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a b s t r a c t 

This work proposes a new method of texture analysis for grey-level images based on the distribution of 

connectivity indexes in local neighbourhoods. The connectivity index acts as a measure of homogeneity of 

textures and its distribution is computed at various local neighbourhood sizes. The resulting descriptors 

provide an efficient multiscale representation of connectivity at different scales. The method was tested 

in the classification of UIUC, Outex, and KTH-TIPS2b databases and outperformed several state-of-the-art 

approaches, including such as LBP, LBP+VAR, MR8, multifractals among others. 
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. Introduction 

The analysis of texture images has played a fundamental role

n computer vision and pattern recognition during the last decades

nd the importance of this area of study is illustrated by the num-

er of applications appearing in diverse areas such as Engineering

12] , Medicine [1] and Physics [6] . 

Over the years, several approaches have been proposed to find

ethods capable of representing complex digital images using a

educed number of numerical features (or descriptors) that are rel-

vant and non-redundant. Ideally, those features could be also use-

ul for the analysis of objects and scenes in similar types of images.

Since the work of Haralick [8] , considerable effort has been

edicated to find strategies that quantify how image pixels are dis-

ributed within local regions or neighbourhoods. Examples are the

heory of textons [17] , local patterns [14] , local affine regions [11] ,

nvariants of scattering transforms [15] , Fast Features Invariant to

otation and Scale of Texture [16] and others [3] . Many of these

ffort s consider fixed sized neighbourhoods to extract basic pa-

ameters such as moments [8] and histograms [14,17] . Even though

hose approaches have demonstrated efficiency in both theory and

ractice, there might exist further methods which are more robust
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nd efficient in the increasingly challenging problems encountered

hen analysing digital images. 

This work proposes using texture descriptors that combine the

ocal features of pixel neighbourhoods with a multiscale analysis.

he local arrangement of pixels is quantified by means of a con-

ectivity index, similar to that proposed in [5] and which repre-

ents the number of connected pixels (in Graph Theory sense) to

he central pixel of a neighbourhood. The degree of pixel cluster-

ng is estimated in a representation of the image where pixels are

oints in a quasi-three-dimensional space where x and y are the

mage coordinates and z is the pixel intensity function. The local

easure is multiscale since it is computed over neighbourhoods

local windows) of various sizes. Finally, the descriptors are pro-

ided by the cumulative distribution of the connectivity index, as

omputed in [5] , on the entire image and for the different neigh-

ourhood sizes (radii). 

Our proposed method has some particularities that distinguish

t from previous textural analyses in the literature. First, unlike

he method in [11] that focuses on particular affine regions, our

ethod considers all pixels to have the same importance. Sec-

nd, image invariants are not explicitly handled as in [11,15,16] , al-

hough the symmetry of the connectivity index together with the

ultiscale approach used allows the quantification of such invari-

nts and simplify the analysis where such invariants are not rele-

ant, for example, if there is no significant variation or when ob-

ects at different scales or rotated should actually be considered

s different instances. A third difference to other methods such

s those in [8,14,17] is that despite the importance of pixel-level

escriptions, our approach does not use directly the grey values
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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of the pixels or basic relations between neighbour pixels. Instead,

a complex relation within the local neighbourhood is considered.

This strategy takes into account how pixels are connected in the

entire neighbourhood and this is based on real-valued distances

instead of binary values at a particular distance. 

The proposed method was assessed using the supervised clas-

sification of texture databases (a well-known benchmark problem

of texture analysis). Three data sets commonly used in the litera-

ture were employed for this purpose, namely, UIUC [9] , Outex [13] ,

and KTH-TIPS2b [2] . To evaluate the classification performance, the

proposed descriptors were also compared to other state-of-the-art

and classical texture descriptors: Grey-Level Co-occurrence Matrix

(GLCM) [8] , Fourier [7] , multifractals [19] , Local Binary Patterns

(LBP) [14] , LBP+VAR [14] , and MR8 [17] . 

The following section introduces the local connectivity index

and other details of the proposed method. Section three discusses

how the method relates to the concept of connectivity. Section four

describes the validation experiments (databases and other com-

pared descriptors), while section five shows and discusses the re-

sults obtained. Finally, section six briefly summarises the conclu-

sions of the work. 

