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a b s t r a c t

Stem cell regulation by local signals is intensely studied, but less is known about the effects of hormonal
signals on stem cells. In Drosophila, the primary steroid twenty-hydroxyecdysone (20E) regulates ovarian
germline stem cells (GSCs) but was considered dispensable for testis GSC maintenance. Male GSCs reside
in a microenvironment (niche) generated by somatic hub cells and adjacent cyst stem cells (CySCs). Here,
we show that depletion of 20E from adult males by overexpressing a dominant negative form of the
Ecdysone receptor (EcR) or its heterodimeric partner ultraspiracle (usp) causes GSC and CySC loss that is
rescued by 20E feeding, uncovering a requirement for 20E in stem cell maintenance. EcR and USP are
expressed, activated and autonomously required in the CySC lineage to promote CySC maintenance, as
are downstream genes ftz-f1 and E75. In contrast, GSCs non-autonomously require ecdysone signaling.
Global inactivation of EcR increases cell death in the testis that is rescued by expression of EcR-B2 in the
CySC lineage, indicating that ecdysone signaling supports stem cell viability primarily through a specific
receptor isoform. Finally, EcR genetically interacts with the NURF chromatin-remodeling complex, which
we previously showed maintains CySCs. Thus, although 20E levels are lower in males than females,
ecdysone signaling acts through distinct cell types and effectors to ensure both ovarian and testis stem
cell maintenance.

& 2014 Elsevier Inc. All rights reserved.

Introduction

Adult stem cells, which are essential for the maintenance of
many tissues, reside in niches, or local microenvironments, where
distinct signals prevent their differentiation (or promote their
maintenance) (de Cuevas and Matunis, 2011; Li and Xie, 2005).
Stem cells can respond to both local and systemic signals including
nutrition and hormones, which convey information about the
organism's environment to the tissues and coordinate responses
to physiological change (Drummond-Barbosa, 2008; Drummond-
Barbosa and Spradling, 2001; Gancz and Gilboa, 2013; Hsu et al.,
2008; Ito et al., 2004; Li and Xie, 2005; McLeod et al., 2010). Some of
the best-characterized niches are found in the Drosophila gonads,
where germline stem cells (GSCs) and supporting somatic stem
cells remain active throughout adulthood, ensuring a lifetime
supply of sperm or eggs (Spradling et al., 2011). However, the role
of hormonal signaling in stem cell maintenance is not fully under-
stood, especially in the Drosophila testis (Gancz and Gilboa, 2013).

In Drosophila, the steroid hormone twenty-hydroxyecdysone
(20E), generated from the prohormone ecdysone, is essential for
coordinating development at all stages, including embryogenesis,

larval molting, puparium formation, and metamorphosis (Baehrecke,
1996; Yamanaka et al., 2013). 20E acts by binding to a heterodimeric
nuclear hormone receptor complex composed of Ecdysone receptor
(EcR) and ultraspiracle (usp), which are mammalian orthologues of
franesoid X receptor/liver X receptor and retinoid X receptor, respec-
tively (Hayward et al., 1999; King-Jones and Thummel, 2005). This
complex binds to specific promoter sequences, called Ecdysone
Response Elements (EcREs), and can activate or repress the expres-
sion of hundreds of target genes which vary in response to the
presence or absence of cell-type-specific co-activators (Carbonell
et al., 2013; Francis et al., 2010; Jang et al., 2009; Perera et al.,
2005; Tsai et al., 1999) (Fig. 1(A)). Additional temporal and spatial
control of 20E signaling is generated through alternative splicing of
transcripts encoded by the EcR gene to yield three isoforms, EcR-A,
EcR-B1, and EcR-B2; these receptors share common ligand binding
domains (LBDs) and DNA binding domains (DBDs) but vary at their
amino-termini. Each EcR isoform has a distinct expression pattern
and response to 20E throughout development (Talbot et al., 1993).

Although ecdysone signaling has been studied primarily during
metamorphosis, 20E is also present, albeit at lower levels, in adult
Drosophila (Bownes et al., 1984; Handler, 1982; Hodgetts et al., 1977;
Kozlova and Thummel, 2000). Adult 20E titers respond to changes
in diet and environment (Riehle and Brown, 1999; Tu et al., 2002)
and can also be modulated genetically. In this case, however,
conditional manipulation of hormone levels is necessary due to
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Fig. 1. Ecdysone signaling components are expressed and activated in the Drosophila testis niche. (A) Diagram of the Drosophila testis. Around 10 GSCs (3 shown, pink) are
attached to the hub. GSCs divide asymmetrically to produce daughter gonialblasts (GB) that are displaced from the hub. GBs go on to form spermatogonial cysts. Fusomes
(red) are spherical in GSCs and branched in spermatogonia. Approximately 2 CySCs (blue) flank each GSC and contact the hub with cytoplasmic extensions. CySCs divide to
produce cyst cell daughters; two envelop each GB and its descendants. (B) Diagram of the Drosophila ecdysone pathway. 20E (blue dots) activates this pathway by binding to
a heterodimer composed of EcR and USP. Both EcR and USP contain a LBD that can bind 20E and a DBD that can recognize the EcRE and regulate downstream gene expression
(pink dots). (C)–(E) Testes from adult y w flies stained with germline marker anti-Vasa (red), DNA stain DAPI (blue), and antibodies (green) against: (C) USP (hub and CySC
lineage); (D) EcR (CySC lineage); or (E) ecdysone signaling target Br (CySC lineage). Insets show green channel alone. (F) Diagram of the GAL4-EcR reporter construct, which is
composed of the LBD from EcR fused to the DBD from Gal4 and is under control of the hsp-70 promoter. When expressed at low levels, this reporter shows where the
pathway can be activated: in the presence of 20E and EcR's binding partners, Gal4 is activated and induces expression of UAS-lacZ or UAS-GFP (green dots). A similar GAL4-usp
construct (not shown) is activated by ecdysone and USP's binding partners. (G) Late 3rd instar larval testis carrying the GAL4-EcR reporter and stained with DAPI (blue), anti-
Vasa (red), and anti-GFP (green). Without 20E feeding, endogenous 20E drives GFP expression in the larval hub and CySC lineage. Inset shows green channel alone.
(H)–(J) Adult testes stained with DAPI (blue), somatic cell marker anti-Tj (red), and anti-lacZ (green). Without 20E feeding (H), adult testes carrying the Gal4-EcR reporter
(or Gal4-usp reporter, not shown) do not express lacZ. After adult flies carrying the Gal4-EcR reporter (I) or Gal4-usp reporter (J) are fed 1 mM 20E overnight, testes express
lacZ in the hub and CySC lineage. Hub, asterisk or arrow; CySC lineage cells, arrowhead. Scale bar in J, for all panels,¼20 μm.
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the essential roles of 20E during development. 20E feeding can also
serve as a tool to increase hormone titers (Garen et al., 1977).

