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studies on a model system 
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Kinetic studies on the peroxidase activity of microperoxidase-8 at pH 5.5-8.5 show that the rate is increased 
by raising the pH or by the presence of guanidinium ion. Comparison with published data on the peroxi- 
dases provides evidence that the enzyme activates H202 through the cooperative binding of H+ + HO; and 

suggests a role for the invariant distal Arg. 

Peroxidase Proton-coupled reaction Arginine 

1. INTRODUCTION 

Most peroxidases [l] and apparently all 
myoglobins (Mbs) [2] are monomeric haemopro- 
teins with the same haem and the same proximal 
(His) ligand, yet Hz02 reacts far more rapidly with 
Fe”’ in the peroxidases [3]; they provide the classic 
example amongst metallo-proteins of the ability of 
the protein to control function. The recent X-ray 
structural determination of yeast cytochrome c 
peroxidase identified the distal residues as His, Arg 
(both invariant in all peroxidases studied) and Trp 
(variable) [4,5] in contrast to, for example, His and 
Val in vertebrate Hbs and Mbs [2]; attention is 
therefore focussed on the role of the guanidinium 
side-chain of Arg. 

To establish the role of the protein one must 
compare the properties of the co-factor with and 
without the protein. We have therefore studied the 
peroxidase activity of the haem-octapeptide 
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Abbreviations: Gc, guiacol; GuaH+, guanidinium ion; 
MP-8, microperoxidase-8 

Microperoxidase-8 Hydrogen peroxide Guanidinium 

(HSPT) or microperoxidase-8 (MP-8), using the 
assay based on Gc [6]. MP-8 is derived from 
cytochrome c and retains residues 14-21 with His 
18 coordinated to the Fe [7]; it also retains the two 
thioether links to the haem present in the parent 
cytochrome, but studies with reconstituted perox- 
idases show that varying the side-chain at positions 
2 and 4 has little effect on activity [8]. We sum- 
marise here our results on (i) the pH dependence of 
kr (the Gc-independent rate of reaction of Hz02 
with Fe”’ 161) at pH < 9, where MP-8 is present as 
the aquo complex (the pK for formation of the 
hydroxo complex has been reported as 9.9 [7]), and 
(ii) the additional effect of GuaH+. For earlier 
work on the peroxidase activity of MP-8 see [9, lo]. 

2. MATERIALS AND METHODS 

MP-8 (Sigma) was purified by a method based 
on that of [lo] and concentrations determined by 
the pyridine haemochromogen method 1111. Gc 
(Riedel-de-Haen) was purified by distillation and 
stored under Nz in the dark. GuaH+Cl- (Sigma) 
and Hz02 (Saarchem) were used without further 
purification. The concentration of the latter was 
determined spectrophotometrically Wing 6240 = 

39.4 M-‘-cm-’ [12]. Phosphate buffers were 
prepared according to [ 131. UV-visible spectra 
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were recorded with a Cary 2300 spectrophotometer 
in 1 cm cells at 25 f 0.2”C. 

3. RESULTS 

If solutions containing -8 x lo-’ M MP-8 and 
3 x 10e3 M Gc at pH 6 or 7 are allowed to stand 
for -2 h before adding Hz02 (1.4 x 10e4 M), then 
the plot of A470 vs time is linear before eventually 
slowing down (due to depletion of H202). If, 
however, the reaction is initiated by injecting a 
small volume of stock (-4 x 10m5 M) MP-8 into 
the solution of Hz02 and Gc, then the linear por- 
tion is preceded by a period of increasing rate, 
which we ascribe to the relatively slow formation 
of monomeric MP-8 from less active aggregated 
forms present in the more concentrated stock solu- 
tion. This induction period was observed at pH 5 
7, both in the presence and absence of GuaH+ (see 
below), its duration increasing as the pH was 
lowered. For convenience subsequent reactions 
were initiated by injecting a stock solution of MP-8 
and the catalytic activity determined from the 
linear portion of the kinetic trace. Varying the Gc 
concentration showed that the rate was virtually 
constant over a wide range (-2 x low4 to 6 x 
low3 M Gc at pH 6, 7 and 8) and linearly depen- 
dent on the concentration of both MP-8 and H202, 
i.e., the observed rate corresponds to kl. 

Fig.1 shows the effects of increasing concentra- 

Fig.1. Effect of increasing concentration of (a) 
GuaH+Cl-, (b) EtNH:, (c) KU, and (d) KzHP04 on the 

rate of reaction (/cl) of Hz02 with MP-8 at pH 7. 

tions of phosphate, KCl, EtNHfCI- and 
GuaH+Cl- on ki at pH 7. Other substances tested 
include imidazole, which inhibits the reaction due 
to formation of the 6-coordinate imidazole adduct 
(A,,, 404 nm), and urea and acetamide (no ef- 
fects). The addition of 0.5 M GuaHCl or KC1 
caused the same slight fall in the Soret band, when 
studied with a low (4 x lo-’ M) concentration of 
MP-8 in a 10 cm cell, i.e., the effect of GuaHCl 
does not appear to involve coordination to Fe. 

