WWW.W.MATHEMATICSWEB.ORG

JOURNAL OF Number Theory

The support problem for abelian varieties

Michael Larsen ${ }^{1}$
Department of Mathematics, Indiana University, Bloomington, IN 47405, USA

Received 19 December 2002; revised 6 January 2003
Communicated by D. Goss

Abstract

Let A be an abelian variety over a number field K. If P and Q are K-rational points of A such that the order of the $(\bmod \mathfrak{p})$ reduction of Q divides the order of the $(\bmod \mathfrak{p})$ reduction of P for almost all prime ideals \mathfrak{p}, then there exists a K-endomorphism ϕ of A and a positive integer k such that $\phi(P)=k Q$. © 2003 Elsevier Science (USA). All rights reserved.

MSC: 11G10; 11R34

Keywords: Support problem; Abelian variety; Galois representation

This note solves the support problem for abelian varieties over number fields, thus answering a question of Corrales-Rodrigáñez and Schoof [4]. Recently, Banaszak et al. [2] and Khare and Prasad [6] have solved the problem for certain classes of abelian varieties for which the images of the ℓ-adic Galois representations can be particularly well understood. A number of other authors have also made progress recently on closely related problems, including Kowalski [7], Wong [11], and Ailon and Rudnick [1].

The main result is as follows:

Theorem 1. Let K be a number field, \mathcal{O}_{K} its ring of integers, and \mathcal{O} the coordinate ring of an open subscheme of $\operatorname{Spec} \mathcal{O}_{K}$. Let \mathscr{A} be an abelian scheme over \mathcal{O} and $P, Q \in \mathscr{A}(\mathcal{O})$ arbitrary sections. Suppose that for all $n \in \mathbb{Z}$ and all prime ideals \mathfrak{p} of \mathcal{O}, we have

[^0]the implication
\[

$$
\begin{equation*}
n P \equiv 0(\bmod \mathfrak{p}) \Rightarrow n Q \equiv 0(\bmod \mathfrak{p}) \tag{1}
\end{equation*}
$$

\]

Then there exist a positive integer k and an endomorphism $\phi \in \operatorname{End}_{\mathcal{O}}(\mathscr{A})$ such that

$$
\begin{equation*}
\phi(P)=k Q \tag{2}
\end{equation*}
$$

Note that as \mathscr{A} is a Néron model of its generic fiber A [3, I 1.2/8], we have that $\operatorname{End}_{\mathcal{O}} \mathscr{A}=\operatorname{End}_{K} A$. We employ scheme notation only to make sense of the notion of the reduction of a point of $A(\bmod \mathfrak{p})$.

It is clear that if $Q=\phi(P)$, the order of any reduction of Q divides that of the corresponding reduction of P. One might ask whether the converse is true or, in other words, whether one can strengthen (2) to ask that $k=1$. The following proposition shows that in general the answer is negative:

Proposition 2. There exist $\mathcal{O}, \mathscr{A}, P$, and Q as above such that (1) holds but $Q \notin\left(\operatorname{End}_{\mathscr{O}} \mathscr{A}\right) P$.

Proof. Let \mathcal{O} be a ring containing $1 / 2$. Let $\mathscr{E} / \mathcal{O}$ be an elliptic curve with End \mathcal{O}° $\mathscr{E}=\mathbb{Z}$ whose 2-torsion is all \mathcal{O}-rational. Let T_{1} and T_{2} denote distinct 2-torsion points of $\mathscr{E}(\mathcal{O})$, and let R denote a point of infinite order in $\mathscr{E}(\mathcal{O})$. Let $\mathscr{A}=\mathscr{E}^{2}$, $P=\left(R, R+T_{1}\right)$, and $Q=\left(R, R+T_{2}\right)$. Then the reductions of R and $R+T_{1}$ cannot both have odd order (since T_{1} has order exactly 2 in any reduction $(\bmod \mathfrak{p})$), so P always has even order $(\bmod \mathfrak{p})$. Thus $n P \equiv 0(\bmod \mathfrak{p})$ implies $2 \mid n$ and therefore

$$
n Q=(n R, n R)=n P \equiv 0(\bmod \mathfrak{p})
$$

On the other hand, $\operatorname{End}_{\mathcal{O}} \mathscr{A}=M_{2}(\mathbb{Z})$, so no endomorphism of \mathscr{A} sends P to Q.
Let $E=\operatorname{End}_{\mathcal{O}} \mathscr{A}$. We begin by showing that (2) is implied by its (mod $\left.m\right)$ analogue for sufficiently large m.