Although 20E has been shown to regulate a few aspects of adult
Drosophila behavior including sleep and longevity, the effects of this
hormone are best understood during female reproduction, where
ecdysone signaling regulates multiple stages of oogenesis (Carney
and Bender, 2000; Ishimoto and Kitamoto, 2010; Ishimoto et al.,
2009; Tricoire et al., 2009). Oogenesis is initiated through asym-
metric GSC divisions, and EcR, usp, and the ecdysone target gene and
ETS-domain DNA-binding protein Ecdysone-induced protein 74EF
(E74) are required directly in ovarian GSCs for their maintenance
and proliferation. Both EcR and E74 interact genetically with compo-
nents of the Nucleosome remodeling factor (NURF) complex, sug-
gesting that ecdysone signaling regulates GSCs by modulating their
epigenetic state (Ables and Drummond-Barbosa, 2010). Ovarian GSCs
are also regulated indirectly by ecdysone signaling: EcR, usp, and the
ecdysone target and nuclear hormone receptor Ecdysone-induced
protein 75B (E75) are required in the somatic escort cells of the ovary
for GSC maintenance (Morris and Spradling, 2012). Ecdysone signal-
ing is also required for many subsequent steps in oogenesis including
germline differentiation, entry into meiosis, and formation and
progression of egg chambers past mid-oogenesis (Buszczak et al.,
1999; Konig et al., 2011; Morris and Spradling, 2012).

In contrast to the wealth of information regarding the roles of
ecdysone signaling in the ovary, little is known of its requirements
in male reproduction. Adult Drosophila males contain lower titers
of 20E than females, and although the hormone has been detected
in the testis (Bownes et al., 1984; Handler, 1982; Hodgetts et al.,
1977; Parisi et al., 2010), ecdysone signaling was recently
described as being dispensable for GSC maintenance and early
germ cell development in males (Morris and Spradling, 2012).
However, we previously found that the NURF complex is required
for stem cell maintenance in the testis (Cherry and Matunis, 2010).
In light of the physical and genetic interactions between NURF and
ecdysone pathway components during development and oogen-
esis (Ables and Drummond-Barbosa, 2010; Badenhorst et al.,
2005), we were prompted to look more closely at the role of
ecdysone signaling in the testis stem cell niche.

The Drosophila testis stem cell niche resides in the testis apex,
where a cluster of non-mitotic somatic cells called the hub
produces signals that maintain surrounding GSCs and cyst stem
cells (CySCs) (Fig. 1(B)). GSCs generate gonialblast daughters,
which mitotically amplify and ultimately differentiate into sperm;
CySCs produce non-mitotic daughters called cyst cells, two of
which envelop each gonialblast and its descendants, supporting
their differentiation into sperm. Here, we report that ecdysone
signaling pathway components are expressed and activated in
CySC lineage cells and are required directly in these cells to
maintain both GSCs and CySCs, which do not survive in the
absence of ecdysone signaling. Moreover, we show that EcR
interacts genetically with Enhancer of bithorax (Nurf301), a com-
ponent of the NURF complex, to maintain stem cells in the testis
niche. Thus, steroid signaling is required for stem cell maintenance
in both the ovary and testis of Drosophila, where it might act in
part by regulating the epigenetic state of the stem cells.

Results

Ecdysone signaling components are expressed and activated in the
Drosophila testis

To determine whether ecdysone signaling plays a role in the
adult Drosophila testis, we began by asking whether ecdysone
receptors and downstream targets of the pathway are expressed in
this tissue. We used immunostaining to determine the expression

patterns of EcR, usp, and the downstream targets broad (br), E75
and ftz transcription factor 1 (ftz-f1) in the testis apex. We found
that USP is expressed in the hub and CySC lineage cells (Fig. 1(C)),
while EcR and Br are enriched in the CySC lineage (Fig. 1(D) and
(E)). Although transcripts encoding E75 and Ftz-f1 were detected
in the testis by RNA-seq (Gan et al., 2010), these proteins are below
the level of detection via immunostaining in adult testes (although
they were detected in other tissues; data not shown). Thus, several
key ecdysone pathway components are present within the testis
apex, and their expression is largely confined to somatic cells.

