every element of E(J) has the form frln, where r E S and (r/ny c J. 

Since J is projective, S = Tr(J) = ,7&HomZ(J,S) g(J). Thus for r/n as 
above, (r/n)S = (r/n) Tr(J) = Tr((r/ny) E Tr(J) = S. That is, r/n G S. 
Therefore, E(J) = E(S) = {f, 1 s E S}. 

A routine calculation shows that the center of E(J 0 K) consists of the 
multiplications by elements of S. The corollary follows from Theorem 2.8. 

Our last result shows that any group A which is E(A) projective is nearly 
isomorphic to a group B which is E(B) cyclic projective. First, we need a 
lemma. 

LEMMA 2.10. Let S be a torsion free finite-rank E-ring and J an ideal of 
S with mS E J for some m E Z’. If J is projective as an S-module, then J is 
nearly isomorphic to S. 

Proof: We have shown, in the proof of Corollary 2.9, that 
E(J) = E(S) = S. Thus, J is E(J) projective and, by Theorem 2.4, is a genus 
summand of E(J). Since rank J = rank S = rank E(J), J is nearly isomorphic 
to s. 

THEOREM 2.11. Let A and B be torsion-free abelian groups of finite 
rank. 

(1) If A is nearly isomorphic to B, then A is E(A)-projective iff B is 
E(B)-projective. 

(2) If A is E(A)-projective, then there exists B nearly isomorphic to A 
such that B is E(B) cyclic and projective. 

Proof. Part (1) follows from a result of Lady and the following: 

Claim. For n > 1, A is E-projective if and only if A” is E(A”)-projective. 
If A” is E(A”)-projective, then A” @X = E(A”)k for some k > 0 and 

E(A”)-module X. But E(A”) z En2 as E-modules. Thus A is an E-summand 
of Enzk, hence E-projective. 

Conversely, if A is E-projective, then by Theorem 2.8, A z JO K where J 
is a faithful projective ideal of C and Hom,(C, A) = Horn&C, A). Note that 
E(A”) is the ring of n x n matrices over E, so that the center of E(A”) is 
also C. Moreover, A” z J@ (J”-’ OK”) and Hom,(C, A”) = Hom,(C, A)” = 
Horn&C, A)” = Hom,(C, A”). Therefore, by Theorem 2.8, A” is E(A”)- 
projective. 

By Lady’s result (see [2]) if A and B are nearly isomorphic, then A” S’ B” 
for some n > 1. Thus, by the claim, A is E-projective if and only if B is 
E(B)-projective. 
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For part (2), write A z J @ K as in Theorem 2.8, and let B = S 0 K. By 
Lemma 2.10, B is nearly isomorphic to A, and is cyclic projective over E(B) 
by Theorem 1.3. 

We close the paper by giving some examples. 

EXAMPLE 2.12 (Douglas and Farahat). Let pi, i = 1, 2, 3, be odd primes 
and Ai = Z[ l/p,], the subring of Q generated by Z and I/p,, i = 1,2,3. Let 
G be the subgroup of Q’ generated by A = @l= 1 Ai and all elements of the 
form (a,, a?, a,)/2 with a, + a2 + a3 E 2Z,, where Z, is the localization of 
Z at 2. Then A is an E-ring and 2G SA !& G but G is not E(G) projec- 
tive-in fact G has infinite projective dimension over E(G). This example 
and Theorem 2.11 point out the distinction between near- and quasi- 
isomorphism as related to E-projectivity. 

EXAMPLE 2.13. Let R be an E-ring which is a principal ideal domain 
such that p = pf , where p is a prime in Z, p, is a prime in R. Let q # p be 
an integral prime with qR #R and let R’ = Z[ I/q] 6jz R. Let G be the 
subgroup of Q@(R OR’) generated by R OR’ and the element 
g = (pi, p,)/p. Then, it is easy to check that G is E cyclic with generator g. 
But G is not E-projective. If K = pR @ p:R’, then a E Hom,(G, G/K) 
defined by a(g) = (p,, 1 - pJ + K is not induced by any endomorphism 
of G. 

EXAMPLE 2.14. Let p be an integral prime with -5 =x’(p). Let S = 
{(a + b fl)/p’ ] a, b, 1 E Z, 12 0, p’ ] a2 + 5b2}. Then S is a subring of 
Q(p) such that S is a Dedekind domain and S is strongly indecom- 
posable. Thus, S is an E-ring [6]. Let Z be the (non-principal) ideal of S 
generated by 2 + fl, 2 - fl. Then, 9s c Z and E(Z) = E(S) = S as in 
the proof of Corollary 2.9. Thus, Z is E(Z)-projective (S is Dedekind) but not 
E(Z) cyclic. (Compare Theorem 2.4(d).) 
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