Lemma 3. Given \mathcal{O}, \mathscr{A}, and E as above and \mathcal{O}-points P and Q of \mathscr{A}, either P and Q satisfy (2) or there exists n such that for all $\phi \in E$ and all $m \geqslant n$,

$$
\phi(P)-Q \notin m \mathscr{A}(\mathcal{O}) .
$$

Proof. The lemma follows from the Mordell-Weil theorem and the trivial fact that the image of Q in the finitely generated abelian group $\mathscr{A}(\mathcal{O}) / E P$ is of finite order if it is m-divisible for infinitely many values of m.

Next, we prove two simple algebraic lemmas.

Lemma 4. Let G be a group with normal subgroups G_{1} and G_{2} such that G / G_{i} is finite and abelian for $i=1,2$. Let α be an automorphism of G such that $\alpha\left(G_{i}\right) \subset G_{i}$ for $i=1,2$. Suppose α acts trivially on G / G_{1} and as a scalar m on G / G_{2}, where $m-1$ is prime to G / G_{2}. Then every coset of G_{1} meets every coset of G_{2}.

Proof. Applying Goursat's lemma [8, I, Example] to the α-equivariant map

$$
\psi: G /\left(G_{1} \cap G_{2}\right) \rightarrow G / G_{1} \times G / G_{2}
$$

we find normal subgroups $H_{1} \supset G_{1}$ and $H_{2} \supset G_{2}$ of G (automatically α-stable) such that the image of ψ is the pullback to $G / G_{1} \times G / G_{2}$ of the graph of an α-equivariant isomorphism $G / H_{1} \underset{\rightarrow}{\tilde{\rightarrow}} G / H_{2}$. By hypothesis, the two sides of this isomorphism must be trivial, so ψ is surjective, which proves the lemma.

Lemma 5. Let M and N be left modules of a ring R. Suppose that N is semisimple. Let $\alpha, \beta \in \operatorname{Hom}_{R}(M, N)$ be such that $\operatorname{ker} \alpha \subset \operatorname{ker} \beta$. Then there exists $\gamma \in \operatorname{End}_{R}(N)$ such that $\beta=\gamma \circ \alpha$.

Let $M_{\alpha}=\operatorname{ker} \alpha$ and $M_{\beta}=\operatorname{ker} \beta$, so $M_{\alpha} \subset M_{\beta}$. Let $N_{\alpha} \cong M / M_{\alpha}$ and $N_{\beta} \cong M / M_{\beta}$ denote the images of α and β. Thus, N_{β} is isomorphic to a quotient of N_{α}. As N is semisimple, there is a projection map $N \rightarrow N_{\alpha}$. Composing this with the quotient map $N_{\alpha} \rightarrow N_{\beta}$ and the inclusion $N_{\beta} \subset N$ we obtain the desired map γ.

We remark that Lemma 5 holds more generally for any abelian category.
We can now prove the main theorem. Let $\rho_{\ell}: G_{K} \rightarrow \mathrm{GL}_{2 g}\left(\mathbb{Z}_{\ell}\right)$ denote the ℓ-adic Galois representation given by the Tate module of A, and let $\bar{\rho}_{\ell}$ denote its $(\bmod \ell)$ reduction. Let G_{n} denote the Galois group of the field K_{n} of n-torsion points on A. In particular, G_{ℓ} is the image of $\bar{\rho}_{\ell}$. Let $M_{\ell}=\operatorname{End}_{\mathbb{Z}}(A[\ell](\bar{K})) \cong M_{2 g}\left(\mathbb{F}_{\ell}\right)$ denote the endomorphism ring of the additive group of ℓ-torsion points of A over \bar{K}. We choose ℓ sufficiently large that it enjoys the following properties:
(a) The group of homotheties in $\rho_{\ell}\left(G_{K}\right)$ is of index $<\ell-1$ in \mathbb{Z}_{ℓ}^{*}.
(b) The image E_{ℓ} of E in M_{ℓ} and the subring of M_{ℓ} generated by G_{ℓ} are mutual centralizers. In particular, both are semisimple algebras.
(c) If for some $\phi \in E$, one has $\phi(P)-Q \in \ell A(K)$, then P and Q satisfy (2).

