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A finite subgroup G of GL(n,C) is involutory if the sum of the
dimensions of its irreducible complex representations is given by
the number of absolute involutions in the group, i.e. elements
g ∈ G such that g ḡ = 1, where the bar denotes complex conju-
gation. A uniform combinatorial model is constructed for all non-
exceptional irreducible complex reflection groups which are involu-
tory including, in particular, all infinite families of finite irreducible
Coxeter groups.
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1. Introduction

In their paper [7] Bernstein, Gelfand and Gelfand introduced the problem of the construction of a
model of a group G , i.e. a representation which is the direct sum of all irreducible complex represen-
tations of G with multiplicity one. We can find several constructions of models in the literature for
the symmetric group [2,3,11,13–15] and for some other special classes of complex reflection groups
[1,4–6].

A complex reflection group, or simply a reflection group, is a subgroup of GL(V ), where V is
a finite dimensional complex vector space, generated by reflections, i.e. by elements of finite order
which fix a hyperplane pointwise. There is a well-known classification of irreducible reflection groups
due to Shephard and Todd [18] including an infinite family G(r, p,n) depending on 3 parameters
together with 34 exceptional cases. As mentioned above one can find in the literature models for
some reflection groups such as the wreath product groups G(r,1,n) as well as the groups G(2,2,n),
which are better known as the Weyl groups of type D .

If G is a finite subgroup of GL(n,C), a specialization of a theorem of Bump and Ginzburg [8]
gives a combinatorial description of the character of a model of the group G if its dimension is given
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by the number of absolute involutions of G (i.e. elements g ∈ G such that g ḡ = 1). We say that a
group satisfying this condition is involutory. We show that a complex reflection group G(r, p,n) is
involutory if and only if GCD(p,n) = 1,2, and the main result of this paper is an explicit and uniform
construction of a model for all these groups. This construction involves in a crucial way the theory of
projective reflection groups developed in [9]. Indeed a byproduct of this construction is also a model
for some related projective reflection groups. The specialization of our model to the symmetric group
G(1,1,n) coincides with the one already appearing in [2,15], while it is apparently new in all other
cases.

The paper is organized as follows. In Section 2 we collect the notation and the preliminary results
which are needed. In Section 3 we face the case of wreath products G(r,1,n) separately so that the
reader may understand the technical ideas developed in the general construction in a more natural
way. In Section 4 we classify all projective reflection groups of the form G(r, p,q,n) (see Section 2
for the definition) which are involutory. Finally in Section 5 we state and prove the main result
of this work which provides a model for all involutory reflection groups. The paper ends with a
conjecture about a further decomposition of the model constructed into the direct sum of two natural
submodules.

2. Notation and preliminaries

In this section we collect the notations that are used in this paper as well as the preliminary
results that are needed.

We let Z be the set of integer numbers and N be the set of nonnegative integer numbers. For

a,b ∈ Z, with a � b we let [a,b] = {a,a + 1, . . . ,b} and for n ∈ N we let [n] def= [1,n]. For r ∈ N we let

Zr
def= Z/rZ. If r ∈ N, r > 0, we denote by ζr the primitive r-th root of unity ζr

def= e
2π i

r .
The main subject of this work are the complex reflection groups [17], or simply reflection groups,

with particular attention to their combinatorial representation theory. The most important example of
a complex reflection group is the group of permutations of [n], known as the symmetric group, that
we denote by Sn . We know by the work of Shephard and Todd [18] that all but a finite number of
irreducible reflection groups are the groups G(r, p,n) that we are going to describe. If A is a matrix
with complex entries, we denote by |A| the real matrix whose entries are the absolute values of the
entries of A. The wreath product groups G(r,n) = G(r,1,n) are given by all n × n matrices satisfying
the following conditions:

• the non-zero entries are r-th roots of unity;
• there is exactly one non-zero entry in every row and every column (i.e. |A| is a permutation

matrix).

If p divides r then the reflection group G(r, p,n) is the subgroup of G(r,n) given by all matrices
A ∈ G(r,n) such that det A

det |A| is a r
p -th root of unity.

