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a b s t r a c t

Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which
accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic
host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types
of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are
oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as
mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These
cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and
form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing
direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking struc-
tures record elliptical displacementedistance profiles with steep displacement gradients at the fault tips
by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record
one of the greatest maximum displacement/length ratios reported from natural fault structures. These
exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces,
which did not propagate during their rotation during surrounding ductile flow.

� 2011 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Geological faults are shear fractures in rocks that may range in
length from less than a centimetre to more than 1000 km, allowing
the study of fault evolution, deformation processes and scaling over
an exceptionally wide scale range. Field studies of fault displacement
profiles and maximum displacement versus fault length are
numerous for brittle faults in various rock types with different
mechanical properties (e.g. Muraoka and Kamata, 1983; Rippon,
1985; Barnett et al., 1987; Walsh and Watterson, 1988, 1989;
Peacock, 1991; Peacock and Sanderson, 1991; Cowie and Scholz,
1992a, 1992b; Gillespie et al., 1992; Dawers et al., 1993; Cartwright
et al., 1995; Schlische et al., 1996; Kim and Sanderson, 2005; Soliva
and Benedicto, 2005; Schultz et al., 2008; Exner and Grasemann,
2010). Numerical elastic solutions demonstrated that the three-
dimensional shape of a brittle fault strongly influences the magni-
tude of the displacement, and therefore controls the magnitude and
spatial distribution of stress in the host rocks (Willemse et al., 1996).
The aspect ratio of the fault is defined as the length L (measured as
the trace length on a horizontal plane going through the centre of
the fault) divided by the fault height H (measured along the fault
(B. Grasemann).
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surface in the dip direction). Keeping L constant, vertically tall faults
(smaller aspect ratio) have a greater maximum slip than short faults
(greater aspect ratio). For natural blind isolated faults in a layered
sequence, the average aspect ratio is about 2 (Nicol et al., 1996). This
ellipticity is considered to be the result of either the mechanical
heterogeneity of the rock sequence or to the energy difference
between screw and edge dislocation (Walsh and Watterson, 1989).

In special cases, an intimate interplay between localized brittle
fracturing and more distributed ductile flow is documented, where
precursor fractures determine the localisation of ductile shear
zones (e.g. Segall and Simpson, 1986; Guermani and Pennacchioni,
1998; Mancktelow and Pennacchioni, 2005; Pennacchioni and
Mancktelow, 2007). Distributed ductile deformation and localized
slip on discrete fractures can also occur synchronously (Fusseis
et al., 2006) or in alternating brittle and ductile episodes
(Mancktelow and Pennacchioni, 2005). Flanking structures (e.g.
Passchier, 2001; Grasemann and Stüwe, 2001; Exner et al., 2004;
Kocher and Mancktelow, 2006), which are the focus of this study,
are characterized by distributed deformation of host rock layers
around discrete faults. These types of fault-related folds (Schlische,
1995; Withjack et al., 2002) are particularly clear examples of
interacting brittle and ductile deformation, because their geometry
can only be explained if discrete slip occurred synchronously with
the surrounding, distributed ductile flow (Mancktelow, 2008).
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Fig. 1. Geological map of Serifos located in the Western Cyclades in Greece (simplified
and modified after Grasemann and Petrakakis, 2007). The investigated outcrop, located
in the mylonitic granitoid of the Cycladic Basement Unit, is indicated with an arrow.
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Previous numerical, analytical and analogue studies of flanking
structures treated the slip surface either as low viscosity inclusion
embedded in a higher viscosity matrix or as a brittle fault (e.g.
Grasemann and Stüwe, 2001; Grasemann et al., 2003, 2005; Exner
et al., 2004; Kocher and Mancktelow, 2006; Exner and Dabrowski,
2010). Many natural examples do not provide clear evidence for the
existence of a weak material along the slip surfaces. Thus, even
though the kinematics, mechanical interaction and progressive
evolution of flanking structures are well constrained, some crucial
questions related to the slip along brittle faults deforming in
a viscous matrix remained unsolved: 1) What are the different
deformation mechanisms within the brittle slip surface with
respect to the ductile host shear zone? 2) Because magnitude of the
deflection of the host rocks is a direct function of the displacement
gradient along the slip surface (Grasemann et al., 2005), what are
the shapes of displacement profiles and maximum displacement
versus fault length scaling relationships for flanking structures and
how do they compare with published data for brittle faults? 3)
What is the aspect ratio of brittle faults deforming in a viscous
matrix and how does the three-dimensional shape of these faults
influence the magnitude of the displacement? 4) What are the
displacement profiles of complex flanking structures, which
interact or which have a slip surface, which is oriented oblique to
the flow direction?

Addressing these questions, we investigate exceptionally
well exposed flanking structures from a roughly 1 m thick
greenschist facies shear zone on the island of Serifos (Greece).
We focus on high-precision measurements of displacement-
normal, layereparallel profiles and present evidences for cata-
clastic deformation within the slip surface during overall ductile
flow.