Since ecdysone pathway members are expressed in the testis
apex, we next asked which cells in this tissue actively transduce
ecdysone signaling. Transgenic flies containing chimeric receptors
are well-established tools for detecting ecdysone receptor complex
(EcR and USP) activation within tissues. These receptors contain the
ligand-binding domain from either EcR or USP fused to the yeast
GAL4 DNA-binding domain (GAL4-EcR or GAL4-usp) under control of
a heat-inducible promoter, which allows for precise temporal
control of their expression (Kozlova and Thummel, 2002). Binding
of GAL4-EcR or GAL4-USP to a second transgene encoding a
reporter (lacZ or GFP) under control of an upstream activating
sequence (UAS), which is recognized by the Gal4 DNA-binding
domain, reveals cells with active ecdysone signaling. When flies
carrying both transgenes are exposed to high temperature, chimeric
receptors are expressed throughout the fly; however, UAS-reporter
genes are expressed only in cells containing 20E and the cognate
receptor (USP or other binding partners for GAL4-EcR; EcR or other
binding partners for GAL4-usp) (Fig. 1(F)) (Kozlova and Thummel,
2002; Palanker et al., 2006). We first examined testes from late 3rd
instar larvae expressing GAL4-EcR, because at this stage, the stem
cell niche is fully functional but the endogenous 20E levels are
higher than in adults (Hardy et al., 1979; Kozlova and Thummel,
2000). We observed weak GFP expression in a few hub cells and
stronger expression in late cyst cells (Fig. 1(G)). However, when flies
develop to adulthood and 20E titers have diminished (Schwedes
and Carney, 2012), GFP expression is no longer detectable within
the testis (Fig. 1(H)). Therefore, we hypothesized that in larval
testes, endogenous 20E levels are sufficient to induce GAL4-EcR
activation in the somatic lineage, but in adult testes, 20E availability
might be a limiting factor. To test this hypothesis, we fed exogenous
20E to adult flies containing GAL4-EcR and UAS-lacZ and then
examined the reporter gene expression within the testis. We found
that 20E feeding caused GAL4-EcR activation in the hub and CySC
lineage in a pattern similar to that seen in 3rd instar larval testes in
response to endogenous hormone (Fig. 1(I)). We conclude that adult
hub and CySC lineage cells are competent to respond to 20E via EcR,
but that the levels of 20E needed to produce a detectable signal
using this reporter are insufficient when flies are fed standard food.
When we repeated the 20E feeding with flies expressing GAL4-usp,
we again saw GFP expression in the hub and late cyst cells (Fig. 1(J)).
We expected to see activation of these reporters in the CySC lineage,
but were surprised to find GFP expression in the hub; GAL4-usp
requires a binding partner to function, and we did not detect
endogenous EcR expression in the hub (Fig. 1(D)). Perhaps low
levels of EcR are present in the hub (but undetectable by immu-
nostaining) and are sufficient to activate reporter gene expression.
However, usp, unlike EcR, can signal through additional binding
partners such as Hormone receptor-like in 38 (DHR38) (Baker et al.,
2003; Jones et al., 2001); these partners, which have not been
characterized in the testis, may permit activation of GAL4-usp. We
observed that the activation of both ecdysone activity reporters was
limited to only a few cells, and we suspect that this is due to a
limited supply of binding partners. In support of this idea, GAL4-usp
activation becomes detectable in almost all hub and CySC lineage
cells upon co-expression of EcR (data not shown). This finding
suggests that the low levels of endogenous EcR detected by
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immunostaining in the CySC lineage are insufficient to activate
GAL4-usp in all cells. Similarly, expression of a constitutively active
form of the EcR co-activator taiman (tai) yielded GAL4-EcR reporter
activation in almost all hub and CySC lineage cells in the testis apex
(data not shown). Taken together, our results indicate that EcR and
USP can be activated specifically within hub cells and CySC lineage
cells in the presence of their binding partners in both larval and
adult testes, and that receptor complex activation in the adult testis
is ligand-dependent.

20E is required for male germline and somatic stem cell maintenance

Since ecdysone signaling components are expressed and can be
activated in the testis, we hypothesized that 20E plays a role in this

tissue even though its endogenous titer is very low. To test this
hypothesis, we asked whether 20E is required to maintain adult
male GSCs or CySCs. To reduce the effective concentration of 20E,
we used the GAL4-EcR and GAL4-usp constructs described above,
which have been widely used as dominant negative (DN) receptors
when overexpressed for an extended period of time (Hackney et
al., 2007; Konig et al., 2011; Kozlova and Thummel, 2002, 2003).
For example, both heat-shocked Gal4-EcR flies and flies expressing
UAS-EcR.B1-ΔC655.F645A, a DN form of EcR, in border cells develop
a similar thin eggshell phenotype (Hackney et al., 2007). Testes
from control flies, which carry the GAL4-EcR or GAL4-usp construct
but are un-induced, appear normal (Fig. 2(B) and (S1A)). After
extended overexpression of either construct, however, testes lose
most of their GSCs, early germline cells, and CySCs (Fig. 2(C),
(E) and (S1B)), suggesting that signaling via 20E contributes to the
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Fig. 2. 20E hormone is required for stem cell maintenance. (A) Diagram showing how Gal4-EcR or Gal4-usp can act as dominant negative constructs (20E “sponges”): when
expressed at high levels, they bind with endogenous receptors, compete for endogenous 20E and reduce its effective concentration, thus preventing endogenous EcR or USP
from functioning normally (Hackney et al. 2007). (B)–(D) Testes from adult flies carrying Gal4-EcR stained with anti-Vasa (red), DAPI (blue), anti-Zfh1 (green; CySCs and their
immediate daughters), anti-Hts/1B1 (white; fusomes), and anti-Arm (white; hub cells). Before overexpression (B), testes look normal; after heat-shock induced
overexpression of Gal4-EcR (C), GSCs and CySCs are lost; feeding 20E to adult flies rescues the loss (D). Scale bar in D, for B–D,¼20 μm. (E) Bar graphs showing number
of GSCs or Zfh1-positive cells per testis for this experiment. Data are represented as mean7standard error of the mean (SEM). nn P-valueo0.005; nnn P-valueo0.0005.
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maintenance of both stem cell populations in the testis. Because
the endogenous titer of 20E in the adult testis is very low, we
speculated that these constructs could act as DN receptors by
binding with endogenous receptors and then competing with
endogenous heterodimers for the limited amount of 20E, similar
to a 20E “sponge” (Fig. 2(A)). To ask whether the loss of stem cells
is due to reduced titers of 20E by GAL4-EcR or GAL4-usp, we
repeated the above experiment but added 20E to the fly food to
increase hormone levels. We expected that if 20E is no longer the
limiting factor, endogenous EcR and usp should function normally;
therefore, feeding 20E should rescue the phenotype caused by
overexpression of GAL4-EcR or GAL4-usp. Consistent with our
hypothesis, 20E feeding significantly rescued the GSC and CySC
loss caused by extended overexpression of GAL4-EcR or GAL4-usp
(Fig. 2(D), (E) and (S1C)). We conclude that although 20E is present
only at very low levels in the testis, it is required to maintain GSCs
and CySCs.