Following [9], a projective reflection group is a quotient of a reflection group by a scalar subgroup.
Observe that a scalar subgroup of G(r,n) is necessarily a cyclic group of the form Cq = 〈ζq I〉 of order q,
for some q | r.

It is also easy to characterize all possible scalar subgroups of the groups G(r, p,n): in fact the

scalar matrix ζq I belongs to G(r, p,n) if and only if q | r and pq | rn. In this case we let G(r, p,q,n)
def=

G(r, p,n)/Cq . If G = G(r, p,q,n) then the projective reflection group G∗ def= G(r,q, p,n), where the
roles of the parameters p and q are interchanged, is always well defined. We say that G∗ is the dual
of G and we refer the reader to [9] for the main properties of this duality. In this paper we will see
another important occurrence of the relationship between a group G and its dual G∗ .

If the non-zero entry in the i-th row of g ∈ G(r,n) is ζ
zi
r we let zi(g)

def= zi ∈ Zr and say that
z1(g), . . . , zn(g) are the colors of g . We can also note that g belongs to G(r, p,n) if and only if∑

zi(g) ≡ 0 mod p.
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We sometimes think of an element g ∈ G(r,n) as a colored permutation, i.e. as the map

〈ζr〉[n] → 〈ζr〉[n],
ζ k

r i �→ ζ
k+zi(g)
r |g|(i),

where 〈ζr〉[n] is the set of numbers of the form ζ k
r i for some k ∈ Zr and i ∈ [n], and |g| ∈ Sn is the

permutation defined by |g|(i) = j if gi, j 	= 0. We may observe that an element g ∈ G(r,n) is uniquely
determined by the permutation |g| and by its colors zi(g) for all i ∈ [n].

A colored cycle c (of an element g ∈ G(r,n)) is an object of the form

c =
[

i1 i2 · · · id

ζ
zi1
r i2 ζ

zi2
r i3 · · · ζ

zid
r i1

]
,

where the entries i1, . . . , id ∈ [n] are distinct and g(i j) = ζ
zi j
r i j+1 (with id+1 = i1). We define the

support of c by Supp(c) = {i1, . . . , id}, the color of c by z(c) = ∑
j zi j and the length of c by �(c) = d.

We say that two cycles are disjoint if their supports are. The decomposition of an element in G(r,n)

into the product of disjoint colored cycles is then similar to the classical one for the symmetric
group. If g ∈ G(r,n) we let ḡ ∈ G(r,n) be the complex conjugate of g . We can also observe that ḡ
is determined by the conditions |ḡ| = |g| and zi(ḡ) = −zi(g) for all i ∈ [n]. Since the bar operator
stabilizes the cyclic subgroup Cq = 〈ζq I〉 it is well defined also on the projective reflection groups
G(r, p,q,n).

In [9] we can find a parametrization of the irreducible representations of the groups G(r, p,q,n),
that we briefly recall for the reader’s convenience. Given a partition λ = (λ1, . . . , λl) of n, the Ferrers
diagram of shape λ is a collection of boxes, arranged in left-justified rows, with λi boxes in row i.
We denote by Fer(r,n) the set of r-tuples (λ(0), . . . , λ(r−1)) of Ferrers diagrams such that

∑ |λ(i)| = n.

If μ ∈ Fer(r,n) we define the color of μ by z(μ) = ∑
i i|λ(i)| and if p | r we let Fer(r, p,n)

def= {μ ∈
Fer(r,n): z(μ) ≡ 0 mod p}. If μ ∈ Fer(r,n) we denote by S T μ the set of all possible fillings of the
boxes in μ with all the numbers from 1 to n appearing once, in such way that rows are increasing
from left to right and columns are increasing from top to bottom in every single Ferrers diagram

of μ. We also say that S T μ is the set of standard tableaux of shape μ. Moreover we let S T (r,n)
def=⋃

μ∈Fer(r,n) S T μ and we similarly define S T (r, p,n).
If q ∈ N is such that q | r and pq | nr then the cyclic group Cq acts on Fer(r, p,n) and on

S T (r, p,n) by a shift of r/q positions of its elements (see [9, Lemma 6.1]). The corresponding quo-
tient sets are denoted by Fer(r, p,q,n) and S T (r, p,q,n). If T ∈ S T (r, p,q,n) we denote by μ(T )

its corresponding shape in Fer(r, p,q,n) and if μ ∈ Fer(r, p,q,n) we let S T μ
def= {T ∈ S T (r, p,q,n):

μ(T ) = μ}.