2. Geological outline

Serifos, located about 100 km SSE of Athens in the Western
Cyclades, geologically belongs to the Cycladic Blueschist Unit,
which experienced a subduction-related Eocene high-pressure
metamorphism followed by Miocene extension and greenschist
facies overprint (for a recent review see Jolivet and Brun, 2010; Ring
et al., 2010). This Miocene extension occurred in Cordilleran-type
metamorphic core complexes (Lister et al., 1984) with detach-
ments showing mainly a top-to-the-N or NE sense of shear (e.g.
Buick,1991; Faure et al., 1991; Gautier et al., 1993; Jolivet et al.,1994,
2010), while in Serifos (Fig. 1), a system of extensional low-angle
faults records a clear top-to-the-SSW sense of shear (Grasemann
and Petrakakis, 2007; Tschegg and Grasemann, 2009). In addition,
the detachment system is syn-kinematically intruded by a Late
Miocene high-level I-type granodiorite pluton, with intrusion ages
of the main intrusive body and its associated dykes of 11.6e9.5 Ma
(Iglseder et al., 2009) followed by rapid cooling (Brichau et al., 2010,
and references cited therein). The granodiorite discordantly
intrudes a lower detachment, which separates the Cycladic Blues-
chist Unit from the Cycladic Basement Unit below. Along the
southern margin of the granodiorite, the roof is deformed by an
upper detachment under ductile to brittle conditions during cool-
ing and exhumation of the rocks (Tschegg and Grasemann, 2009).
Where the host rocks of the granodiorite are unaffected by the
detachments, older structures are preserved with a dominant ENE-
WSW trending lineation probably related to the earlier high-
pressure event. In areas where the Miocene low-angle detach-
ments occur, earlier structures are overprinted by a stretching
lineation strictly trending NNE-SSW. The structures presented in
this paper occur in a mylonitic granitoid in the SE of Serifos, which
belong to the Cycladic Basement Unit (black arrow in Fig. 1; see also
KML file in supplementary materials).
3. Monoclinic and triclinic flanking structures

The host of the investigated structures is a mylonitic granitoid
rock, which consistsmainly of quartz, albitic plagioclase, K-feldspar,
muscovite and biotite and has a strong planar, subhorizontal folia-
tion (SM1) and a stretching lineation LM1 trending ENE-WSW
(Figs. 2 and 3). Throughout this work, subscript 1 represents struc-
tures, which are related to a deformation event pre-dating the
discordant Late-Miocene intrusive bodies, i.e. the granodiorite and
associated dykes. Subscript 2 indicates structural elements that
affected the granodiorite and associated dykes and, which are
related to the Late Miocene extension event (Fig. 4). After myloni-
tization, which generated the SM1 foliation, isolated veins SJ1
formed locally at a high angle to SM1 and parallel to LM1 (Stage 1,
Fig. 5). These veins are up to tens of centimetres long and are
characterized by a quartz/K-feldspar filling. Muscovite, statically
crystallizedwith the {001} planes parallel to the joints, which either
formed along the margins or the centre of the veins (Fig. 6a), and
which do not indicate evidences for dynamic recrystallization,
kinking or mechanical breaking/fracturing (Fig. 6b).

During the Late Miocene extension, SM1 was locally reactivated
by a greenschist facies mylonitic foliation SM2 with an NNE-SSW
trending lineation LM2, deviating ca. 30e40� from LM1 (Stage 2,
Fig. 5). These SM2 shear zones are several metres long and are
either parallel to SM1 or intersect SM1 at small angles (Fig. 2a). All
kinematic indicators (mainly shear bands, quartz fabrics/textures
and the flanking structures) indicate top-to-the-SSW shear sense. It
is important to note that the outcrop is structurally located in the
footwall of the main detachments and records only minor amounts
of localized Late Miocene SM2 deformation and finite strain.
Therefore, older structural elements like LM1 or SJ1 are preserved
outside and at the margins of the SM2 shear zones (Fig. 2b). A new



Fig. 2. Field geometries at study sites (see Fig. 4 for illustration of structural labels): a) Localized several meters long SSW-dipping SM2 shear zone within the mylonitic granitoid,
overprinting the earlier SM1 foliation with an ENE-WSW trending lineation. b) View downward onto the SM1þ2 foliation plane showing the overprinting of an earlier ENE-WSW
(LM1) by a younger NNE-SSW trending lineation (LM2). Note, that generally SM1 is parallel to SM2, which is indicated by the index SM1þ2. c) Several triclinic (CE1) and some
monoclinic (CE2b) flanking structures cutting a single SM2-foliation plane. Some CE1 and CE2b-surfaces are connected to linked flanking structures. d) Isolated slip surface of
a triclinic flanking structure (CE1) cutting through the mylonitic foliation plane SM2. Note the reverse drag of the foliation. e) Triclinic flanking structure with a pronounced strike-
slip component (s) with respect to the dip-slip component (d) on CE1. Due to the strike-slip component, the lineation LM2 records a reverse drag within the foliation (view
downwards onto the foliation). f) Wing cracks CE2a, which were rotated into the shearing direction (view downwards onto the foliation).
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Fig. 3. a) Equal area plots (lower-hemisphere) of non-rotated K-feldspar veins (SJ1) and ENE-WSW trending lineation LM1 outside the SM2 shear zone. Rotated K-feldspar veins CE1
form triclinic flanking structures. b) Orientations of non-rotated joints (SJ2) outside SM2 shear zone. Rotated joints CE2b form monolinic flanking structures; wing cracks CE2a are
associated with CE1 as linked flanking structures. c) Orientations of main foliation SM1þ2 and lineation LM2. Note the different orientation of the brittle slickensides on the triclinic
(CE1) and monoclinic (CE2) flanking structures.
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joint system forms perpendicular to LM2, postdating the formation
of SM2.

