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Hydroxynitrile lyases are used for the synthesis of enantiomerically pure cyanohydrinswhich are of great impor-
tance in the pharmaceutical and fine chemical industries. In this study, the hydroxynitrile lyase activity of 100
plants from 40 families was investigated, first by screening for cyanogenic activity, followed by a hydroxynitrile
lyase activity assay. Of the 100 plants, four were found to be cyanogenic and exhibited specific hydroxynitrile
lyase activity: Adenia sp. (0.44 U/mg), Adenia firingalavensis (2.88 U/mg), Adenia fruticosa (1.99 U/mg) and,
Adenia pechuelii (2.35 U/mg), all from the family Passifloraceae. This is the first report of hydroxynitrile lyase
activity in these plants.

© 2014 SAAB. Published by Elsevier B.V. All rights reserved.
1. Introduction

In plants, a cyanohydrin is broken down by a hydroxynitrile lyase
into hydrogen cyanide and an aldehyde or ketone. This reaction,
known as cyanogenesis, occurs in over 3000 plant species and serves
as an ingenious self defence mechanism — the hydrogen cyanide re-
leased by these cyanogenic plants protects them from furthermicrobial,
fungal and animal attacks (Conn, 1981; Erdman, 2003; Jones, 1998;
Sharma et al., 2005; Ueatrongchit et al., 2010; Zagrobelny et al., 2008).
However, in principle, each enzymatic reaction is completely reversible,
and it is this reversible reaction (Fig. 1) which is of interest.

The chiral cyanohydrins produced using this reversible reaction— the
condensation of hydrogen cyanidewith an aldehyde or ketone is of great
importance to the pharmaceutical and fine chemical industries where
they are used as building blocks in the production of various essentials
such as pesticides, medicines, agrochemicals, etc. (Dadashipour et al.,
2011). Hydroxynitrile lyase can also be used to detoxify cyanogenic
food plants (Fokunang et al., 2001; Hasslacher et al., 1996).

The first discovery of hydroxynitrile lyase occurred in 1837, by two
German chemists — Justus von Liebig and Friedrich Wohler. This was
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found in an Amygdalus communis (bitter almond) extract (Hosel,
1981). According to literature, the two main families containing cyano-
genic plants and therefore contributing hydroxynitrile lyases are the
Euphorbiaceae and Rosaceae. Despite the numerous discoveries of
other hydroxynitrile lyases since, the application of these naturally occur-
ring enzymes in enantioselective biocatalytic synthesis was limited due
to the difficulty of obtaining a sufficient amount and most importantly,
lack of novel substrate specificity (Asano et al., 2005; Dadashipour et al.,
2011; Hernandez et al., 2004; Hughes et al., 1994; Sharma et al., 2005;
Wajant et al., 1995; Xu et al., 1988).

Although recombinant DNA technology has now provided a way to
mass produce these enzymes for industrial applications, there is still a
lack of novel substrate specificity.

One solution to this is to identify multiple plants exhibiting
hydroxynitrile lyase activity as there is the potential that each such
plantmay contain a hydroxynitrile lyasewith novel substrate specificity,
partially addressing the second issue. The aim of this study is to identify
such new plants.

2. Materials and methods

2.1. Plant identification and collection

Apical buds from 100 plant species, comprising 40 families (Table 1)
were collected in triplicate from the Pretoria National Botanical Gardens
(National Herbarium, South African National Biodiversity Institute).
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Fig. 1. General reaction catalysed by hydroxynitrile lyase.
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These plants were specifically selected from families in which cyano-
genesis had been reported previously.

The microtitre plates containing the samples were kept on ice at
all times during sample collection to prevent wilting andwere stored
at −80 °C within 4 h.

2.2. Cyanogenic activity

Cyanogenic activity was tested using the Feigl–Anger test (Feigl
and Anger, 1966; Takos et al., 2010) which relies on the oxidation
Table 1
Plants used in this study.