Proposition 2.1. The irreducible complex representations of G(r, p,q,n) can be parametrized by pairs (μ,ρ),
where μ ∈ Fer(r,q, p,n) and ρ ∈ (C p)μ , the stabilizer of any element in the class μ by the action of C p , so
that the dimension of the irreducible representation indexed by (μ,ρ) is independent of ρ and it is equal to
|S T μ|.

In [9, §10] it is explicitly shown a generalized version of the classical Robinson–Schensted corre-
spondence [19, §7.11] for the symmetric groups and of the Stanton–White correspondence [20] for
the wreath products G(r,n), which is valid for all projective reflection groups G(r, p,q,n). We refer
to this correspondence as the projective Robinson–Schensted correspondence. We do not describe this
correspondence explicitly, but we state all the properties that we need in this paper in the following
result.
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Theorem 2.2. There exists a map

G(r, p,q,n) → S T (r, p,q,n) × S T (r, p,q,n),

g �→ [
P (g), Q (g)

]
,

satisfying the following properties:

(1) P (g) and Q (g) have the same shape in Fer(r, p,q,n) for all g ∈ G(r, p,q,n);
(2) if P , Q ∈ S T (r, p,q,n) have the same shape μ then

∣∣{g ∈ G(r, p,q,n): P (g) = P and Q (g) = Q
}∣∣ = ∣∣(Cq)μ

∣∣,
where (Cq)μ is the stabilizer in Cq of any element in the class μ;

(3) if g �→ [(P0, . . . , Pr−1), (Q 0, . . . , Q r−1)] then

ḡ−1 �→ [
(Q 0, . . . , Q r−1), (P0, . . . , Pr−1)

]
,

ζr g �→ [
(P1, . . . , Pr−1, P0), (Q 1, . . . , Q r−1, Q 0)

]
.

If G is a finite group we let Irr(G) be the set of irreducible complex representations of G . If M is
a complex vector space and ρ : G → GL(M) is a representation of G we say that the pair (M,ρ) is a
G-model if the character χρ is the sum of the characters of all irreducible representations of G over C,
i.e. M is isomorphic as a G-module to the direct sum of all irreducible modules of G with multiplicity
one. Sometimes we simply say that M is a G-model if we do not need to know the map ρ explicitly
or if it is clear from the context. It is clear that two G-models are always isomorphic as G-modules,
and so we can also speak about “the” G-model. The last result in this section is a beautiful theorem
of Bump and Ginzburg, which generalizes a classical theorem of Frobenius and Schur [10], and allows
us in some cases to determine the character of the model of a finite group if we know its dimension.

Theorem 2.3. (See [8, Theorem 7].) Let G be a finite group, τ ∈ Aut(G) with τ 2 = 1 and M be a G-model.
Assume that

dim(M) = #
{

g ∈ G: gτ (g) = z
}
,

where z is a central element in G such that z2 = 1. Then

χM(g) = #
{

u ∈ G: uτ (u) = gz
}
.

3. The special case of wreath products

In this section we let G = G(r,n) and I = I(r,n) be the set of absolute involutions of G , i.e. elements
g such that g ḡ = 1. One can check that these are exactly the symmetric matrices in G(r,n). It is
known [2] and it can be easily deduced from Proposition 2.1 and Theorem 2.2, that the dimension of
a G-model is equal to the cardinality of I . So we can consider the formal vector space

M
def=

⊕
CCv
v∈I
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having a basis indexed by the absolute involutions of G . In [2] it is shown how one can give to M
the structure of a G-model. To describe this model we need some further notation. If σ ,τ ∈ Sn with
τ 2 = 1 we let invτ (σ ) = |{Inv(σ ) ∩ Pair(τ )}|, where

Inv(σ ) = {{i, j}: ( j − i)
(
σ( j) − σ(i)

)
< 0

}
and

Pair(τ ) = {{i, j}: τ (i) = j 	= i
}
.