ecd plays an ecdysone-independent role in GSC and CySC
maintenance

As an alternate approach to reducing ecdysteroid levels in the
testis, we used a temperature-sensitive allele of ecdysoneless (ecd1).
This steroid-deficient fly strain has long been used to study the
effects of ecdysone signaling in Drosophila, but it has both ecdysone-
dependent and independent functions (Ables and Drummond-
Barbosa, 2010; Claudius et al., 2014; Garen et al., 1977; Gaziova et
al., 2004). Therefore, rescue of ecd phenotypes by 20E feeding is
important to distinguish between these possibilities. After shifting
adult ecd1 flies to the non-permissive temperature for 7 days, we

found that their testes contained significantly fewer GSCs than un-
shifted control testes. We expected that we could rescue this GSC loss
phenotype by feeding 20E to the flies. However, we found that the
phenotype was not rescued by 20E feeding (Fig. S2(A)–(D)), although
the same feeding paradigmwas sufficient to activate GAL4-EcR (Fig. 1I
and J). We conclude that ecd-dependent GSC loss is caused by an
ecdysone-independent role of ecd. Moreover, mosaic analysis
revealed that ecd is required cell-autonomously in the GSCs and
CySCs for their maintenance (Fig. S2 (E), Table S1). The inability of
adjacent wild-type cells to compensate for loss of ecd function
further indicates that ecdysteroid production is not the main role
for ecd in the testis niche. We conclude that ecd is required to
maintain GSCs and CySCs in the testis niche; however, since its
requirement is independent of 20E, ecd is not a useful tool for
studying the role of ecdysone signaling in this tissue.

EcR and usp are required in the CySC lineage to maintain GSCs and
CySCs

Knowing that 20E is required to maintain stem cells in the testis,
we next asked whether the ecdysone receptors EcR and usp are also
required. Flies carrying a temperature sensitive allele of EcR, EcRA483T,
in trans with a null allele, EcRM554fs, have normal numbers of GSCs and
CySCs when raised at permissive temperature (Fig. 3B). However, after
7 days at restrictive temperature, EcRA483T/M554fs (EcRts) flies have
significantly fewer GSCs and CySCs than heterozygous control flies
under the same conditions (Fig. 3(A)–(D)). In addition, we found
differentiating spermatogonial cells next to the hub in 23% of mutant
testes at restrictive temperature (n¼31); this phenotype, which does
not occur in wild-type testes (Fig. 3(C)), is indicative of GSC depletion.
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The stem cell loss phenotype of EcRts testes shows that EcR promotes
stem cell maintenance in the testis, but does not reveal which cells
autonomously require EcR, since this mutant combination yields a

global reduction in receptor activity. Since EcR and USP are undetect-
able in germ cells but are present in the CySC lineage, we hypothesized
that these receptors are required autonomously within somatic stem
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cells for their maintenance. The genomic location of usp (on the X
chromosome) and EcR (very close to the centromere) precludes mosaic
analysis of these genes in the testis. However, RNAi-mediated knock-
down is a feasible alternative. We used the CySC and early cyst-cell
driver c587-Gal4 in combination with a temperature-sensitive allele of
the Gal4 repressor Gal80 to conditionally express transgenic RNAi or
DN constructs of EcR or usp specifically in the adult testis. After 14 days
of transgene induction at 29 1C, we observed a significant decrease in
the number of CySCs in all four experimental genotypes (Fig. 4A E, S3
and S4). Although we could not detect EcR in the hub, we did detect
USP there, so we also asked whether there is a requirement for each
receptor in hub cells. However, hub cells in testes containing RNAi-
mediated knock down of EcR or usp in the hub were indistinguishable
from those in control testes; in addition there was no significant effect
on CySC numbers (Fig. S4). These results indicate that EcR and usp are
cell-autonomously required in the CySC lineage, but not in hub cells,
for CySC maintenance. After EcR or usp knockdown in the CySC
lineage, we also found that the number of GSCs decreased significantly
(Fig. 4E), which suggests that EcR and usp are required indirectly in the
CySC lineage for GSC maintenance. GSCs could be lost simply as a
consequence of CySC loss, but it is also possible that they rely on
ecdysone-dependent maintenance signals from CySCs. We have never
observed expression or activation of ecdysone signaling pathway
components in GSCs, or significant GSC loss, when EcR or usp are
knocked down by RNAi in the germline (data not shown). We

conclude that EcR and usp are required autonomously in the CySC
lineage, and non-autonomously for GSC maintenance.