2. Local connectivity index 

The concept of local connectivity in image textures was first

presented in [5] as a measure of local regularity in the context

of a multifractal analysis. In simple terms, it is a generalisation to

the three-dimensional Euclidean space of the local connected frac-

tal dimension of binary images previously reported in [10,18] . 

In [10] a connectivity measurement is associated to each pixel

p of the object (foreground) by counting the number of foreground

pixels connected to p within a neighbourhood with radius r . The

pixel p is “connected” to pixel q � = p means that there exists a set

P of pixels satisfying {
p ∈ P and q ∈ P 

∀ (p 1 , p 2 ) ∈ P : p 1 / − p 2 
(1) 

where p 1 / − p 2 means that p 1 and p 2 are adjacent pixels (4 and 8-

adjacency are classically utilised in binary images). 

The ability of the connected fractal dimension to differenti-

ate between images of normal and abnormal retinal vessels in

[10] suggests that concept of connectivity might also be useful in

other applications where the local regularity of the binary image

needs to be assessed. Furthermore, the computation of the local

descriptors for every position in the image also provides a com-

plete and point-wise representation of the image data. 

To extend the notion of connectivity to grey-level images, a

strategy was proposed in [5] based on a pseudo-three-dimensional

representation of grey-level images. Each pixel with coordinates

( x , y ) in the image I is mapped onto a point in quasi- three-

dimensional Euclidean space E 3 with coordinates ( x , y , I ( x , y )). 

Even though a similar definition of adjacency can be used in

three-dimensional spaces (26-adjacency, for instance), this is not

directly applicable to sparse sets of points such as those in the

grey-level mapping. Therefore, a new definition for adjacency was

established in [5] based on Euclidean distances between points:

two points p with coordinates ( x 1 , y 1 , z 1 ) and q with coordinates

( x 2 , y 2 , z 2 ), both in E 3 , are considered adjacent if they are at a dis-

tance smaller than a pre-defined threshold t : 

p / − q ⇔ 

√ 

(x 1 − x 2 ) 2 + (y 1 − y 2 ) 2 + (z 1 − z 2 ) 2 ≤ t. (2) 

The next step is to define the connectivity around a reference

pixel p in the image. While in [5] a cube centred at p was used,

here we use a ball or sphere to preserve the geometrical symmetry
 t
n the local neighbourhood. In this way, a ball B ( p , r ) centred at p

ith coordinates ( x p , y p , z p ) with radius r is defined via 

 (p, r) = { (x, y, z) : 
 

(x − x p ) 2 + (y − y p ) 2 + (z − z p ) 2 ≤ r} . (3)

The connectivity index can then be informally defined as the

umber of points inside B ( p , r ) and connected to p . The connected

et therefore corresponds to the set of points within B , and includ-

ng p , such that each point q a has at least one other point q b at

 distance smaller than t . It is important to point out hat pixels

onnected to p but not belonging to B ( p , r ) (at a distance from p

arger than r ) are not counted in the composition of the connected

et. The connectivity index C ( p , r , t ) can be summarised as 

(p, r, t) = # {{ p} ∪ { q a : q a ∈ B (p, r) and 

 q b ∈ B (p, r) and D (q a , q b ) < t}} , (4)

here D is the Euclidean distance, ∪ represents the classical no-

ation for set union or, equivalently in this case, concatenation

nd # symbolizes the cardinality (number of elements) of the

et. 

A flowchart in Fig. 1 shows the basic procedure to compute the

onnectivity of a particular pixel p 0 in the image. More details and

 pseudo-code is provided in [5] for the interested reader. 

. Proposed method 

From its definition, the connectivity index presented earlier can

e computed locally, relative to each pixel in the image. Thus, this

orresponds to a transform of the original image where each pixel

s converted into an integer non-negative value representing the

ocal connectivity. Same as in numerous other transforms (Fourier,

avelets, etc.) these mappings constitute powerful tools to provide

 new viewpoint on the image and therefore might be useful to

escribe various patterns that cannot be discriminated in the orig-

nal space representation. 

Fig. 2 illustrates the local connectivity for four images from the

IUC database [9] , belonging to two different classes. Two major

eatures can be noted in this representation. Firstly, the transform

onveys information which is different from that represented by

he grey levels while still preserves some prominent characteristics

for instance, the cracked edge in the left figure). Secondly, images

rom diverse classes lead to dissimilar patterns in the connectivity

mage version. 