Part (a) follows from a result of Serre [10, Section 2]. Part (b) is a well-known folklore corollary of Faltings' proof of the Tate conjecture. See [9, p. 24] for a statement. We sketch a proof. The endomorphism ring E acts on $H_{\text {sing }}^{1}(A, \mathbb{Z})$. Let E^{*} be the commutant of E in $\operatorname{End}_{\mathbb{Z}} H_{\text {sing }}^{1}(A, \mathbb{Z})$ and $E^{* *}$ its double commutant. As $E \otimes \mathbb{Q}$ is semisimple, $E^{* *} \otimes \mathbb{Q}=E \otimes \mathbb{Q}$, so E is of finite index in $E^{* *}$. For ℓ sufficiently large, therefore, $E_{\ell}=E_{\ell}^{* *}$. The commutator map gives a homomorphism of abelian groups $M_{2 g}(\mathbb{Z}) \rightarrow \operatorname{Hom}\left(E, M_{2 g}(\mathbb{Z})\right)$ with kernel E^{*}. The sequence

$$
0 \rightarrow E^{*} \rightarrow M_{2 g}(\mathbb{Z}) \rightarrow \operatorname{Hom}\left(E, M_{2 g}(\mathbb{Z})\right)
$$

remain exact after tensoring with \mathbb{F}_{ℓ} for $\ell \gg 0$. Therefore, the commutant of E_{ℓ} in M_{ℓ} is E_{ℓ}^{*} for $\ell \gg 0$, and likewise the commutant of E_{ℓ}^{*} in M_{ℓ} is $E_{\ell}^{* *}=E_{\ell}$ for $\ell \gg 0$. By the double commutant theorem, E_{ℓ} and E_{ℓ}^{*} are semisimple. Now, Deligne [5, 2.7] asserts that for all $\ell \gg 0$, the commutant of $E \otimes \mathbb{Z}_{\ell}$ in the endomorphism ring of the ℓ-adic Tate module $T_{\ell} A=H_{\text {sing }}^{1}(A, \mathbb{Z}) \otimes \mathbb{Z}_{\ell}$, is the image of $\mathbb{Z}_{\ell}\left[G_{K}\right]$, or in other words, $\operatorname{im}\left(\mathbb{Z}_{\ell}\left[G_{K}\right] \rightarrow \operatorname{End}\left(T_{\ell} A\right)\right)=E^{*} \otimes \mathbb{Z}_{\ell}$, which implies (b). Part (c) follows from Lemma 3.

The Kummer sequence for A / K gives a natural E_{ℓ}-equivariant embedding

$$
A(K) / \ell A(K) \hookrightarrow H^{1}\left(G_{K}, A[\ell](\bar{K})\right)=H^{1}\left(G_{K}, A[\ell]\left(K_{\ell}\right)\right) .
$$

By (a), the group G_{ℓ} contains a non-trivial subgroup S_{ℓ} which acts by scalar multiplication on $A[\ell]\left(K_{\ell}\right)$. Since

$$
A[\ell]\left(K_{\ell}\right)^{S_{\ell}}=H^{1}\left(S_{\ell}, A[\ell]\left(K_{\ell}\right)\right)=0,
$$

the inflation-restriction sequence

$$
0 \rightarrow H^{1}\left(G_{\ell} / S_{\ell}, A[\ell]\left(K_{\ell}\right)^{S_{\ell}}\right) \rightarrow H^{1}\left(G_{\ell}, A[\ell]\left(K_{\ell}\right)\right) \rightarrow H^{1}\left(S_{\ell}, A[\ell]\left(K_{\ell}\right)\right)^{G_{\ell} / S_{\ell}}
$$

implies $H^{1}\left(G_{\ell}, A[\ell]\left(K_{\ell}\right)\right)=0$. The inflation-restriction sequence

$$
0 \rightarrow H^{1}\left(G_{\ell}, A[\ell]\left(K_{\ell}\right)\right) \rightarrow H^{1}\left(G_{K}, A[\ell]\left(K_{\ell}\right)\right) \rightarrow H^{1}\left(G_{K_{\ell}}, A[\ell]\left(K_{\ell}\right)\right)^{G_{\ell}}
$$

implies

$$
\begin{equation*}
A(K) / \ell A(K) \hookrightarrow \operatorname{Hom}\left(G_{K_{\ell}}, A[\ell]\left(K_{\ell}\right)\right)^{G_{\ell}}=\operatorname{Hom}_{\mathbb{F}_{\ell}\left[G_{\ell}\right]}\left(G_{K_{\ell}}^{\mathrm{ab}} \otimes \mathbb{F}_{\ell}, A[\ell]\left(K_{\ell}\right)\right) \tag{3}
\end{equation*}
$$

is injective. For any $X \in A(K)$, we write $[X]$ for the class of the image of $X+\ell A(X)$ in the right-hand side of (3).