In the outcrop, a roughly 1m thick SM2 shear zone is exposed for
about 2500 m2 with the center located at 279378E and 4111468N
(UTM 35N). The exposed mylonitic foliation surface is roughly in
the center of a SM2 shear zone and dips about 10� towards SE. The
foliation is cut by numerous slip surfaces (Fig. 2c), which typically
form isolated elliptical planes between the cut-offs of the hanging
Fig. 4. Synoptic block diagram of the investigated structures. Outside the SM2 shear
zone (indicated in grey): high-grade mylonitic SM1 foliation with associated LM1

stretching lineation; K-feldspar veins (SJ1); joints (SJ2). Inside the SM2 shear zone: low-
grade mylonitic SM2 foliation with associated LM2 stretching lineation overprints
remnants of LM1 lineations; rotated SJ1 K-feldspar veins form triclinic flanking struc-
tures CE1. Rotated SJ2 joints form monolinic flanking structures CE2b; and wing cracks
CE2a are associated with CE1 as linked flanking structures. The orientation a of SJ2 with
respect to SM1 and the orientation a0 of CE2b can be used to calculate the shear strain
of the SM2 shear zone.
wall and the footwall (Fig. 2c). The mylonitic foliation can be traced
continuously from the footwall to the hanging wall around the tips
of the slip surfaces. The slip surfaces exhibit a normal-sense offset
with a large displacement gradient along the length of the slip
plane and with a maximum offset in the center of the structure. As
a result of the large displacement gradient away from the fault
plane, the foliation exhibits reverse drag, i.e. the foliation is flexed
downward in the hanging wall and upward in the footwall.
Therefore, therefore the structures can be classified as flanking
structures (Passchier, 2001; Grasemann and Stüwe, 2001). The
length L of the exposed slip surfaces varies between 2 and 27 cm
and the maximum displacement Dmax varies between 1 and 11 cm
(Fig. 2c, for themeasured displacements as a function of position on
some of the fractures see the table in the supplementarymaterials).
Fig. 5. Deformation sequence for the investigated structures. The top row shows
a cross section in the xz plane parallel to LM2. The bottom row shows a top view.
During Stage 1, SJ1 K-feldspar veins developed parallel to the mylonitic lineation LM1.
During Stage 2, a new lineation LM2 formed as a result of SSW-directed shearing. Joints
SJ2 and wing cracks developed perpendicular to the LM2. During Stage 3 all disconti-
nuities rotated during SSW-directed shearing forming triclinic (CE1) and monoclinic
(CE2b) flanking structures. Wing cracks CE2a and CE1 formed linked flanking structures.
Orientations of SJ2 before (a) and after (a0) shearing.



Fig. 6. Electron microprobe backscattered electron images of veins (a and b, sample SN1/09, 279383E, 4111484N) and cross-cutting elements of the flanking structures (c and d,
sample 207/SE1, 279423E, 4111466N). a) K-feldspar/quartz vein with crystallized muscovite layer. The host wall rocks consist of albitic plagioclase, K-feldspar, quartz, and biotite
grains. b) Detail of Fig. 6a showing statically muscovite blastesis along a joint within or at the margin of the K-feldspar vein. c) Reactivated joint with localization of deformation in
the muscovite forming top to the NNE SC’-fabrics. d) Reactivated K-feldspar/quartz vein, again showing localization of slip along muscovite layers between vein and host rock. e)
Cataclastically deforming K-feldspar/quartz vein. f) Detail of Fig. 6e. All analyses were performed on a Cameca SX-100 electron microprobe (Department of Lithospheric Research,
University of Vienna) according to the method and measurement conditions described in Tschegg and Grasemann (2009).
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The flanking structures developed by localization of deformation
on pre-existing joints or veins (e.g. Segall and Simpson, 1986;
Mancktelow and Pennacchioni, 2005), which originally had
a large angle to the foliation and rotated during SSW-directed
ductile flow into the shearing direction. During rotation the slip
surfaces recorded an antithetic shear with respect to the SSW-
directed flow (Stage 3, Fig. 5) and two-dimensional sections
through the center of the structures show a-type flanking struc-
tures (Grasemann et al., 2003). These structures are particularly
clear examples of interacting localized and distributed deformation
because their geometry is best explained as discrete slip on the
faults synchronous with distributed ductile flow in the host rocks
(Mancktelow, 2008). In detail, the slip surfaces of the flanking
structures developed on three different types of discontinuities,
which are referred to as cross-cutting elements (CE) throughout
this study:

(i) The veins and joint generation SJ1 was reactivated as cross-
cutting elements CE1 (Fig. 2e), which represent about 80% of
the flanking structures in the outcrop. The slip on CE1 is
documented by mechanical grain-size reduction and breakup
of the muscovite minerals present in the quartz and K-feld-
spar rich veins. The resulting 50 mm thick layer of fine-grained
mica flakes shows a sc-type internal fabric (Fig. 6c and d),
indicating slip accommodation. In parts of the veins, where
these muscovite layers are scarce or totally missing, the vein
filling (mainly quartz and K-feldspar rich material) was
deformed by cataclastic crushing and rotation of fragments
(Fig. 6e and f). This difference is most striking, comparing
Fig. 6d, in which the vein is still intact due to presence of
muscovite layers to Fig. 6e in which the vein is cataclastically
completely disintegrated and lacks any muscovite. This
observation suggests that the deformation within the CE of
the flanking structures occurred by frictional deformation
mechanisms while the slip surface rotated within the shear
zone and developed drag of the mylonitic foliation by ductile
flow (compare Fig. 2d). The original orientation of SJ1 is
oblique to the flow direction, thus the resolved slip on CE1
records a dip and a strike-slip component. As both the dip-slip
and the strike-slip component display a displacement
gradient (Fig. 2e), fault drag is visible in the dip direction
(visible in a drag of the foliation SM1þ2) but also in the strike
direction of CE1 (visible in a drag of LM2 within SM1þ2). The
overall flanking structure has a triclinic symmetry and
therefore the structures developed along CE1 are triclinic
flanking structures (compare Fig. 5, Stage 3).

(ii) Some of the investigated CE1 surfaces have either curved tips
(Fig. 2d and e) or younger secondary fractures CE2a at the tips
of rotated SJ1 surfaces (Fig. 2f). The shape of these secondary
fractures clearly resemble wing cracks, which are frequently
observed in uniaxial compression experiments of brittle
materials containing a pre-existing crack (e.g Mutlu and
Pollard, 2008; Wang and Mora, 2008 and references cited
therein). Wing cracks are mode I (tensile) fractures, that
nucleate at the tips of mode II or III (shear) fractures (Brace and
Bombolakis, 1963). Although fundamental mechanical differ-
ences exist between models for wing cracks and our flanking
structures, the structures have in common that a pre-existing
SJ1 is reactivated as a shearing-mode slip-surface CE1 and that
the initial CE2a forms analogously to mode I fractures in the
form of wing cracks. During ongoing SSW-directed shear, CE2a
is reactivated as a slip surface and rotates into the shear
direction (Fig. 2f). CE2a forms almost perpendicular to the flow
direction, thus the offset along the flanking structure records
a dominant dip-slip component with normal drag of the main
foliation. The complex structures, which have a triclinic
symmetry and developed along the linked cross-cutting
elements CE1 and CE2a are linked flanking structures.

(iii) At a late stage of the Late Miocene extension, SJ2 joints form
perpendicular to the LM2 lineation. These joints also perva-
sively cut the granodiorite intrusion. Some SJ2 joints were
affected by ductile shearing, and form CE2b slip surfaces with
pure dip-slip offset and associated flanking structures with
a monoclinic symmetry (Fig. 2c). The deformation along CE2b
is also brittle forming slickensides with slickenlines. The
structures developed along CE2b are monoclinic flanking
structures.
3.1. Displacementedistance measurements

The flanking structures in the outcrop have the advantage of
being extremely well exposed, a large number present in a small
area, all confined to the same lithology, and some examples that
can even be studied on two different sections (parallel and
perpendicular to the mylonitic foliation). Using a micro-ruler, the
displacement profiles were directly measured in the outcrop as
displacement D along the lineation on the slip surface and distance
X from midpoint to the center of the slip surface. Only isolated slip
surfaces associated with smooth deflection of the surrounding
mylonitic foliation that could be traced continuously from the
footwall around the lateral tips to the hanging wall were included
in the measurements (e.g. Fig. 2d). Measurement errors due to
uneven erosion of the mylonitic foliation and the slip plane are
about �1 mm (the complete dataset is listed in Table 1, supple-
mentary materials). The measured elliptical slip surface (e.g. in
Fig. 2d) does not represent the full size of the CE surface of the
flanking structure, but only the part which is exposed between the
cut-off of the exposed mylonitic foliation on the footwall and
hanging wall. Fig. 7 shows the normalized displacementedistance
plots (i.e. offset D versus position X along the trace of the slip
surface) of 12 triclinic, 8 monoclinic and 4 linked flanking struc-
tures. All position measurements, X, have the origin of the coordi-
nate system in the center of the flanking structure. The offset and
the position were normalized by the half length a ¼ L/2 of the slip
surface (L is the total strike length of the slip surface).