Another interesting property of the connectivity measure is rep-

esented in Fig. 2 where the connectivity indexes were computed

or different radii r (3, 4 and 5 pixels) and shown as a colour map:

part from the increased magnitude of the indexes (which is ex-

ected, provided that larger neighbourhoods contain more points)

ifferent patterns emerge in the distribution of the connectivity in-

exes at different radii. This suggests the multiscale nature of the

onnectivity, making it potentially useful to describe complex im-

ges. In particular, the ability to distinguish the classes presented

n Fig. 2 is boosted by considering the image transform results at

ifferent radii. 

The distinction of classes appears more evident in Fig. 3 re-

ulting from different distributions across classes at different sized

eighbourhoods. Such example illustrates that whereas the con-

ectivity index shows its importance in a multifractal context in

5] , it also could be a useful local descriptor on its own. While the

erformance of the connectivity is illustrated here on a small sub-

et of images from UIUC database, the Results section presents a

ore robust experiment over the whole database, confirming the

ower of our approach. 

Based on these observations, we propose a method for com-

uting descriptors based on the combination of local connectivity

ransform histograms for various radii r and thresholds t . 
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Fig. 1. Flowchart used to compute the connectivity of a pixel in the image. 

Fig. 2. Connectivity indexes in a colour map (normalised between 0 and 1) with different values of radius (from top to bottom, r = 3 , r = 4 and r = 5 ) for four UIUC images, 

from two distinct classes. 

Fig. 3. Histograms distinguishing images in Fig. 2 for different values of radius ( r = 3 , r = 4 and r = 5 ). T11, T12, T21 and T22 are the respective texture images in Fig. 2 . 
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Fig. 4. A flowchart of the proposed method. 
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While radii between 1 and r max pixels are considered, the pos-

sible values of r are those that correspond to the underlying dis-

crete Euclidean distances, expressed by the set R in the following

expression: 

R = { r ∈ N : ∃ (x, y, z) ∈ Z 

3 satisfying √ 

x 2 + y 2 + z 2 = r} . (5)

Let us assume that C (r, t) is the increasingly ordered set of

unique values of C ( p , r , t ) computed for any p ∈ I . For each ra-

dius r ∈ R the cumulative histogram h t r is defined for each counter

index k ∈ C by 

h t r (k ) = 

∑ 

p∈ I,k ′ ≤k 

δ(C(p, r, t) − k ′ ) , (6)

where δ( x ) stands for the Dirac delta function (one at x = 0 and

zero everywhere else). 

Next, the sets of features in h t r for all radii are concatenated into

a feature vector H 

t : 

H 

t = 

⋃ 

r∈ R 

h t r . (7)

Finally, the proposed descriptors D 

t for image I are obtained

from the cumulative sum of H 

t followed by a logarithm operation:

D 

t (u ) = log 
∑ 

u 

H 

t ≤ u . (8)

There are two reasons to use the cumulative sum instead of an

L 2 -histogram: first, it ensures more regular features because the
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Fig. 5. Steps involved in the proposed method. From left to right, the original image, the

cumulative sum and Karhunen–Loève transform. 
um provides a monotonically increasing function; second, its val-

es increase according to the variation in the original data (his-

ogram). These two characteristics are important in the distance-

ased classifiers used here because the dissimilarity metric is more

ensitive to the accumulated variation. The logarithm can be justi-

ed in a similar way: the connectivity index scales exponentially

s described in [5] and the logarithm attenuates the wide range

f scales in the feature space. Note that more than one value of

 could be used. After the descriptors are computed, the result-

ng features are concatenated, and to reduce the dimensionality a

arge number of features, a Karhunen–Loève transform is applied

o preserve only the most relevant and uncorrelated descriptors.

ig. 4 summarizes the steps involved in the method in a flowchart,

hile Fig. 5 illustrates each step with a visual example. 