Let $V_{\ell}=G_{K_{\ell}}^{\mathrm{ab}} \otimes \mathbb{F}_{\ell}$. Suppose that for all $\sigma \in V_{\ell}$, the condition $[Q](\sigma)=0$ implies $[P](\sigma)=0$. Applying Lemma 5 to the $\mathbb{F}_{\ell}\left[G_{\ell}\right]$-modules $M=V_{\ell}$ and $N=A[\ell]\left(K_{\ell}\right)$, we obtain an $\mathbb{F}_{\ell}\left[G_{\ell}\right]$-module endomorphism γ of N such that $\gamma_{\circ}[P]=[Q]$. By (b), the endomorphism γ lies in the image of E_{ℓ}, and lifting it to an endomorphism $\phi \in E$, we conclude $[\phi(P)-Q]=0$. By (3), this means $\phi(P)-Q \in \ell A(K)$, and by (c), this implies (2).

Therefore, we may assume that there exists $\sigma \in V_{\ell}$ with $[Q](\sigma)=0$ and $[P](\sigma) \neq 0$. The pair (P, Q) defines a G_{ℓ}-equivariant map $V_{\ell} \rightarrow A[\ell]\left(K_{\ell}\right) \times A[\ell]\left(K_{\ell}\right)$. The Galois action on $A\left[\ell^{2}\right](\bar{K})$ defines a G_{ℓ}-equivariant map $V_{\ell} \rightarrow M_{\ell}$ since we have

$$
\operatorname{Gal}\left(K_{\ell^{2}} / K_{\ell}\right)=\operatorname{ker}\left(G_{\ell^{2}} \rightarrow G_{\ell}\right) \stackrel{\log }{\hookrightarrow} \operatorname{ker}\left(\operatorname{End}\left(A\left[\ell^{2}\right](\bar{K})\right)\right) \rightarrow \operatorname{End}(A[\ell](\bar{K}))=M_{\ell} .
$$

By (a), there exists a non-trivial homothety in G_{ℓ}. It acts trivially on M_{ℓ} since the action of G_{ℓ} on M_{ℓ} is by conjugation, and by definition, it acts as a non-trivial scalar
on $A[\ell]\left(K_{\ell}\right) \times A[\ell]\left(K_{\ell}\right)$. By Lemma 4, the image of V_{ℓ} in $A[\ell]\left(K_{\ell}\right) \times A[\ell]\left(K_{\ell}\right) \times M_{\ell}$ is the product of its images in $A[\ell]\left(K_{\ell}\right) \times A[\ell]\left(K_{\ell}\right)$ and in M_{ℓ}. Applying (a) again, there exists $\sigma \in V_{\ell}$ such that $[P](\sigma) \neq 0,[Q](\sigma)=0$, and σ maps to a non-zero homothety in M_{ℓ}.

Let $K_{\ell^{2}}\left(\ell^{-1} P, \ell^{-1} Q\right)$ denote the extension of K_{ℓ} associated to

$$
\text { ker } V_{\ell} \rightarrow A[\ell]\left(K_{\ell}\right) \times A[\ell]\left(K_{\ell}\right) \times M_{\ell} \text {; }
$$

thus $K_{\ell^{2}}\left(\ell^{-1} P, \ell^{-1} Q\right)$ is the extension of K generated by the coordinates of all points $R \in A(\bar{K})$ such that $\ell R \in \mathbb{Z} P+\mathbb{Z} Q+A[\ell]\left(K_{\ell}\right)$. By Cebotarev, we can fix a prime \mathfrak{p} of \mathcal{O} which is unramified in $K_{\ell^{2}}\left(\ell^{-1} P, \ell^{-1} Q\right)$ and whose Frobenius conjugacy class in $\operatorname{Gal}\left(K_{\ell^{2}}\left(\ell^{-1} P, \ell^{-1} Q\right) / K\right)$ contains the image of σ in $\operatorname{Gal}\left(K_{\ell^{2}}\left(\ell^{-1} P, \ell^{-1} Q\right) / K_{\ell}\right)$. Reducing $(\bmod \mathfrak{p})$ we obtain a finite field $\mathbb{F}_{\mathfrak{p}}$ such that the ℓ-primary part of $\mathscr{A}\left(\mathbb{F}_{\mathfrak{p}}\right)$ contains $(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$ (since the Frobenius at \mathfrak{p} fixes $\left.K_{\ell}\right)$ but has no element of order ℓ^{2} (since the Frobenius at \mathfrak{p} acts as a non-trivial homothety on $\left.A\left[\ell^{2}\right]\left(K_{\ell^{2}}\left(\ell^{-1} P, \ell^{-1} Q\right)\right)=A\left[\ell^{2}\right](\bar{K})\right)$. Moreover, the image of P in $\mathscr{A}\left(\mathbb{F}_{\mathfrak{p}}\right)$ is not divisible by ℓ, but the image of Q is. This means that the order of P is divisible by ℓ but the order of Q is prime to ℓ, contrary to (1).