If g, v ∈ G(r,n) with v v̄ = 1 we let invv (g) = inv|v|(|g|). If r is even we also let

B(g, v) = {
i:

∣∣v(i)
∣∣ = i, zi(v) = 2ki(v) + 1 with

ki(v) ∈ [0, r/2 − 1] and ki(v) + zi(g) ∈ [r/2, r − 1]}.
The following result is proved in [2].

Theorem 3.1. Let ρ : G → GL(M) be defined by

ρ(g)Cv =
{

(−1)invv (g)C gvgt if r is odd,

(−1)invv (g)(−1)#B(g,v)C gvgt if r is even,

where gt denotes the matrix transposed of g. Then (M,ρ) is a G-model.

The first target of this work is to give to M another structure of a model for G whose definition
does not depend on the parity of r and that will allow us to obtain models for other (projective)
reflection groups. If g, g′ ∈ G(r,n) we let

〈
g, g′〉 = ∑

i

zi(g)zi
(

g′) ∈ Zr .

So 〈g, g′〉 is a sort of a scalar product between the color vectors of g and g′ .

Theorem 3.2. Let 
 : G → GL(M) be defined by


(g)Cv = ζ
〈g,v〉
r (−1)invv (g)C|g|v|g|−1 .

Then (M,
) is a G-model.

We observe that in this model the conjugation on the basis elements depends only on |g| and
so we naturally have a finer decomposition of M into invariant submodules that will be partially
described later in this section. Theorem 3.2 is a particular case of the main result of this paper
(Theorem 5.4), but we prefer to prove it separately so that the reader may understand the ideas
developed in this work in a more natural way. The proof of Theorem 3.2 is split into several steps
and, as one may have already suspected, it has a certain superposition with the proof of Theorem 3.1
in [2] so that some parts of the proof will be sketched only.

The first target is to prove that 
 is a representation of G . For this we need the following technical
result.
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Lemma 3.3. Let g, g′ ∈ G(r,n) and σ ∈ Sn. Then

• zi(gg′) = zi(g′) + z|g′ |(i)(g);
• zi(σ gσ−1) = zσ−1(i)(g).

Proof. Note that zi(g) is uniquely determined by the requirement g(i) = ζ
zi(g)
r |g|(i). So we compute

gg′(i) = ζ
zi(g′)
r g

(∣∣g′∣∣(i)
) = ζ

zi(g′)
r ζ

z|g′ |(i)(g)

r |g|(∣∣g′∣∣(i)
) = ζ

zi(g′)+z|g′ |(i)(g)

r

∣∣gg′∣∣(i)

and the first part is complete. We then apply the first part to obtain

zi
(
σ gσ−1) = zi

(
σ−1) + zσ−1(i)(σ g)

= zi
(
σ−1) + zσ−1(i)(g) + z|g|σ−1(i)(σ )

= zσ−1(i)(g),

where we have used the fact that zi(σ ) = 0 for all i ∈ [n] and for all σ ∈ Sn . �
For notational convenience we let φg(v) = ζ

〈g,v〉
r (−1)invv (g) , where g ∈ G and v ∈ I .

Proposition 3.4. For all g,h ∈ G and v ∈ I we have φgh(v) = φg(|h|v|h|−1)φh(v) and in particular the map

 : G → GL(M) defined in Theorem 3.2 is a group homomorphism.

Proof. To prove the claim it is enough to show that

(1) invv(gh) ≡ invv(h) + inv|h|v|h|−1(g) mod 2;

(2)
∑

zi(gh)zi(v) = ∑
zi(h)zi(v) + ∑

zi(g)zi(|h|v|h|−1).