We next asked whether expression of EcR only in the CySC lineage
is sufficient to rescue the stem cell loss phenotype of EcRts testes and
whether the requirement of EcR is isoform-specific. To answer this
question, we expressed each isoform (EcR-A, EcR-B1, or EcR-B2)
independently in the CySC lineage in the EcRts mutant background.
Interestingly, we found that expression of EcR-B2, but not EcR-A or
EcR-B1, in the CySC lineage is able to fully rescue the EcRts stem cell
loss phenotype (Fig. 4F J). In contrast, expression of EcR-A, EcR-B1, or
EcR-B2 in hub cells did not rescue the EcRts phenotype (Fig. S5). These
results indicate that within the CySC lineage, EcR is necessary for stem
cell maintenance in the testis, and its requirement is specific to the
EcR-B2 isoform, which can act as a strong ligand-dependent transcrip-
tional activator (King-Jones and Thummel, 2005).

EcR is required for cell survival in the testis

Ecdysone signaling is known to regulate apoptosis during devel-
opment, and in the ovary, developing germline cysts lacking ecdysone
signaling die more often than control cysts (Ables and Drummond-
Barbosa, 2010; Zirin et al., 2013). Therefore, we asked whether stem
cell loss in EcRts testes at restrictive temperature could be caused by
increased cell death. We used terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) to detect fragmented DNA in dying
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cells, and we counted the number of dying cells in testes from EcRts

flies that remained at permissive temperature (control testes) or were
shifted to restrictive temperature for 2 days. As expected, dying cells
were rarely found within the stem cell zone (within 2 cell diameters of
the hub) in control testes, but in testes at restrictive temperature we
observed significantly more of them (Fig. 5 A, B and D). These testes
also had significantly more germ cell death in the differentiating cell
zone than did control testes (Fig. 5E). To confirm that the increase in
cell death is due to dysfunction of EcR, we expressed the EcR-B2
isoform in the CySC lineage in EcRts testes at restrictive temperature
and found that it rescues the increased cell death phenotype (Fig. 5C
E). Taken together, these results suggest that EcR-B2 in the CySC

lineage is necessary for promoting cell survival in the testis stem cell
niche. However, it is possible that GSCs and CySCs are also lost due to
early differentiation of stem cells.

The 20E targets E75 and ftz-f1, but not br, promote stem cell
maintenance in the testis

Ecdysone signaling is mediated by multiple target genes which
vary by tissue type and developmental stage (Andres and Thummel,
1992). To identify potential 20E target genes in the adult testis
niche, we surveyed testis RNA-seq data for the expression of known
ecdysone-responsive genes (RPKM41 in wild type testes) (Gan
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et al., 2010), espeically those with known requirements in other
adult stem cell-based tissues, including the ovary and intestine
(Ables and Drummond-Barbosa, 2010; Gan et al., 2010; Morris and
Spradling, 2012; Zeng and Hou, 2012). Using these criteria, we
found three candidate ecdysone targets, E75, ftz-f1 and br, and
tested the requirement for each gene in CySC maintenance using
RNAi-mediated knockdown in the CySC lineage. We found that E75
or ftz-f1 knockdown causes a loss of GSCs and CySCs that is similar
to the phenotype resulting from knockdown of EcR or usp (Fig. 6C–E).
In contrast, knockdown of br in the CySC lineage shows no effect on
stem cell maintenance even though we observed significant reduction
of Br protein level in the cyst stem cell lineage, confirming the efficacy
of br knockdown (Fig. 6A, B and E). Mosaic analysis of E75 and ftz-f1
confirmed that these two factors are cell autonomously required
for CySC maintenance (Fig. 6F J, Tables 1 and 2). We conclude that
the 20E target genes E75 and ftz-f1, but not br, are required for CySC
maintenance.

EcR genetically interacts with Nurf301 to maintain stem cells in the
testis

In the Drosophila ovary, EcR interacts genetically with Nurf301,
which encodes a component of the NURF chromatin remodeling
complex, to promote GSC maintenance (Ables and Drummond-
Barbosa, 2010). Since we had previously found that NURF is also
autonomously required to promote the maintenance of male GSCs
and CySCs (Cherry and Matunis, 2010), we wondered if EcR and
Nurf301 function together in the testis. To test this hypothesis, we
asked whether reduced Nurf301 expression levels could enhance the
stem cell loss phenotype of EcR knockdown. We accomplished this
by knocking down EcR expression specifically in the CySC lineage in a
Nurf301 heterozygous background. Nurf301 heterozygous mutant
testes are indistinguishable from wild-type testes and have normal
numbers of GSCs and CySCs (Cherry and Matunis, 2010). In contrast,
reducing EcR expression in Nurf301 heterozygous CySCs causes
a significant reduction in the number of GSCs and CySCs (Fig. 7).
This result suggests that the ecdysone signaling pathway functions
together with the NURF chromatin-remodeling complex to promote
stem cell maintenance in both the ovary and the testis.

Discussion

Our work shows that the steroid hormone 20E plays an
important role in maintaining stem cells in the Drosophila testis:
20E, receptors of ecdysone signaling, and downstream targets are

required directly in CySCs for their maintenance. When ecdysone
signaling is lost in CySCs, GSCs are also lost, but it is unclear if their
maintenance requires an ecdysone-dependent or independent
signal from the CySCs. We also show that the requirement for
EcR in the testis is isoform-specific: expression of EcR-B2 in the
CySC lineage is sufficient to rescue loss of GSCs and CySCs and
increased cell death in EcR mutant testes, suggesting that there
might be a temporal and spatial control of ecdysone signaling in
the adult testis. In addition, we provide evidence that ecdysone
signaling, as in the ovary, is able to interact with an intrinsic
chromatin-remodeling factor, Nurf301, to promote stem cell main-
tenance. Therefore, our studies have revealed a novel role for
ecdysone signaling in Drosophila male reproduction.