. Experiments 

The proposed descriptors were assessed in the classification of

hree established databases of texture images, namely, UIUC [9] ,

utex [13] , and KTH-TIPS2b [2] . UIUC is composed of 10 0 0 grey-

evel texture images with dimension 256 × 256 equally divided

nto 40 groups, containing photographs taken under uncontrolled

onditions and with relevant variation in scale and viewpoint. The

ersion of Outex database used here is the suite Outex_TC_0 0 013

n [13] and contains 1360 colour images (here converted to a grey-

cale) captured under controlled conditions of illumination and

maging geometry. The samples are divided into 68 groups (20 im-

ges with dimension 128 × 128 in each one). Finally, KTH-TIPS2b is

 set of material images, collected under varied conditions of illu-

ination, scale and pose, comprising 11 materials (classes), each

ne with 4 samples and each sample with 108 cropped images

ith dimension of 200 × 200 pixels. 

The connectivity features were compared to other state-of-the-

rt and classical approaches for texture classification in the litera-

ure, i.e. Grey-Level Co-occurrence Matrix (GLCM) [8] , Fourier [7] ,

ultifractals [19] , Local Binary Patterns (LBP) [14] , LBP + VAR [14] ,

nd MR8 [17] . 

The classification of the databases according to the compared

escriptors was carried out using a linear discriminant classifier

LDA) [4] after a principal component analysis (PCA) [4] to re-

uce the correlation among features in all compared approaches.

uch approach for the classification prevents redundant informa-

ion from being considered in the segmentation of the feature
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Fig. 6. Percentage of UIUC images correctly classified when the value of t is varied 

between 2 and 10. 

Table 1 

Best success rates for the compared descriptors. 

Method UIUC Outex KTH-TIPS2b 

Fourier 64 .00 ± 0.03 82 .21 ± 0.02 72 .50 ± 0.01 

GLCM 58 .70 ± 0.03 68 .23 ± 0.05 65 .05 ± 0.01 

Multifractals 82 .40 ± 0.03 75 .07 ± 0.03 69 .95 ± 0.01 

LBP 77 .40 ± 0.05 74 .63 ± 0.02 70 .16 ± 0.01 

LBP + VAR 83 .90 ± 0.02 76 .03 ± 0.04 70 .73 ± 0.02 

MR8 84 .70 ± 0.02 71 .54 ± 0.04 73 .63 ± 0.02 

Proposed 88 .60 ± 0.03 84 .26 ± 0.03 83 .54 ± 0.01 
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pace. The simultaneous dimensionality reduction and decorrela-

ion is achieved by a combination of PCA with the canonical anal-

sis of LDA, which takes into account the distribution of features

mong the classes in the training set. These characteristics make

he adopted classifier more appropriate for the proposed descrip-

ors, which are naturally highly correlated as a consequence of the

terative process they follow (descriptors from neighbourhoods of

arger radii enclose part of the information expressed by those of

maller radii). A maximum of 100 PCA scores were used in the

DA classification. Considering that we were working on databases

here the classes are known in advance, the classification was

onsidered to be supervised. A division into training and testing

ets following a 10-fold scheme was applied for cross-validation. 

The parameter r max was set to 5 in all tests based on the obser-

ation in [5] that larger radii severely increase the computational

ost and number of descriptors without a significant gain in the

lassification performance. On the other hand, the values for the

arameter t were empirically obtained from a training set of im-

ges. Fig. 6 illustrates the variation in the rate of images correctly

lassified in UIUC database when t ranges between 2 and 10. In the

nd, t = 10 was used for UIUC, a combination of t = 2 , 3, 4, 5, and

 constituted the optimal parameters for Outex, and a combination

f t = 5 , 6, 8, and 9 was used to classify KTH-TIPS2b materials. As

entioned earlier, all the connectivity indexes were concatenated

efore the application of PCA to reduce dimensionality. 

. Results 

Table 1 lists the rates of correct classification (i.e. the ratio of

mages correctly classified) for each database and each descrip-

or in comparison with the proposed method. The table suggests

hat classifying the Outex and KTH-TIPS2b databases was some-
hat more challenging than the UIUC images, as illustrated by the

maller correctness rates and higher cross-validation errors. This

ehaviour is expected because of the nature of each database, be-

ause the high number of classes in Outex and samples in KTH-

IPS2b data set. Such complexity is the rationale, for example, for

he need of including more than one value of t to generate the fea-

ure vector. In all cases, the connectivity descriptors outperformed

ll the other approaches by at least 5% (UIUC), 2% (Outex), and 13%

KTH-TIPS2b) in relative percentages. In KTH-TIPS2b the classifica-

ion performance was also better than that reported in [16] (76%)

sing a similar database and protocol. 