The majority of the measured data of monoclinic and triclinic
flanking structures record a maximum displacement in the center
of the slip surface with a symmetric decrease of the displacement
towards the tips. Few flanking structures (e.g. FF14, FF5, FF10, FF18
in Fig. 7a and b) record a slightly asymmetric slip distribution. The
linked flanking structures clearly deviate from such ideal
displacement profiles, as they record two displacement maxima in
the central segment CE1 with a local minimum between the two
maxima (Fig. 7c). We exclusively observed two maxima on linked
flanking structures, usually occurring within CE1. Obviously the two
maxima are related to the development of CE2a. On the structure
FF2 (Fig. 7c), a CE2a is only developed on one side of the CE1 surface;
accordingly, this linked flanking structure records only one
maximum.

To compare the displacementedistance plots of the triclinic and
monoclinic flanking structures, all measured profiles were plotted
in a generic plot of dimensionless displacement versus dimen-
sionless distance (Fig. 8a). Because of the more complex displace-
ment profiles, linked flanking structures are not included in this
plot. For comparison, the normalized displacement calculated from
Eq. (1) is added to the plot (dashed line, Fig. 8a). Note that the
scatter of the natural data reflects measurements errors and/or
mechanical differences between the model and the natural process
forming the flanking structures.



Fig. 7. Normalized displacement (D/a) versus normalized distance (X/a) profiles of a) triclinic CE1, b) monoclinic CE2b and c) linked flanking CE1þCE2a structures (shaded parts
indicate locations of CE2a). Dotted curve represents the elastic solution for cracks subjected to uniform loads (Eq. (1); Pollard and Segall, 1987).
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The measured field data are compared with an elastic solution
for cracks subjected to uniform loads (Pollard and Segall, 1987):

D
a

¼ 2Ds
1� v

G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2

s
(1)
where Ds is the shear stress drop, n is the Poisson’s ratio and G the
shear modulus. The displacement is greatest at the center of the slip
surface and decreases towards the tips to zero where X¼ �a. Values
for the unknown term2Ds(1�n)/G are calculated by inserting a andD
at X ¼ 0 from the measured structure into Eq. (1). The measured
displacementedistance profiles are in good agreement with the



Fig. 9. Dmax/L scaling of the studied isolated triclinic and monoclinic flanking struc-
tures (green triangle) and linked flanking structure (orange triangle). For comparison
to our data, data are plotted from published small-scale faults (dn - displacement
normal; dp - displacement-parallel). The range of Dmax/L values for the experiment
presented in Fig. 8b are plotted as a red arrow, showing the evolution of Dmax with
increasing g.

Fig. 8. a) Normalized displacement versus normalized distance profiles of triclinic CE1
(white dots) and monoclinic CE2b flanking structures (grey dots). Black dashed curve
represents the elastic solution for cracks subjected to uniform loads (Eq. (1); Pollard
and Segall, 1987). b) Evolution of normalized displacement vs. distance with g of
a synthetic monoclinic flanking structure (using the model of Exner and Dabrowski,
2010) with increasing shear strain g, from an initially circular CE oriented at 90� to
the shear plane. Note that for this initial orientation, the model predicts that the sense
of shear is reversed at g ¼ 1.3. According to the measured displacement maxima the
investigated structures indicate a g close 1.3.
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normalized elastic solutions of Eq. (1) (dotted curves in Fig. 7). The
investigated isolated triclinic and monoclinic flanking structures
formed by frictional slip but within ductile deforming host rocks and
therefore the measured field data are additionally compared with
a modified three-dimensional Eshelby solution for a viscous fluid
modeling shearingof an elliptical crack oriented perpendicular to the
flow direction (for derivations of relevant equations see Exner and
Dabrowski, 2010). Fig. 8b shows normalized displacementelength
plots of an initially circular CE subjected to simple shear, using the
model of Exner and Dabrowski (2010). The initial conditions are
chosen to correspond to the monoclinic flanking structures (CE2b)
developing from SJ2 surfaces. All progressive displacement profiles
showanelliptical shape, althoughat smallg, theprofiles aremoreflat
than those at larger g. It is important to note that after g ¼ 1.3, the
sense of shear is reversed on the CE and the displacement decreased
similarly to the previous increase, finally resulting in a contractional
offset on the CE (Exner et al., 2004). This model value indicates
approximately an upper limit to themaximum finite deformation for
the natural examples, because the natural structures do not record
a reversal of shear sense or even contractional offset.
3.2. Maximum displacement versus length of the slip surface

Empirical and fracture mechanics models of single isolated
faults predict simple powerelaw relationships between fault
length L and maximum slip distance Dmax:

Dmax ¼ cLn (2)

where c is a constant related to rock properties (Young’s modulus,
Poisson’s ratio) and driving stress and n is the power-law exponent,
which lies usually between 1 and 2 (Walsh and Watterson, 1988;
Marrett and Allmendinger, 1991; Gillespie et al., 1992; Schultz and
Fossen, 2002). Although the investigated structures developed
under very different conditions than most faults in published data-
sets, it is tempting to investigate the Dmax/L scaling of the measured
structures. The length L of the investigated flanking structures (CE1
and CE2) span only about one order of magnitude, which normally is
too small to fit with an exponent n in a logarithmic plot considering
the scatter of published data (Cowie and Scholz, 1992a). However,
since the excellent exposure of the structures allowed very accurate
measurements reducing data scatter (compare dataset listed in
Table 1, supplementary materials), we calculated a best-fit power
trendline for the flanking structures with c¼ 0.24 and n¼ 0.9, which
is nearly linear (Fig. 9). The coefficient of determination is R2 ¼ 0.9.
Comparisonwith published data of offsetmeasurements along small
scale faults (in the range of 1 cme10 m) highlights the exceptionally
large displacement gradient for our flanking structures. The host
rocks of all referenced faults (Muraoka and Kamata, 1983; Peacock,
1991; Peacock and Sanderson, 1991; McGrath, 1992; Schlische et al.,
1996) are sandstones/siltstones recording normal offset with the
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exceptionof Peacock (1991),who investigated strike-slip faults. Large
faults (>several 10 m in length) are not considered in this compar-
ison. Note that only Schlische et al. (1996) andWibberley et al. (1999)
measured displacement-normal, layereparallel profiles directly
comparable to our data. The other referenced measurements were
collected along profiles which are parallel to the displacement and
normal to the layering and therefore tend to have lowerDmax/L ratios
than displacement-normal, layereparallel profiles (Peacock, 1991).
The original data set of Peacock (1991) and Peacock and Sanderson
(1991) define the fault length as the distance between the point of
maximumdisplacementand the fault tip. To compare thesedatawith
the other measurements, the maximum displacement was plotted
versus the full length of the faults, assuming that the maximum
displacement is close to the fault center.
4. Discussion

4.1. Deformation mechanism in the CE of the flanking structures

Formation of the 100e200 mm thick SJ1 quartz/K-feldspar veins
was followed by partial reactivation that formed the flanking
structures, and then, a fluid pulse which yielded blastesis of stati-
cally growing muscovite minerals along joints. The joints formed
either parallel to the vein-host rock contacts or along the center of
the veins. Experiencing no further slip, these joints were preserved
in this state and are observed outside the shear zone (Fig. 6a and b).

An interesting exercise is to compare the shear strain due to the
flanking structures to the shear strain within the brittle fault zones.
Considering the flanking structures, the rotation of a passive
marker line deforming under simple shear is given by (Ramsay and
Huber, 1983):

cot a0 ¼ cot a� g (3)

where a is the orientation of a passive marker line before and
a0 after simple shear deformation for a shear strain g. Because an
elliptical slip-surface subjected to homogeneous shear exhibits the
same rotation and stretching as a passive material ellipse with
identical aspect ratio (Exner and Dabrowski, 2010), the orientation
of the joints SJ2 outside the shearzone (a) and the orientation of the
slip surface of the monoclinic flanking structures within the
shearzone (a0) can be used to estimate the shear strain g of the SM2
shear zone (Fig. 4). The mean dip of SJ2 is roughly vertical and the
monoclinic flanking structures have a cross-cutting element CE2,
which dips with about 30� NNE (Fig. 3). Assuming bulk simple
shear during ductile deformation of the SM2 shear zone and sub-
tracting the 10� dip of the main foliation, the calculated shear strain
is g ¼ 1.37 (a ¼ 100�, a0 ¼ 40�).

The shear strain within the fault zones themselves can be
calculated by dividing the offset of the marker foliation by the
thickness of thematerial within the CE1. The thickness of the zone of
cataclastic deformationwithin the CE1 is about 100e200 mm(Fig. 6).
Themean offset of themarker foliation of all measured structures is
about 2.5 cm (Table 1, supplementary materials), resulting in an
average shear strain of g¼ 125-250. Since this offset is a result of the
antithetic catclastic slip on the CE1 during SSW-directed ductile
deformation (i.e. shear strain accumulated within the same time
span), the strain rate within the slip surface is two orders of
magnitude greater than the ductile flow in the host rock. Similar
differences between the shear strain rateswithin theCEand thehost
rock exist inphysical andnumericalmodellingofflanking structures
(Grasemann and Stüwe, 2001; Exner et al., 2004). We suggest that
this difference in strain rateswithin the CE of theflanking structures
and in the host rock together with the different texture of the
muscovites in the CE are the main cause of synchronous cataclastic
deformation in the CE and ductile flow in the host rock.