Family Species

Acanthaceae Barleria obtusisepala C.B. Clarke
Aizoaceae Ruschia sp. C.f. indurata, L.c. Trichodiadema sp.
Anacardiaceae Searsia lancea (L.F) F.A. Barkley
Apocynaceae Orbea melanantha (Schltr.) Bruyns, Pachypodium namaquensis (Wyley ex

Acokanthera oblongifolia (Hochst.) Benth. & Hook.f. ex B.D. Jacks., Cathara
Asclepiadaceae Huernia zebrina (Phillips) L.C. Leach
Asparagaceae Asparagus densiflorus (Kunth) Jessop
Asteraceae Kleinia stapeliiformis (E. Phillips) Stapf, Senecio barbertonicus Klatt
Boraginaceae Ehretia rigida (Thunb.) Druce
Cactaceae Rhipsalis baccifera (J.S. Muell.) Stearn
Cannabaceae Celtis africana Burm. f.
Celastraceae Elaeodendron croceum (Thunb.) DC., Gymnosporia tenuispina (Sond.) Szys
Crassulaceae Kalanchoe beharensis Drake, Adromischus sp., Adromischus filicaulis (Eckl. &
Cucurbitaceae Xerosicyos danguyi Humbert
Cycadaceae Cycas thouarsii R. Br.
Dichapetalaceae Dichapetalum cymosum (Hook.) Engl.
Didiereaceae Alluaudiopsis fiherenensis Humbert & Choux, Alluaudia procera (Drake) Dr

madagascariensis Choux
Dioscoreaceae Dioscorea dregeana (Kunth) T. Durand & Schinz
Ebenaceae Euclea sp. (Pretoria National Botanical Gardens 18236/73)
Euphorbiaceae Euphorbia tortirama R.A. Dyer, Euphorbia fruticosa Forssk, Euphorbia platyc

pseudocactus A. Berger, Euphorbia cylindrica Marloth ex A.C. White, R.A. D
jansenvillensisNel, Euphorbia fuscaMarloth, Euphorbia gummiferaBoiss., Eu
pulvinataMarloth, Euphorbia aeruginosa Schweick, Euphorbia monteiroiHo
Euphorbia lugardae (N.E.Br.) Bruyns, Euphorbia ritchiei (P.R.O Bally) Bruyn
Ex Boiss., Euphorbia cupularis Boiss., Spirostachys africana Sond., Sclerocrot
Jatropha curcus

Fabaceae Burkea africana Hook., Philenoptera violaceae (Klotzch) Schrire, Peltophoru
Geraniaceae Pelargonium ceratophyllum L'Her., Pelargonium klinghardtense R. Knuth, Pe
Gesneriaceae Streptocarpus sp. Pink cultivar
Hernandiaceae Gyrocarpus americanus Jacq.
Icacinaceae Pyrenacantha cordata Villiers.
Juncaceae Juncus effusa L.
Lamiaceae Tetradenia fruticosa Benth.
Malvaceae Grewia flavescens Juss.
Meliaceae Turraea obtusifolia Hochst.
Menispermaceae Tinospora fragosa Verdoorn & Troupin
Moringaceae Moringa drouhardii Jum.
Pandanaceae Pandanus epiphyticus Martelli
Passifloraceae Adenia sp. (Pretoria National Botanical Gardens 14638/69), Adenia sp., Ad

(Engl.) Harms, Adenia gummifera (Harv.) Harms
Pedaliaceae Ceratotheca triloba (Bernh.) Hook.f.
Phyllanthaceae Bridelia catharthica subsp. Carthartica
Polygalaceae Polygala myrtifolia L.
Pteridaceae Adianthum sp.
Rosaceae Leucosidea sericea Eckl. & Zeyh.
Rubiaceae Vangueria infausta Burch., Xeromphis obovata (Hochst.) Keay
Solanaceae Solanum tomentosum L., Solanum seaforthianum Andrews
Zamiaceae Encephalartos friderici-guilielmi Lehm.
of a tetrabase in the presence of hydrogen cyanide (a by-product of
cyanogenesis) to create a distinct blue spot on a specially prepared de-
tection paper after tissue disruption by a single freeze–thaw cycle. A
Whatman 3MM filter paper, cut to the dimensions of 8 cm × 11 cm to
fit themicrotitre plate was used. The solutionwas then prepared by sep-
arately dissolving 75 mg of copper ethylacetoacetate (Sigma-Aldrich)
and 75 mg of the tetrabase 4,4-methylenebis (N,N-dimethylalanine)
(Sigma-Aldrich) in 7.5 ml of chloroform (Merck) each and then com-
bining both solutions. The filter paper was then saturated with this
combined solution and allowed to dry. After drying, the resultant
Harv.) Welw., Pachypodium lamerei Drake, Strophanthus amboensis (Schinz) Engl. & Pax,
nthus roseus (L.) G. Don, Rauvolfia caffra Sond.