Beyond the correctness rate, a more complete and precise met-

ic to assess the performance of supervised classification is the

onfusion matrix. This expresses the correctness in each class as

ell as the number of samples misclassified, including which pairs

f classes A / B introduced confusion (e.g. samples from class A but

ssigned to B by the classifier and vice-versa). Fig. 7 shows the

onfusion map for UIUC, Outex, and KTH-TIPS2b, when classified

y the best two methods in Table 1 . The colour bars represent the

umber of images assigned to each particular class. Although visu-

lly the differences may not appear evident, the advantage of the

onnected descriptors is expressed in the colour map by a diagonal

ith higher values (i.e. more red points). Less confusion is also ob-

erved in the most critical regions of the map, for instance, in the

ast 10 classes (right end of the plot) of the Outex dataset or in the

ack of yellow squares for the connected descriptors in KTH-TIPS2b.

n practice, the information enclosed by this type of representation

an be used to identify classes of materials with high potential of

eing misclassified. For example, in KTH-TIPS2b, classes 9 and 8

re confused to a significant extent by MR8 but not by the pro-

osed descriptors. The corresponding materials (white bread and

inen) are examples of textures that are more appropriately han-

led by a multiscale approach as that employed by the connected

escriptors. 

The results confirm the efficiency of the connectivity descrip-

ors as a means of expressing the richness and complexity encom-

assed by the pixel values of a grey-level image in a reduced and

ore easily manageable set of numerical values. The classification

erformance can be justified by the ability of the connectivity in-

ex to quantify certain pixel relations within a local neighbour-

ood. Varying the size of the neighbourhoods makes the analysis

ultiscale and this helps describe the heterogeneity of the texture.

his is important information for both natural and artificial vision

ystems. 

. Conclusions 

This work presented a new method, named connectivity de-

criptors, to extract features from texture grey-scale images. The

pproach is based on the computation of a connectivity index

ithin a local image neighbourhood. This corresponds to the num-

er of pixels more closely related to the central pixel in the neigh-

ourhood. The method performance was compared to other meth-

ds in the literature and tested on three well established texture

atabases. 

The connectivity descriptors provided the best classification

ates among the comparison of methods for both database tests.

uch promising results can be supported by the ability of connec-

ivity indexes in quantifying the relationships among pixels within

 local region of the image. This, added to the multiscale nature of

he method, makes the features sufficiently robust and precise to

istinguish between images of different textures even in the com-

lex scenarios of the datasets investigated. 

Finally, given the generic nature of the UIUC, Outex, and KTH-

IPS2b databases, the results suggest that the connectivity descrip-

ors might be suitable for a number of real-world applications in
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Fig. 7. Confusion matrices for the best two methods in Table 1 on UIUC, Outex, and KTH-TIPS2b. The scale bar represents the number of images pertaining to an expected 

class and assigned by the classifier to a predicted class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

problems involving the recognition and quantification of patterns

in digital images. 

Acknowledgements 

J. B. Florindo gratefully acknowledges the financial support

of FAPESP (The State of São Paulo Research Foundation) Grant

# 2012/19143-3 and # 2013/22205-3 . G. Landini acknowledges sup-

port by the Engineering and Physical Sciences Research Council

( EPSRC ), UK, through funding under grant EP/M023869/1 Novel

context-based segmentation algorithms for intelligent microscopy.

O. M. Bruno gratefully acknowledges the financial support of CNPq

(National Council for Scientific and Technological Development,

Brazil) (Grant # 307797/2014-7 and Grant # 484312/2013-8 ) and

FAPESP (Grant # 11/01523-1 ). 

References 

[1] C. Arteta , V. Lempitsky , J.A . Noble , A . Zisserman , Detecting overlapping in-

stances in microscopy images using extremal region trees, Med. Image Anal.
27 (2016) 3–16 . 

[2] B. Caputo , E. Hayman , P. Mallikarjuna , Class-specific material categorisation.,
in: ICCV, IEEE Computer Society, 2005, pp. 1597–1604 . 