4.2. Accumulation of displacement along the CE of the flanking
structures

Both the isolated monoclinic and triclinic flanking structures
have remarkably simple elliptical displacement profiles with
a maximum in the center of the slip surface decreasing laterally
towards the tips. The structures also record the maximum
displacement gradient at the tip of the slip surfaces (see also Gupta
and Scholz, 1998). In linear elastic fracture models, abrupt termi-
nations produce infinitely high stresses in the surroundingmaterial
around the fault tip, which is clearly unrealistic because real
materials have finite strength (Pollard and Segall, 1987). A model
more appropriate for the flanking structures is the Eshelby solution
modified for a viscous fluid (Exner and Dabrowski, 2010). In this
model, the slip surface undergoes homogeneous deformation that
stretches and rotates the slip surface while preserving elliptical
shape. Monoclinic flanking structures develop if the strike of the
slip surface is parallel to the fixed vorticity axis of the homogeneous
far field flow. The slip surface shows an elliptical displacement
profile in a section along the strike through the center of the
structure. An oblique initial orientation of the CE results in a re-
orientation of the principal axes of the elliptical slip surface
during deformation. This effect influences the amount and sense of
offset because the resolved shear vector has a component parallel
to the vorticity axis of the homogeneous far field flow that intro-
duces an additional non-plane strain deflection of markers. This
effect can be clearly seen in the flanking structures because the
central mylonitic marker planes record a deflection and the
stretching lineation is deflected within the mylonitic foliation
across the CE (compare Fig. 2d and e). It is important to note that
the analytical models of Exner and Dabrowski (2010) do not allow
for a propagation of the slip surface, only a passive rotation and
stretching. Such deformation behavior can explain the accumula-
tion of large displacement at constant fault length. Comparing the
modeling results (Fig. 8b) with the natural data, we are convinced
that this fundamental property of inhibited fault propagation
applies for the observed structures, and is moreover a general
feature of flanking structures.

4.3. Maximum displacementelength scaling of the flanking
structures

Fault maximum displacementelength relations (DmaxeL) have
been a topic of controversial discussions that have mainly focused
on the understanding of parameters controlling the scaling laws
(e.g. Walsh andWatterson, 1988; Cowie and Scholz, 1992a; Dawers
et al., 1993; Schlische et al., 1996; Clark and Cox, 1996; Scholz,
2002; Schultz et al., 2006, 2008). These relations are funda-
mental because they record the growth history of fault systems
(for a review see Kim and Sanderson, 2005). However, the rela-
tionship between L and Dmax of flanking structures is largely
unknown. On the other hand, the interpretation of the relationship
between L and Dmax is complicated by the fact that fault-growth
models indicate that the scaling relationship should depend on
rock properties, thus correlations using data sets combined from
different mechanical and rheological conditions may be ques-
tionable (Cowie and Scholz, 1992b). Additionally, each data set
typically spans only a limited range of fault sizes of about an order
of magnitude. This range is too small to fit with an exponent in
a logelog plot of Dmax versus L and requires the scatter to be much
less than a factor two or three to be fit reliably in a linear plot,
which is a requirement not commonly met by the data (Cowie and
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Scholz, 1992b). Despite of these limitations, a unit slope in the
Dmax/L diagram, which implies proportional growth (L/H ¼ const.)
has been demonstrated in several data sets (e.g. Schlische et al.,
1996 and references cited therein). However, faults may also
scale non-proportionally, for example, faults that grow by segment
linkage either horizontally or vertically (Peacock, 1991; Cartwright
et al., 1995). Laterally restricted faults tend to have greater Dmax/L
ratios than vertically restricted faults (Nicol et al., 1996; Schultz
and Fossen, 2002). In general, fractures confined to stratigraphic
layers grow non-proportionally, leading to a reduced capacity to
accommodate displacement and a shallower slope on a Dmax/L
diagram (Fossen and Hesthammer, 1997; Soliva and Benedicto,
2005; Soliva et al., 2006). Other models explaining non-linear
fault growth have been suggested for geologic structural discon-
tinuities that accommodate significant volumetric changes, such
as opening (joints, veins, dikes) or closing (compactional shear
deformation bands, compaction bands) strains across them
(Schultz et al., 2008).

Beside predictions by different mechanical models for fault
growth, several authors emphasized the problems associated with
measuringDmax/L data. Frequently themeasured discontinuities are
not fully exposed in three dimensions and it is therefore not always
clear if the displacement profiles sample the greatest displacement
(Muraoka andKamata,1983;Walsh andWatterson,1988; Cowie and
Scholz, 1992b; Gillespie et al., 1992; Kim and Sanderson, 2005).
Depending on the exposure, some studies collected data parallel to
the displacement directions, whereas others measure the
displacement gradient perpendicular to this direction. In fact,
displacement-parallel and bedding-normal profiles tend to have
greater Dmax/L ratios than displacement-normal, bedding-parallel
profiles (Peacock, 1991).

Despite the problems associated with data collection, we
compare our data with published Dmax/L data from other small
scale discontinuities (Fig. 9). Most published data for normal faults
are from unmetamorphosed sediments and therefore their
mechanical formation and rheology differ significantly from that
for the flanking structures, which formed in low-grade meta-
morphic shear zones. Only the dataset of Schlische et al. (1996)
shows visible reverse drag adjacent to the isolated slip surfaces
and shares many similarities with our structures (Fig. 9), especially
the continuous structures in the host rocks and the analogous
reverse drag of the bedding planes near the center of the structures.
In fact, these structures are comparable to a-type reverse flanking
structures (Passchier, 2001; Grasemann et al., 2003), and hence,
similar to the structures in this work.