zyl., Putterlickia verrucosa (E. Mey. Ex Sond.) Szyszyl.
Zeyh.) C.A. Sm. subsp. filicaulis, L.c Adromischus diabolicus Toelken

ake, Alluaudia dumosa (Drake) Drake, Alluaudia humbertii Choux, Decarya

lada Rauh, Euphorbia stellispina Haw., Euphorbia leistneri R.H. Archer, Euphorbia
yer & B. Sloane, Euphorbia clivicola R.A. Dyer, Euphorbia buruana Pax, Euphorbia
phorbia C.f. aeruginosa, Euphorbia bupleurifolia Jacq.,Euphorbia lignosaMarloth, Euphorbia
ok., Euphorbia antso Denis., Euphorbia invenusta (N.E.Br.) Bruyns, Euphorbia schubei Pax,
s, Euphorbia guentheri (Pax) Bruyns, Euphorbia virosaWilld., Euphorbia dregeana E. Mey.
on ellipticus Hochst., Croton sylvaticus Hochst., Croton gratissimus subsp. Gratissimus, L.c.

m africanum Sond., Bauhinia galpinii N.E.Br., Colophospermum mopane (Benth.) Leonard,
largonium crassicaule L'Her.

enia firingalavensis (Drake ex Jum.) Harms, Adenia fruticosa Burtt Davy, Adenia pechuelii
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pale green detection paper was stored in a dark, dry place at 4 °C
until required.

The trays containing the samples were removed from the −80 °C
freezer and the detection paper was immediately overlaid on the
plate. The plate was then covered, and the lid weighed down to create
a tight fit between plate, detection paper and lid to prevent diffusion
of hydrogen cyanide from individual wells. The tissuewas then allowed
to thaw and disrupt on the laboratory bench at room temperature. Re-
sults were recorded within 3 h (assessed after 1, 2 and 3 h) in order to
detect any hydrogen cyanide released.

Apical buds fromManihot esculenta Crantz (cassava), were used as a
positive control whilst distilled water was used as a negative control. A
positive result was indicated by a change in colour of the detection
paper from white to blue. No change in colour indicated a negative re-
sult. An image of each result was captured immediately as the colour
is known to fade with time.

2.3. Hydroxynitrile lyase activity

2.3.1. Crude enzyme extraction from cyanogenic plants
Extraction of the crude enzyme was performed according to

Ueatrongchit et al. (2010) with slight modifications. Young leaves
(1 g) were frozen in liquid nitrogen and homogenized by mortar and
pestle to form a fine powder. The powder was re-suspended in 1 ml of
50 mM sodium citrate buffer (pH 5.0) and vortexed vigorously for
5 min. The resultant slurry was centrifuged at 20000 ×g for 10 min.
The supernatant was used as the crude enzyme extract.

2.3.2. Protein assay
Total protein was quantified in a Qubit Fluorometer (Life Technolo-

gies) using a Qubit protein assay kit (Life Technologies) according to the
manufacturer's instructions.

2.3.3. Hydroxynitrile lyase activity assay
Hydroxynitrile lyase specific activity was measured spectrophoto-

metrically as described by Krammer et al. (2007) and Zhao et al.
(2011) by following the formation of benzaldehyde from a racemic
mixture of mandelonitrile (Fig. 2).