The first part can be proved as in [2, Definition 6.1]. For the second part we apply Lemma 3.3 twice
in the first and in the last lines of the following computation

∑
zi(gh)zi(v) =

∑
zi(h)zi(v) +

∑
z|h|(i)(g)zi(v)

=
∑

zi(h)zi(v) +
∑

zi(g)z|h|−1(i)(v)

=
∑

zi(h)zi(v) +
∑

zi(g)zi
(|h|v|h|−1),

and the proof is complete. �
Next we have to show that the character χ
 of the representation 
 coincides with the character

of the model of G . The conditions of Theorem 2.3 are satisfied for G = G(r,n) with z = 1 and τ equal
to the bar operator and in particular we deduce that the value of the character of the model on an
element g is equal to the number of absolute square roots of g , i.e. the number of elements u ∈ G such
that uū = g . The number of absolute square roots of an element can be computed as in [2] and we
recall it because we will need it explicitly in Section 5. For this we need the reader to go through the
following observations.

Let c be a colored cycle of length d. If d is odd then cc̄ = c′ , where c′ is a cycle of length d such
that z(c′) = 0. If d is even then cc̄ = c1c2 where c1 and c2 are two disjoint colored cycles of length
d/2 such that z(c1)+ z(c2) = 0. On the other hand, if c′ is a colored cycle of length d, with d odd, and
such that z(c′) = 0, then there are exactly r colored cycles c of length d such that cc̄ = c′ , and if c1
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and c2 are two disjoint colored cycles of length d such that z(c1) + z(c2) = 0, then there exist exactly
rd cycles c of length 2d such that cc̄ = c1c2. It is therefore natural to classify absolute square roots of
a given element depending on the respective cycle structures.

For this reason we denote by Π2,1(g) the set of partitions of the set of disjoint cycles of g into
singletons and pairs of cycles having the same length.

Example 3.5. If g ∈ G(3,9) is given by

(
g(1), g(2), . . . , g(9)

) = (
ζ34, ζ 2

3 2, ζ 0
3 8, ζ 2

3 1, ζ 1
3 5, ζ 0

3 7, ζ 0
3 6, ζ 2

3 9, ζ33
)
,

then the colored cycles of g are

c1 =
(

1 4
ζ34 ζ 2

3 1

)
, c2 =

(
2

ζ 2
3 2

)
, c3 =

(
3 8 9

ζ 0
3 8 ζ 2

3 9 ζ33

)
,

c4 =
(

5
ζ 1

3 5

)
, c5 =

(
6 7

ζ 0
3 7 ζ 0

3 6

)
.

In this case we have Π2,1(g) contains four partitions and these are

π1 = {{c1, c5}, {c2, c4}, {c3}
}
, π2 = {{c1}, {c5}, {c2, c4}, {c3}

}
,

π3 = {{c1, c5}, {c2}, {c4}, {c3}
}
, π4 = {{c1}, {c5}, {c2}, {c4}, {c3}

}
.

If π = {s1, . . . , sh} ∈ Π2,1(g) we let z(si) be the sum of the colors of the (either one or two) cycles
in si , �(π) = h and pair j(π) be the number of pairs of cycles of length j in π .

Let π = {s1, . . . , sh} ∈ Π2,1(g). We say that an absolute square root u of g is of type π if the
following conditions are satisfied: for every i ∈ [h], if si = {c′} is a singleton then there exists a cycle
c of u such that cc̄ = c′ , and if si = {c1, c2} is a pair then there exists a cycle c of u such that
cc̄ = c1c2. From the previous observations we have that the number of absolute square roots of type
π = {s1, . . . , sh} is zero unless all singletons of π have odd length and z(si) = 0 for all i ∈ [h]. If these
conditions are satisfied then the number of absolute square roots of type π is rh ∏

j jpair j(π) . This is
recorded in the following result.

Proposition 3.6. Let χ be the character of the model of G(r,n) and g ∈ G(r,n). Then

χ(g) =
∑
π

r�(π)
∏

j

jpair j(π),

where the sum is taken over all partitions π ∈ Π2,1(g) having no singletons of even length and such that
z(s) = 0 for all s ∈ π .

In Example 3.5 the partition π1 is the unique element in Π2,1(g) having no singletons of
even length and such that z(s) = 0 for all s ∈ π1. Therefore we have χ(g) = r�(π1)

∏
j jpair j(π1) =

331121 = 54.
So to prove Theorem 3.2 we have to show that χ
 agrees with the character of the model de-

scribed in Proposition 3.6. With this in mind we need to study the set Fix(g) = {v ∈ I: |g|v|g|−1 = v}.
Again, this can be done using ideas similar to those in [2].