Hormone signaling in the ovary and testis

Although ecdysone signaling is required in both ovaries and
testes for stem cell maintenance, the responses in each tissue are
likely to be sex-specific. In the ovary, 20E controls GSCs directly, by
modulating their proliferation and self-renewal, and it acts pre-
dominantly through the downstream target gene E74 (Ables and
Drummond-Barbosa, 2010). In contrast, male GSCs require ecdy-
sone signaling only indirectly: we found that ecdysone signaling is
required in the CySC lineage to maintain both CySCs and GSCs. In a
previous study, RNAi-mediated knockdown of EcR, usp or E75 in
the CySC lineage did not result in a significant loss of GSCs (Morris
and Spradling, 2012); however, the number of CySCs was not
determined, and the phenotype was examined after 4 or 8 days,
not 14 days as in our study. We suspect that the earlier time points
used in that study may not have allowed enough time for a
significant number of GSCs to be lost.

Spatial and temporal regulation of ecdysone signaling

During development, 20E is produced in the prothoracic gland
(PG) and further metabolized to 20E in target tissues, but the PG does
not persist into adulthood (Gilbert et al., 2002; Huang et al., 2008).

Table 1
ftz-f1 is required cell autonomously for GSC and CySC maintenance.

Part A ftz-f1 negative clonal analysis

Genotype 0d ACI 2dACI 6dACI 8dACI

Percentage of testis with CySC clones
ftz-f1ex7 FRT2A 17% (3/18) 17% (7/30) 7% (2/30) 5% (1/20)
Ctrl FRT2A 0% (0/17) 77% (26/34) 40%(6/15) 35% (10/29)

Part B ftz-f1 MARCM
Genotype 0d ACI 2d ACI 4d ACI 6d ACI 8d ACI

Percentage of testes with CySC clones
ftz-f1ex7 FRT2A 5% (1/21) 72% (13/18) 5% (1/22) 0% (0/24) 5% (1/23)
Ctrl FRT2A 0% (0/25) 83% (15/18) 63% (14/22) 55% (12/22) 50% (10/22)

Percentage of testis with cyst cell clones
ftz-f1ex7 FRT2A 5% (1/21) 83% (15/18) 32% (7/22) 5% (1/24) 0% (0/23)
Ctrl FRT2A 12% (3/25) 94% (17/18) 86% (19/22) 68% (15/22) 70% (14/20)

Table 2
E75 clonal analysis indicates that E75 is cell autonomously required for GSC and
CySC maintenance.

Genotype 0d ACI 2d ACI 8d ACI

Percentage of testis with CySC clones
E75Δ51 FRT80B 10% (2/20) 30% (7/23) 11% (4/35)
Ctrl FRT80B 9% (2/22) 36% (9/25) 25% (7/29)
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In adult female Drosophila, the ovary is a source of 20E (Schwartz
et al., 1985). In contrast, the identification of steroidogenic tissues in
adult male Drosophila remains the subject of active investigation. The
level of 20E in adult males is significantly lower than in adult
females, but it can be detected in the testis (Bownes et al., 1984;
Handler, 1982; Hodgetts et al., 1977; Schwedes and Carney, 2012).
Furthermore, RNA-seq data show that shade, which encodes the
enzyme that metabolizes the prohomone ecdysone to 20E, is
expressed in the adult testis, suggesting that the adult testis may
produce 20E (Gan et al., 2010; Petryk et al., 2003). However, the
sources of 20E production in adult Drosophila males remain to be
determined experimentally.

20E, like other systemic hormones, can have tissue-specific
effects or differential effects on the same cell type as development
proceeds. These differences are mediated at least in part by the
particular downstream target genes that are activated in each case.
For example, in female 3rd instar larval ovaries, ecdysone signaling
upregulates br expression to induce niche formation and PGC
differentiation, but br is not required for GSC maintenance in the
adult ovary (Gancz et al., 2011); instead, E74 plays this role (Ables
and Drummond-Barbosa, 2010). Similarly, br is required for the
establishment of intestinal stem cells (ISCs) in the larval and pupal
stages but not for ISC function in adults (Zeng and Hou, 2012).
Here, we show that ecdysone signaling in the adult testis is
mediated by different target genes than in the ovary: E74, but
not E75 or br, regulate stem cell function in the ovary, whereas E75
and ftz-f1 are important for stem cell maintenance in the testis.
Since E75 is itself a nuclear hormone receptor that responds to the
second messenger nitric oxide (Caceres et al., 2011; Reinking et al.,
2005), it will be interesting to know whether E75's partner DHR3
also plays a role in CySCs. An intriguing question for future studies
will be how different ecdysone target genes interact with the
various signaling pathways that maintain stem cells in the ovary or
testis.

Environmental changes, stem cells and hormonal signals

Since 20E levels can actively respond to physiological changes
induced by environmental cues, it is possible that the effect of 20E
on testis stem cell maintenance might reflect changes in diet,
stress, or other environmental cues. For example, in Aedes aegypti,
ecdysteroid production in the ovary is stimulated by blood feeding
and this is an insulin-dependent process (Riehle and Brown, 1999).
In Drosophila, ecdysone signaling is known to interact with the
insulin pathway in a complex way. Ovaries from females with
hypomorphic mutations in the insulin-like receptor have reduced
levels of 20E (Tu et al., 2002). Furthermore, ecdysone signaling can
directly inhibit insulin signaling and control larval growth in the