The reaction mixture comprised 50 mM sodium citrate buffer
(pH 5), 150 μl of the crude enzyme extract and 10 mM mandelonitrile
(Sigma-Aldrich) to a final volume of 3 ml in a Quartz cell. The substrate
was always added last. Twenty seconds after the substrate was added,
the spectrophotometer (Jenway 6305 UV/Vis, Staffordshire, United
Kingdom) was blanked using the reaction mixture and the formation
of benzaldehyde was tracked by monitoring the increase in absorbance
at 280 nm for 10 min at room temperature.

Due to the fact that mandelonitrile breaks down spontaneously at a
pH N 5, a control reactionwas run in parallel with the samples and com-
prised 50 mM sodium citrate buffer (pH 5) and 10 mMmandelonitrile
in a final volume of 3 ml. The linear slope of absorbance resulting from
the spontaneous decomposition of mandelonitrile (control) was subse-
quently subtracted from the slope of absorbance obtained for the crude
Fig. 2. Two products of hydroxyni
enzyme assays in order to avoid false indications of hydroxynitrile lyase
activity in the plant macerates. All assays were carried out in triplicate.

Hydroxynitrile lyase activitywas then calculated using the equation:

Activity U=mlð Þ ¼ ΔOD
ε

� Vt

Ve

ΔOD ¼ ΔA280=mincrude enzyme−ΔA280=minspontaneous

where ΔOD represents the difference in the maximum linear rate be-
tween the crude enzyme extract and the spontaneous decomposition
reaction, ε is the absorption coefficiency (1.3761 ml/μmol/cm) at 280
nm, Vt and Ve are the total volume of the reaction and enzyme volumes
used respectively. One unit of activity is defined as the amount of en-
zyme catalysing the formation of 1 μmol/min of benzaldehyde from
mandelonitrile under the assay conditions.

3. Results

3.1. Cyanogenic activity

Of the 100 plants tested, four were found to be cyanogenic: Adenia
sp., Adenia firingalavensis, Adenia fruticosa, and Adenia pechuelii, all
from the family Passifloraceae (Fig. 3).

3.2. Hydroxynitrile lyase activity

Hydroxynitrile lyase specific activity (Table 2) was calculated for the
crude enzyme extracts of Adenia sp., A. firingalavensis, A. fruticosa and
A. pechuelii which were identified as cyanogenic. The total activity rep-
resents the yield of enzyme at each step, whereas the specific activity
is a measure of the purity of the enzyme. A. firingalavensis, A. fruticosa
and A. pechuelii exhibited the highest hydroxynitrile lyase specific
activities.

4. Discussion

To our knowledge, cyanogenic properties and hydroxynitrile lyase
activity have not been reported for any of the selected plants, until
now, and no study of this nature has been performed previously in
South Africa.

Of the four new cyanogenic plants discovered in this study, all were
of the genus Adenia, from the Passifloraceae family. Certain species
within the Passifloraceae are known to be cyanogenic (Asano et al.,
2005; Hernandez et al., 2004; Ueatrongchit et al., 2010) however, no
studies are known to the authors that report cyanogenic activity in
Adenia.

In 2005, Asano and co-workers were the first to report (R)-
hydroxynitrile lyase activity in Passiflora edulis Sims. Thereafter, in
2010, Ueatrongchit and co-workers characterised and purified a
hydroxynitrile lyase from P. edulis, a member of the Passifloraceae fam-
ily, for thefirst time. They reported a specific activity of 2.47U/mg in the
trile lyase mediated catalysis.

image of Fig.�2


Fig. 3. Screening for cyanogenic activity — a representative Feigl–Anger detection paper
exposed to samples after a 2 h incubation period. A blue spot indicates cyanogenic activity
due to hydrogen cyanide detection, whilst the absence of a blue spot indicates a negative
test for cyanogenesis. Adenia sp. was in well B7, Adenia firingalavensis in C8, Adenia
fruticosa in D12, and Adenia pechuelii in E1. The positive control Manihot esculentawas in
wells H10 and H12 and negative control (distilled water) in wells F10 and F12.
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crude extract from the leaves of P. edulis. This specific activity is not dis-
similar from three of the findings in the current study, indicating that
the enzymes present in the currently studied plants have similar levels
of activity to those found in other plants from the same family. However,
it may also indicate that these enzymes have the same characteristics as
those found in P. edulis. Further study is thus needed to exclude this
possibility and confirm the presence of novel substrate specificity.