If s is any set of cycles of g ∈ G(r,n) we let Supp(s), the support of s, be the union of the supports
of the cycles in s. If S ⊂ N is finite we let G(r, S) be the set of functions g : 〈ζr〉S → 〈ζr〉S satisfying
the following conditions:
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Table 1

s S+
s |S+

s |
(i1, . . . , id), d odd i j �→ ζ k

r i j r

(i1, . . . , id), d even
i j �→ ζ k

r i j 2r
i j �→ ζ k

r i j+ d
2

(i1, . . . , id)( j1, . . . , jd) ih �→ ζ k
r jh+l and jh �→ ζ k

r ih−l dr

• for any i ∈ S there exists zi ∈ Zr such that g(ζ h
r i) = ζ

h+zi
r j for some j ∈ S;

• the map i �→ |g(i)| is a permutation of S .

In particular we have that G(r,n) = G(r, [n]).
Note that the set Fix(g) depends only on |g| and that there is a trivial bijection between the

colored cycles of g and the cycles of |g| preserving supports and lengths. So, depending on the point
we need to stress we will consider a partition π of the cycles of g as a partition of the cycles of |g|
and vice versa.

Let π ∈ Π2,1(|g|). For any s ∈ π we define a set of absolute involutions S+
s ⊂ G(r,Supp(s)) in the

following way.

• If s = {(i1, . . . , id)} is a singleton and d is odd we let

S+
s =

⋃
k∈Zr

{
v ∈ G

(
r,Supp(s)

)
: v(i j) = ζ k

r i j
};

• if s = {(i1, . . . , id)} is a singleton and d is even we let

S+
s =

⋃
k∈Zr

({
v ∈ G

(
r,Supp(s)

)
: v(i j) = ζ k

r i j
} ∪ {

v ∈ G
(
r,Supp(s)

)
: v(i j) = ζ k

r i j+ d
2

});
• if s = {(i1, . . . , id), ( j1, . . . , jd)} is a pair of cycles of the same length we let

S+
s =

⋃
k∈Zr

⋃
l∈Zd

{
v ∈ G

(
r,Supp(s)

)
: v(ih) = ζ k

r jh+l and v( jh) = ζ k
r ih−l

}
.

The reason why we use the symbol S+ will be clarified in Section 5. The description of the sets S+
s

is summarized in Table 1. Inside any cell of the second column in Table 1 the parameters k ∈ Zr and
l ∈ Zd are arbitrary but fixed.

If π = {s1, . . . , sh} we let Fixπ = {v1 · · · vh: vi ∈ S+
si
} ⊂ I . Then, as shown in [2], we have the

following description of Fix(g)

Fix(g) =
⋃

π∈Π2,1(g)

Fixπ ,

this being a disjoint union.
The computation of φg(v) can also be split with respect to this decomposition.

Lemma 3.7. Let g ∈ G(r,n) and π = {s1, . . . , sh} ∈ Π2,1(g). Then for every vi ∈ S+
si

invv1···vh (g) =
∑

invvi (gi)
i
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and

〈g, v1 · · · vh〉 =
∑

i

〈gi, vi〉,

where gi ∈ G(r,Supp(si)) is the restriction of g to Supp(si).

Proof. This is a straightforward verification. �
Lemma 3.8. Let g ∈ G(r,n) and π = {s1, . . . , sh} ∈ Π2,1(g). Let gi be the restriction of g to Supp(si) and
vi ∈ S+

si
. Then invvi (gi) is odd if and only if si = {(i1, . . . , id)} is a singleton of even length and vi : i j �→ ζ k

r i j+ d
2

for some k ∈ Zr .

Proof. This is proved in [1, Observation 3.7]. �
We are now ready to collect these results and give a complete proof of the main result of this

section.