[3] M. Cimpoi , S. Maji , A. Vedaldi , Deep filter banks for texture recognition and

segmentation, in: Proceedings of the IEEE Conf. on Computer Vision and Pat-
tern Recognition (CVPR), 2015 . 

[4] R.O. Duda , P.E. Hart , Pattern Classification and Scene Analysis, Wiley, New York,
1973 . 

[5] J.B. Florindo , G. Landini , O.M. Bruno , Texture descriptors by a fractal analysis of
three-dimensional local coarseness, Digital Signal Process. 42 (2015) 70– 79 . 
[6] Y. Gao , M.E. Helgeson , Texture analysis microscopy: quantifying structure in

low-fidelity images of dense fluids, Opt. Express 22 (2014) 10046–10063 . 
[7] R.C. Gonzalez , R.E. Woods , Digital Image Processing, (2nd ed), Prentice Hall,

Upper Saddle River, N.J., 2002 . 
[8] R.M. Haralick , Statistical and structural approaches to texture, Proc. IEEE 67

(1979) 786–804 . 

[9] K. Kilic , R. Abiyev , Exploiting the synergy between fractal dimension and lacu-
narity for improved texture recognition, Signal Process. 91 (2011) 2332–2344 . 

[10] G. Landini , P.I. Murray , G.P. Misson , Local connected fractal dimensions and la-
cunarity analyses of 60 degrees fluorescein angiograms., Invest. Ophthalmol.

Visual Sci. 36 (1995) 2749 . 
[11] S. Lazebnik , C. Schmid , J. Ponce , A sparse texture representation using local

affine regions, IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005) 1265–1278 . 
[12] Y.T. Luo , L.Y. Zhao , B. Zhang , W. Jia , F. Xue , J.T. Lu , Y.H. Zhu , B.Q. Xu , Local

line directional pattern for palmprint recognition, Pattern Recognit. 50 (2016)

26–44 . 
[13] T. Ojala , T. Mäenpää, M. Pietikäinen , J. Viertola , J. Kyllönen , S. Huovinen , Outex

- new framework for empirical evaluation of texture analysis algorithms, in:
ICPR, 2002a, pp. 701–706 . 

[14] T. Ojala , M. Pietikäinen , T. Mäenpää, Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns, IEEE Trans. Pattern

Anal. Mach. Intell. 24 (2002b) 971–987 . 

[15] L. Sifre , S. Mallat , Rotation, scaling and deformation invariant scattering for
texture discrimination., in: CVPR, IEEE Computer Society, 2013, pp. 1233–1240 .

[16] M. Sulc , J. Matas , Fast Features Invariant to Rotation and Scale of Texture,
Springer International Publishing, Cham, 2015, pp. 47–62 . 

[17] M. Varma , A. Zisserman , A statistical approach to texture classification from
single images, Int. J. Comput. Vision 62 (2005) 61–81 . 

[18] R.F. Voss , J.C. Wyatt , Multifractals and the local connected fractal dimension,

in: A. Crilly, R. Earnshaw, H. Jones (Eds.), Applications of Fractals and Chaos,
Springer Berlin Heidelberg, 1993, pp. 171–192 . 

[19] Y. Xu , H. Ji , C. Fermüller , Viewpoint invariant texture description using fractal
analysis, Int. J. Comput. Vision 83 (2009) 85–100 . 

http://dx.doi.org/10.13039/501100001807
http://dx.doi.org/10.13039/501100000266
http://dx.doi.org/10.13039/501100003593
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0001
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0001
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0001
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0001
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0001
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0002
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0002
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0002
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0002
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0003
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0003
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0003
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0003
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0004
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0004
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0004
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0005
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0005
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0005
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0005
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0006
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0006
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0006
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0007
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0007
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0007
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0008
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0008
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0009
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0009
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0009
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0010
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0010
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0010
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0010
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0011
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0011
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0011
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0011
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0012
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0013
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0014
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0014
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0014
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0014
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0015
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0015
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0015
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0016
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0016
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0016
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0017
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0017
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0017
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0018
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0018
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0018
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0019
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0019
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0019
http://refhub.elsevier.com/S0167-8655(16)30246-X/sbref0019

	Three-dimensional connectivity index for texture recognition
	1 Introduction
	2 Local connectivity index
	3 Proposed method
	4 Experiments
	5 Results
	6 Conclusions
	 Acknowledgements
	 References