The specific activities measured in this study were not unexpected
as hydroxynitrile lyase activity is usually low in the crude homogenate
of leaves. This can be attributed to the low concentration of
hydroxynitrile lyase present relative to the higher concentrations of
other contaminating proteins in the crude extract. Hydroxynitrile
lyase activity also largely depends on the pH of the plant macerates re-
quiring an acidic pH to be active (Dadashipour et al., 2011).
Ueatrongchit et al. (2008) isolated and purified to homogeneity a
hydroxynitrile lyase from the seeds of Eriobotrya japonica (Thunb).
They reported a specific activity of 0.8 U/mg in the crude extract. How-
ever, after affinity column Concanavalin A Sepharose 4B purification,
the specific activity had increased to 40.9 U/mg.

Although the remaining 39 families studied are known to contain
cyanogenic species, none of the selected plants from these families
exhibited cyanogenic activity in this study. It is therefore important to
note that because a plant family contains cyanogenic plant species, it
cannot be presumed that every member of that family will be cyano-
genic. This cyanogenic variation amongst species may be attributed to
a cyanogenic polymorphism (Goodger and Woodrow, 2002).

However, it should be noted that a negative test for cyanogenic ac-
tivity is not necessarily evidence that a plant is not cyanogenic. It is pos-
sible that the age or stage of growth of the plant, the part of the plant
that was tested, environmental conditions, climate and seasonal varia-
tion could have very well contributed to the results of this study. In
this study, it was only the apical bud of each plant that was tested as
Table 2
Hydroxynitrile lyase activity in the crude extracts of cyanogenic plants.

Plant species Total activity
(U/ml)

Total protein
(mg/ml)

Specific activity
(U/mg)

Adenia sp. 0.304 ± 0.169 0.692 0.440 ± 0.190
Adenia firingalavensis 0.559 ± 0.265 0.194 2.884 ± 0.240
Adenia fruticosa 0.878 ± 0.094 0.440 1.998 ± 0.214
Adenia pechuelii 1.917 ± 0.630 0.815 2.353 ± 0.200
the apical bud and younger leaf tissues are known to contain the highest
concentration of cyanogenic glycosides (GleadowandWoodrow, 2000).

Gleadow andWoodrow (2000) found that the concentration of cya-
nogenic glycosides decreases as the leaves mature. They also found that
the cyanogenic glycoside concentration in the young leaf tips varied
seasonally, andpropose that this seasonal variation in cyanogenic glyco-
side concentration may be due to the availability of nitrogen in the soil,
climate, temperature, etc.

Using field and greenhouse studies in 2001, Gebrehiwot and
Beuselinck confirmed seasonal variation in hydrogen cyanide concen-
trations. They found that plants in Spring and Summer had a 50%greater
concentration of hydrogen cyanide than the same plants in Autumn or
Winter, with the lowest concentrations observed in Winter. The pres-
ence and concentrations of various compounds in a plant are known
to varywith regard to season and age (Pichersky and Lewinsohn, 2011).

Hernandez et al. (2004) found that the different parts (leaves, seeds,
etc.) of the same plant gave a different result. They found in some plants
that the seedswere cyanogenic, but the leaveswere not, and vice-versa.
5. Conclusion

In this study, four new cyanogenic plants exhibiting hydroxynitrile
lyase activity have been reported. The crude extracts of these plants ex-
hibited specific activities similar to that found in the crude extract of
P. edulis. These findings expand the number of plants known to exhibit
hydroxynitrile lyase activity and there is the potential that these plants
may contain an enzyme with novel substrate specificity.

The remaining 96 plants which tested negative cannot however be
confirmed as non cyanogenic due to the effects of seasonal variation.

Future work will involve the expression of the hydroxynitrile lyases
from these four plants in a microbial host (heterologous expression),
followed by purification and characterisation (including stereochemistry
and substrate specificity studies). Industrial applications of the current
study's findings will be better understood after this further study.
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