Our Dmax/L data show an exceptionally good fit of a nearly linear
power-law trendline (n ¼ 0.9, R2 ¼ 0.9, Fig. 9). The good fit is best
explained by the excellent exposure of the structures, which
allowed very accurate measurements. The linear relationship can
be explained by two different models: (i) All structures formed at
the same time and experienced the same amount of far field shear
strain. Since the CEs cannot propagate in the viscous host rocks and
accommodate deformation by stretching, rotation and antithetic
shearing (Exner and Dabrowski, 2010), L remains constant during
deformation, accumulating displacement proportional to the size of
CE (compare path of modeled flanking structure in Fig. 9). (ii) The
CEs are of rather constant size and orientation but their positions
are arranged randomly with respect to the exposure surface. In this
case, the cut-effect means that most faults are intersected at
a distance from the median plane and only apparently have shorter
lengths and smaller displacements. Although geologically feasible,
this model can be ruled out for the investigated outcrop, because
field observations on xz-sections indicate that the size of the CEs
range over one order of magnitude and are roughly cut through
their center by the exposed xy-section.
To our knowledge, our data have greatest published Dmax/L ratio
of 0.24, which is up to one order ofmagnitude greater than themean
of all other published data. This large Dmax/L ratio can be explained
by three-dimensional mechanical models of flanking structures
developing in viscous flow, which predict stretching of the slip
surface into the shear direction (Exner and Dabrowski, 2010.). For
the models, which offset of a central marker along an initially
circular slip surface deforming by a shear strain of g ¼ 0.2 and 1.3
(Fig. 8b), the resulting Dmax/L ratio ranges between 0.075 and 0.35
(red circles in Fig. 9). The structures from Serifos (g w 1.5) fit
perfectly to the model results calculated for g ¼ 1.3. Furthermore,
the large Dmax/L ratio and the associated reverse drag of the mylo-
nitic foliation supports the conclusion of Exner and Grasemann
(2010) that discontinuities with a Dmax/L ratio greater than about
0.01 display a perceptible fault drag, whereas below that value the
displacement gradient is insufficient to develop a visible deflection
and thus fault drag is not observed.

4.4. Triclinic flanking structures

Theoretical considerations about the variability of triclinic flow
types and their likelihood in natural shear zones have been dis-
cussed by several authors (e.g., Jiang and Williams, 1998; Lin et al.,
1998; Iacopini et al., 2007). In field studies, triclinic transpression
zones were identified by the variation in strain geometry and
kinematics of differently oriented and kinematically related shear
zones or different segments of a curved shear zone (e.g. Lin and
Jiang, 2001; Sullivan and Law, 2007). Our shear zone has parallel
shear zone boundaries at the outcrop scale and even more impor-
tantly, the lineations related to thisMiocene extension on thewhole
island of Serifos are striking consistentlyNNE-SSW (Grasemann and
Petrakakis, 2007). We therefore believe that the flanking structures
developed during monoclinic SSW-directed non-coaxial flow.

Nevertheless, the flanking structures, which reactivated the pre-
existing vein and joint generation SJ1 clearly record a triclinic
symmetry because the oblique orientation of SJ1 to the flow direc-
tion resulted in dip- and a strike-slip components on CE1. Three-
dimensional analytical solutions demonstrate that shearing along
an elliptical cracks oriented oblique to the principal directions of
amonoclinicflow result in stretching and rotation of the slip surface
preserving an elliptical shape. These flanking structures produce
a triclinic symmetry, without necessarily implying triclinic back-
ground flow kinematics (Exner and Dabrowski, 2010). Furthermore,
the additional occurrence of monoclinic flanking structures in this
outcrop, which can be unequivocally attributed to a different set of
pre-existing joints, supports this assumption of amonoclinicflow in
the shear zone.

5. Conclusions

1) This study investigates discontinuities (veins and joints), which
form flanking structures by accumulating antithetic brittle slip
and rotating in a ductile shear zone into the shear direction.
Depending on the initial orientation of the discontinuity, either
triclinic, monoclinic or linked flanking structures with wing
cracks developed.

2) The structures, which developed ductile drag of foliation in the
host rocks during cataclastic deformation of K-feldspar, quartz
and muscovite within the slip surface of the flanking structure,
are examples of synchronous brittle and ductile deformation.
Brittle deformation may be triggered by strain rates within the
slip surfacewhich are two orders of magnitude greater than the
strain rates in the host rock.

3) The displacement variations along the strike length of both the
triclinic and the monoclinic flanking structures record nearly
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ideal elliptical profiles. The large displacement gradients are
accommodated by ductile flow in the host rock through reverse
drag of the foliation planes crossing the centre of the faults.

4) The maximum displacement versus fault size data of flanking
structures have, to our knowledge, the greatest published Dmax/
L ratio of 0.24, which can be explained by rotation and localized
antithetic displacement of a non-propagating slip surface
rotating in a ductile shear zone with low finite shear strain.

5) The high Dmax/L ratios support the prediction that discontinu-
ities with a Dmax/L ratio higher than about 0.01 display
a perceptible fault drag.
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