Proof of Theorem 3.2. By Proposition 3.6 we have to show that for any g ∈ G

∑
v∈Fix(g)

φg(v) =
∑
π

r�(π)
∏

j

jpair j(π),

where the last sum is taken over all partitions π ∈ Π2,1(g) having no singletons of even length
and such that z(s) = 0 for all s ∈ π . We split the first sum according to the decomposition Fix(g) =⋃

π∈Π2,1(g) Fixπ .
Following [2], if s = {(i1, . . . , id)} ∈ π is a singleton of even length we define an involution

ι : S+
s → S+

s by

(
i j �→ ζ k

r i j
) ι�→ (

i j �→ ζ k
r i j+ d

2

)
.

Now suppose that π = {s1, . . . , sh} ∈ Π2,1(g) has a singleton of even length, say s1, and let v1 · · · vh ∈
Fixπ with vi ∈ S+

si
. Then, by Lemmas 3.7 and 3.8, we have

(−1)invv1 ···vh (g) = −(−1)
invι(v1)v2 ···vh

(g)

whilst 〈g, v1 · · · vh〉 = 〈g, ι(v1)v2 · · · vh〉. It follows that if π has a part which is a singleton of even
length then

∑
v∈Fixπ

φg(v) = 0.

So we can restrict our attention on partitions π = {s1, . . . , sh} ∈ Π2,1(g) having no singletons of even
length. In this case invv(g) is even for all v ∈ Fixπ by Lemmas 3.7 and 3.8 and so we have

∑
v∈Fixπ

φg(v) =
∑

v∈Fixπ

ζ
〈g,v〉
r

=
h∏

i=i

( ∑
vi∈S+

s

ζ
〈gi ,vi〉
r

)
.

i
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Now, by Table 1, any element in S+
si

is the scalar multiple of an element wi ∈ S+
si

such that z j(wi) = 0
for all j ∈ Supp(si) and, on the other hand, any scalar multiple of an element wi with this property

is still in S+
si

. So the sum
∑

vi∈S+
si

ζ
〈gi ,vi〉
r can be split into sums of the form

∑r
k=1 ζ

〈gi ,ζ
k
r wi〉

r , where

wi ∈ S+
si

is such that z j(wi) = 0 for all j ∈ Supp(si). The computation of this sum gives

r∑
k=1

ζ
〈gi ,ζ

k
r wi〉

r =
r∑

k=1

ζ
kz(si)
r =

r∑
k=1

(
ζ

z(si)
r

)k
.

In particular we have that if z(si) is not zero then the sum vanishes. On the other hand, if z(si) = 0
for all i the previous computation shows that φg(v) = 1 for all v ∈ Fixπ . The number of elements in
Fixπ can be easily deduced from Table 1: this is r�(π)

∏
j jpair j(π) and the proof is complete. �

We may observe that the absolute involutions of G(r, p,n) span a submodule of M . A natural
problem is to understand which representations of G(r,n) appear in this submodule. The follow-
ing refinement of Theorem 3.2 establishes a model for all projective reflection groups of the form
G(r,1, p,n) and gives a simple solution to the previous problem.

Corollary 3.9. Let I(r, p,n) be the set of absolute involutions in G(r, p,n) and

M(r, p,n) =
⊕

v∈I(r,p,n)

CCv .

Then

χM(r,p,n) =
∑

μ∈Fer(r,p,n)

χμ,

and in particular (M(r, p,n),
) is a G(r,1, p,n)-model.

Proof. The irreducible representations of G(r,1, p,n) are exactly the irreducible representations of
G(r,n) indexed by μ ∈ Fer(r, p,n), by Proposition 2.1. Moreover, since G(r,1, p,n) is the quotient of
G(r,n) by 〈ζ r/p

r 〉, these are also the irreducible representations of G(r,n) which are fixed pointwise
by the scalar element ζ

r/p
r . Now we have that



(
ζ

r/p
r

)
(Cv) = ζ

〈ζ r/p
r ,v〉

r (−1)invv (ζ
r/p
r )C|ζ r/p

r |v|ζ r/p
r |−1 = ζ

r
p z(v)

r Cv .