fat body (Colombani et al., 2005). Thus, ecdysone signaling may
interact with insulin signaling during testis stem cell maintenance.
Previously, it was shown that GSCs in the ovary and testis can
respond to diet through insulin signaling, which is required to
promote stem cell maintenance in both sexes (Drummond-
Barbosa and Spradling, 2001; Flatt et al., 2008; McLeod et al.,
2010; Roth et al., 2012; Ueishi et al. 2009; Wang et al., 2011). It is
possible that diet can affect 20E levels and thus regulate stem cell
maintenance. In addition to diet, stress can also affect 20E levels,
as is the case in Drosophila virilis, where 20E levels increase
significantly under high temperature stress (Rauschenbach et al.,
2000). A similar effect has been found in mammals, where the
steroid hormone cortisol is released in response to psychological
stressors (Burke et al., 2005; McGaugh, 2004). Finally, 20E levels
are also influenced by mating. In Anopheles gambiae, males
transfer 20E to blood-fed females during copulation, which is
important for egg production (Baldini et al., 2013). In female
Drosophila, whole body ecdysteroid levels also increase after
mating (Harshman et al., 1999). Studying the roles of hormonal
signaling in mediating stem cell responses to stress and other
environmental cues will be an exciting topic for future studies.
From our work it is now clear that, as in mammals, steroid
signaling plays critical roles in adult stem cell function during
both male and female gametogenesis.

Materials and methods

Fly stocks and cultures

Fly stocks were raised at 25 1C on standard molasses/yeast
medium unless otherwise indicated. The following fly stocks were
used: c587-Gal4 (Kai and Spradling, 2003), E132-Gal4 (from
H. Sun), w; Nurf3012/TM6B, Tb and w;; Nurf3013/TM3, Ser (from
P. Badenhorst), ftz-f1ex7 FRT2A (from C. Dauphin-Villemant), E75Δ51

FRT80B (from D. Drummond-Barbosa), and ecd2 FRT2A (from
M. Jindra). Other fly stocks came from the Bloomington Drosophila
Stock Center (BDSC) or Vienna Drosophila RNAi Center (VDRC).

Immunofluorescence microscopy

Testes were dissected, fixed, and stained as described previously
(Matunis, 1997). The following antibodies were used: rabbit anti-
Vasa (d-260) and goat anti-Vasa (dN-13) (Santa Cruz Biotechnology,
1:400); chicken anti-Vasa (from K. Howard, 1:5000); rabbit anti-
GFP (Torrey Pines Biolabs, 1:10,000); chicken anti-GFP (Abcam,
1:10,000); mouse anti-β-Galactosidase (Promega, 1:1000); mouse
1B1 (1:25), mouse anti-Armadillo (N2 7A1; 1:50), mouse anti-EcR
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(DDA2.7; 1:50), mouse anti-EcR (Ag10.2; 1:50), and mouse anti-
Broad-core (25E9.D7; 1:50) (Developmental Studies Hybridoma
Bank at the University of Iowa); rabbit anti-ZFH1 (from R. Lehmann,
1:5000); guinea pig anti-ZFH1 (from J. Skeath; 1:1000); guinea pig
anti-Tj (from D. Godt, 1:4000); and mouse anti-USP (from D.
Montell, 1:20) (Christianson et al., 1992). Alexa fluor-conjugated
secondary IgG (HþL) antibodies were diluted at 1:200 for 568 and
633 conjugates and 1:400 for 488 conjugates. Secondary antisera
were: goat anti-rat 488, goat anti-rabbit 488 and 568, goat anti-
mouse 488, 568 and 633, goat anti-chicken 488 and 568, and goat
anti guinea-pig 568 and 633 (Molecular Probes/Invitrogen). DNA
was stained with 4,6-diamidino-2-phenylindole (DAPI; Sigma) at
1 mg/ml. Fixed testes were mounted in Vectashield (Vector Labs)
for imaging.

Analysis of confocal images

Confocal images were obtained with a Zeiss LSM 5 Pa or a Zeiss
LSM 510 Meta microscope and were collected as serial confocal
sections at similar detection settings unless otherwise noted.
Images were analyzed using the Zeiss LSM Image Browser soft-
ware or Zen 2009 Light edition software. GSCs were scored as
Vasa-positive cells (with a spherical fusome where specified)
making contact with the hub. CySCs were scored as Zfh1-
positive cells (Leatherman and Dinardo, 2008), with medium to
strong staining according to the rainbow indicator in the Zeiss
Pascal software. All graphs were created using Prism 5 (GraphPad
Software, Inc.). Statistical analysis of stem cell number was
performed using Prism 5. Student's T-test was used to compare
two populations, and unpaired ANOVA analysis was used to
compare three or more populations.

20E feeding experiment

20E (Sigma-Aldrich) was dissolved in 10% ethanol to prepare a
25 mM stock solution.

To visualize reporter activity
Adult males with the genotype hs-EcR-LBD-GAL4; UAS-stinger

(or UAS-lacZ) or hs-usp-LBD-GAL4; UAS-stinger (or UAS-lacZ) were
heat shocked 3�30 min at 37 1C and then placed in vials contain-
ing normal food covered with a piece of filter paper soaked with
100–150 μl of 1 mM 20E (diluted in apple juice) plus green food
coloring (McCormick, 1:50). A small hole was cut out of the filter
paper to give the flies access to the normal food below. After 1 day,
flies with green guts (indicating that they had ingested the 20E)
were dissected and stained with GFP or lacZ antibody.

To use reporters as dominant negative constructs
Adult males with the genotype hs-EcR-LBD-GAL4; UAS-stinger,

or hs-usp-LBD-GAL4; UAS-stinger, or hs-ECR-LBD-Gal4, or hs-usp-
LBD-Gal4 were heat shocked twice everyday for 30 min each time
(once in the early morning and once at night) for 4–5 days. For 20E
rescue experiments, flies were placed in vials containing 20E (as
described above) after each heat shock and dissected one day after
the last heat shock. Flies were fed an equivalent concentration of
ethanol dissolved in apple juice as a control.