Corollary 6. Let K be a number field, \mathcal{O}_{K} its ring of integers, and \mathcal{O} the coordinate ring of an open subscheme of $\operatorname{Spec} \mathcal{O}_{K}$. Let $\mathscr{A}_{1}, \mathscr{A}_{2}$ be abelian schemes over \mathcal{O} and $P_{i} \in \mathscr{A}_{i}(\mathcal{O})$ arbitrary sections. Suppose that for all $n \in \mathbb{Z}$ and all prime ideals \mathfrak{p} of \mathcal{O}, we have the implication

$$
n P_{1} \equiv 0(\bmod \mathfrak{p}) \Rightarrow n P_{2} \equiv 0(\bmod \mathfrak{p})
$$

Then there exist a positive integer k and an endomorphism $\psi \in \operatorname{Hom}_{\mathcal{O}}\left(\mathscr{A}_{1}, \mathscr{A}_{2}\right)$ such that

$$
\psi\left(P_{1}\right)=k P_{2} .
$$

Proof. Let $\mathscr{A}=\mathscr{A}_{1} \times \mathscr{A}_{2}, P=\left(P_{1}, 0\right), Q=\left(0, P_{2}\right)$. Applying Theorem 1, we conclude that there exist a positive integer k and an endomorphism

$$
\phi \in \operatorname{End}_{\mathscr{O}} \mathscr{A}=\operatorname{End}_{\mathscr{O}} \mathscr{A}_{1} \times \operatorname{End}_{\mathscr{O}} \mathscr{A}_{2} \times \operatorname{Hom}_{\mathscr{O}}\left(\mathscr{A}_{1}, \mathscr{A}_{2}\right) \times \operatorname{Hom}_{\mathcal{O}}\left(\mathscr{A}_{2}, \mathscr{A}_{1}\right)
$$

such that $\phi(P)=k Q$. Letting ψ denote the image of ϕ under projection to $\operatorname{Hom}_{\mathcal{O}}\left(\mathscr{A}_{1}, \mathscr{A}_{2}\right)$, we obtain the corollary.

Acknowledgments

I would like to thank R. Schoof for his helpful comments on earlier versions of this paper.

References

[1] N. Ailon, Z. Runick, Torsion points on curves and common divisors of $a^{k}-1$ and $b^{k}-1$, preprint, February 28, 2002, arXiv: math.NT/0202102 v2.
[2] G. Banaszak, W. Gajda, P. Krasoń, A support problem for the intermediate Jacobians of ℓ-adic representations, preprint, January 29, 2002, http://www.math.uiuc.edu/Algebraic-NumberTheory/0332.
[3] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 21, Springer, Berlin, 1990.
[4] C. Corrales-Rodrigáñez, R. Schoof, The support problem and its elliptic analogue, J. Number Theory 64 (2) (1997) 276-290.
[5] P. Deligne, Conjectures de Tate et Shafarevitch, Séminaire Bourbaki 1983/84, No. 616, Astérisque 121/122 (1985) 25-41.
[6] C. Khare, D. Prasad, Reduction of homomorphisms $\bmod p$ and algebraicity, preprint, November 1, 2002, arXiv: math. NT/0211004v1.
[7] E. Kowalski, Some local-global applications of Kummer theory, preprint.
[8] S. Lang, Algebra, 2nd Edition, Addison-Wesley, Menlo Park, CA, 1984.
[9] J-P. Serre, Lettre à Daniel Bertrand du 8/6/1984, Euvres, Collected Papers, Vol. IV, Springer-Verlag, Berlin, 2000.
[10] J-P. Serre, Lettre à Ken Ribet du 7/3/1986, Euvres, Collected Papers, Vol. IV, Springer-Verlag, Berlin, 2000.
[11] S. Wong, Power residues on abelian varieties, Manuscripta Math. 102 (2000) 129-138.

[^0]: E-mail address: larsen@math.indiana.edu.
 ${ }^{1}$ Partially supported by NSF Grant DMS-0100537.