The pH dependence of log ki in the absence of 
GuaHCl is shown in fig.2a; if one assumes that the 
hydroxo complex is catalytically inert and formed 
with pK I 9.4, then the data of curve a can be cor- 
rected to give an excellent linear plot (curve b) with 
a slope of 1.0 and log kl = 6.3 x lo2 M-i.s-’ at 
pH 6.0. The analogous data in the presence of 
0.5 M GuaHCl are shown in fig.2c; in this case, 
however, the best correction (using pK I 8.4) only 
gave a plot (curve d) with a slope of 1.3. 
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Fig.2. Effect of pH on log kr for the reaction of Hz02 
with MP-8. (a) p = 0.1 phosphate buffer; (b) after 
correcting (a) for pKa (FeOH2) 5 9.4; (c) (a) plus 0.5 M 
GuaH+Cl-; (d) after correcting (c) for pKa (FeOH2) 5 

8.4. 

310 



Volume 183, number 2 FEBS LETTERS April 1985 

4. DISCUSSION 

Our results establish two points. (A) The pH 
dependence of fig.2a,b, together with the pK 
values for ionisation of Hz02 (11.7 [14]) and for 
formation of the hydroxo complex (9.4-9.9), in- 
dicate that the rate-determining step involves reac- 
tion of the aquo complex with HO;. (B) Fig.1 
shows that GuaH+ (representing the side-chain of 
Arg) has an accelerating effect not shown by 
EtNH3+ (cf. Lys), while the pH dependence 
(fig.2c,d) shows that GuaH+ must interact with 
HO;; this can probably be ascribed to an ability to 
bind HO? by two H-bonds (each from one NH of 
GuaH+ to one 0 of HO?), as observed in the 
crystalline adduct of urea with Hz02 [15]. The ef- 
fect of uncoordinated imidazole could, unfor- 
tunately, not be tested. 

Point A completes the evidence required to 
demonstrate that the Fe”’ ion in MP-8 behaves 
‘normally’ towards species with a single negative 
charge (e.g., reaction with HO:, coordination of 
NT [16], uptake of an electron [7]), while the Fe”’ 
ion in the peroxidases shows the same abnormality 
(viz. simultaneous uptake of H+ or equivalent loss 
of HO-) with all 3 species [3]. The positive correla- 
tion between the ability of horseradish peroxidase 
to activate Hz02 and the need to bind H+ with F- 
[ 171 provides evidence for a common denominator 
in all these abnormalities. Extrapolation of curve b 
in fig.2 gives a value of log k = 8.4 for reaction of 
MP-8 with the fully formed HO; (assuming pK 
11.7 [ 14]), which is close to the value of log k = 8.1 
reported [18] for the reaction of cytochrome c 
peroxidase with H202; this provides evidence for a 
common denominator in the reactions of MP-8 
and peroxidase after allowance is made for the ab- 
normal proton uptake by the peroxidases. The 
primary role of the protein is, therefore, to convert 
the simple reaction with HO;, as observed with 
MP-8, into a proton-coupled reaction; this enables 
the enzyme to bind Hz02 as H+ and the required 
HOT in a pH-independent equilibrium [3]. We 
have provided protein-free models for the proton- 
coupled reduction of haemoproteins [19,20] and 
have suggested Arg as the site of proton uptake in 
the enzymes [19], but the recently demonstrated 
conformational flexibility of the Arg side-chain 
[21] obviously complicates attempts to identify the 
site of proton uptake; the flexible Arg may, for ex- 

ample, act as mediator for the overall transfer of 
H+ from Hz02 to one of the suitably placed [21] 
and apparently essential [8] carboxylate side- 
chains of the haem. Point B also demonstrates a 
role for Arg unrelated to the mechanism of proton 
uptake and suggests a reason for the invariant 
distal Arg in the peroxidases; the formation of the 
analogue of GuaH+HO; could increase the local 
concentration of HO; required for coordination to 
Fe”’ in the first step and/or facilitate the transfer 
of H+ to the uncoordinated 0 atom (to give Fe03+ 
and H20) in the second step of the reaction. 

The peroxidases provide the first family of 
metallo-enzymes where we can follow changes in 
catalytic activity at the 3 separate stages of co- 
factor alone, co-factor + accessories (viz. 
Arg/GuaH+), and holoenzyme. Full experimental 
details and further discussion will be published 
elsewhere. 
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