Loss-of-function experiments

To assay the effect of loss of ecd on stem cell maintenance, 0–5
day old ecd1 males raised at 18 1C were shifted to non-permissive
temperature (29 1C) for 7 days, and then testes were dissected and
analyzed. y w males were processed in parallel as controls. To
assay whether 20E feeding can rescue the ecd1 testis phenotype,

we fed flies with 0.1 mM or 1 mM 20E using the method described
for the 20E feeding experiment. Flies were fed an equivalent
concentration of ethanol dissolved in apple juice as a control.

To assay the effect of loss of EcR on stem cell maintenance in
adult testes, EcRM554fs/SM6b (null allele) and EcRA483T/SM6b (tem-
perature sensitive allele) flies were crossed at permissive tem-
perature (18 1C) and shifted to non-permissive temperature (31 1C)
for 7 days, and testes were then dissected and analyzed. Hetero-
zygous sibling males were processed in parallel as controls.

Temperature sensitive EcR rescue experiment

UAS-EcR.A, UAS-EcR.B1, and UAS-EcR.B2 constructs were driven
by c587-Gal4 (cyst lineage) or hh-Gal4 (BDSC 45546; hub cells) in
the temperature sensitive EcR mutant background (EcRM554fs/
EcRA483T). UAS-GFP-nls was used as a control. Flies were grown at
18 1C and transferred to 31 1C as adults to induce expression of the
UAS constructs.

RNAi and dominant negative (DN) knockdown experiments

The following RNAi or DN constructs were used for cell type-
specific knockdown of ecdysone pathway components:

Gene Genotype Stock number

EcR UAS-EcR-RNAi VDRC 37058
UAS-EcR-RNAi BDSC 9726
UAS-EcR.B1-ΔC655.F645A BDSC 6869

UAS-EcR.B1-ΔC655.W650A BDSC 6872

UAS-EcR.A.F645A BDSC 9450
UAS-EcR.A.W650A BDSC 9451
UAS-EcR.B2.F645A BDSC 9450

USP UAS-USP-RNAi VDRC 16893
UAS-USP-RNAi BDSC 27258

E75 UAS-E75-RNAi VDRC 44851
ftz-f1 UAS-ftz-f1-RNAi VDRC 108995

UAS-ftz-f1-RNAi BDSC 27659
br UAS-br-RNAi BDSC 27272

Male flies carrying these constructs were crossed to females with
the genotype c587-Gal4; tubGAL80ts (cyst lineage) or E132-Gal;
tubGAL80ts (hub cells) at 18 1C. Males were shifted to 29 1C upon
eclosion and dissected after 1–5 days. UAS-GFP RNAi (BDSC 9330)
was used as a control for RNAi experiments and UAS-GFP (BDSC
4776) as a control for DN experiments. Flies carrying UAS con-
structs alone, without a driver, were processed in parallel to check
for leakiness of each UAS construct. To look for genetic interaction
between ecdysone signaling and NURF, we expressed UAS-EcR-
RNAi (BDSC 37058) in the CySC lineage in a Nurf3013 or Nurf3012

heterozygous background. UAS-GFP-RNAi was used as a control for
this experiment.

Mosaic analysis

Negatively marked clones were induced using the FLP, FRT-
mediated mitotic recombination technique (Xu and Rubin, 1993) in
flies of the genotype: y w, P[hs-FLP]/Y; P[Ubi-GFP.nls] P[wþ FRT]2A
/ftz-f1ex7 P[wþ FRT]2A or y w, P[hs-FLP]/Y; P[Ubi-GFP.nls] P[wþ FRT]
2A /ecd2 P[wþ FRT]2A or y w, P[hs-FLP]/Y; P[Ubi-GFP] P[neoFRT]80B/
E75Δ51 P[neoFRT]80B ry506. Control clones were induced in y w,
P[hs-FLP]/Y; P[Ubi-GFP.nls] P[wþ FRT]2A/P[wþ FRT]2A or P[hs-FLP]/Y;
P[Ubi-GFP] P[neoFRT]80B/P[neoFRT]80B ry506. GSC clones were
identified as cells that were Zfh1-negative, GFP-negative, and
making broad contact with the hub. CySC clones were identified
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as cells that were Zfh1-positive, GFP-negative, and within 2 cell
diameters of the hub.

Positively marked clones were induced using the mosaic
analysis with a repressible cell marker (MARCM) technique (Lee
and Luo, 1999) in flies of the genotype y w, P[hs-FLP], P[tub-Gal4] P
[UAS-CD8-GFP]; P[tub-Gal80] P[wþ FRT]2A/ftz-f1ex7 P[wþ FRT]2A.
Control clones were induced in y w, P[hs-FLP], P[tub-Gal4] P[UAS-
CD8-GFP]; P[tub-Gal80] P[wþ FRT]2A/P[wþ FRT]2A (Wang and
Struhl, 2004) (a gift from G. Struhl). CySC clones were identified
as cells that were Zfh-1 positive, GFP-positive, and within 2 cell
diameters of the hub.

To induce clones, 0–5 day old males were heat shocked for
3�30 min at 37 1C separated by 30-minute intervals at 25 1C. Flies
were kept at 25 1C for 2, 4, 8, or 10 days after clone induction (ACI)
before dissection.

Apoptosis detection

Cells undergoing apoptosis were detected by terminal deox-
ynucleotidyl transferase dUTP nick end labeling (TUNEL; Chemi-
con International) as described (Sheng et al., 2009). TUNEL-
positive stem cells and early daughters were identified by the
position of their nuclei (within two cell diameters of the hub).
TUNEL-positive spermatogonia were identified as spots with a
diameter greater than 5 μm and located more than two cell
diameters from the hub.
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