So the basis element Cv is fixed by ζ
r/p
r if and only if v ∈ G(r, p,n). On the other hand the dimension

of a model for G(r,1, p,n) is equal to |I(r, p,n)| by Proposition 2.1 and Theorem 2.2 and so there are
no other independent elements fixed by ζ

r/p
r and the proof is complete. �

One may ask about some further refinements of the previous corollary. For example is it true
that the representations indexed by elements μ ∈ Fer(r,n) satisfying z(μ) = k are afforded by the
submodule of M spanned by the absolute involutions v satisfying z(v) = k?

An even finer result is desirable. Let (i1, . . . , ir; j1, . . . , jr) be a 2r-tuple of nonnegative integers
such that 2(i1 + · · · + ir) + j1 + · · · + jr = n. Then the absolute involutions in G(r,n) having ik 2-
cycles colored with k and jk 1-cycles colored with k span a submodule. One may conjecture that the
irreducible representations of G(r,n) appearing in this submodule are exactly those corresponding to
the shapes of the elements of this form by the Robinson–Schensted correspondence (Theorem 2.2).
This conjecture has been verified to be true for the Weyl groups of type B and rank n < 6.
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4. Involutory projective reflection groups

In this section we start the investigation of a model for the projective reflection groups G(r, p,q,n).
The main result here is the characterization of the groups G(r, p,q,n) such that the dimension of a
G(r, p,q,n)-model is equal to the number of absolute involutions in G(r, p,q,n). In these groups we
can directly apply Theorem 2.3 to obtain a combinatorial description of the character of the model.

Proposition 4.1. The dimension of the model of a projective reflection group G(r, p,q,n) is equal to the
number of elements g in the dual group G(r,q, p,n) which correspond by means of the projective Robinson–
Schensted correspondence to pairs of the form [P , P ], for some P ∈ S T (r,q, p,n).

Proof. By Proposition 2.1 we have that

∑
φ∈Irr(G(r,p,q,n))

dim φ =
∑

μ∈Fer(r,q,p,n)

∣∣(C p)μ
∣∣|S T μ|,

and so the result follows from the second part of Theorem 2.2. �
The next target is to show that the absolute involutions in G∗ correspond to pairs of the form

[P , P ] under the projective Robinson–Schensted correspondence, and then to characterize those
groups for which the converse holds, i.e. the groups where the fact that v �→ [P , P ] implies that
v is an absolute involution.

If g ∈ G(r, p,q,n) we say that g is a symmetric element if any (equivalently every) lift of g in
G(r,n) is a symmetric matrix. We similarly define antisymmetric elements in G(r, p,q,n). Observe
that we can have antisymmetric elements only if r is even.

Lemma 4.2. Let g ∈ G(r, p,q,n). Then g is an absolute involution, i.e. g ḡ = 1, if and only if either g is sym-
metric, or q is even and g is antisymmetric.

Proof. If g is a symmetric element in G(r, p,n) then g ḡ = 1 and so the class of g is an absolute
involution in G(r, p,q,n). Similarly, if g ∈ G(r, p,n) is antisymmetric and q is even then g ḡ = −1 =
ζ

r
2

r = (ζ
r
q

r )
q
2 and so the class of g is an absolute involution in G(r, p,q,n). Now let g ∈ G(r, p,n) be

such that the class of g is an absolute involution in G(r, p,q,n). This implies that z
def= zi(g)− z|g|(i)(g)

is a multiple of r/q independent of i. Since |g| is an involution we also have that z = −z. This happens
if z = 0, in which case g is symmetric, or r is even and z = r

2 . Since this is a multiple of r
q we have

that q is even and that g is antisymmetric. �
Lemma 4.3. Let v ∈ G(r,n) with r even. Then the following are equivalent:

(1) v v̄ = −1;
(2) v �→ [(P0, . . . , Pr−1), (P r

2
, . . . , Pr−1, P0, . . . , P r

2 −1)] for some (P0, . . . , Pr−1) ∈ S T (r,n) by the
Robinson–Schensted correspondence for G(r,n).

Proof. By the third part of Theorem 2.2, if

v �→ [
(P0, . . . , Pr−1), (Q 0, . . . , Q r−1)

]
under the projective Robinson–Schensted correspondence then

−v = ζ
r
2

r v �→ [
(P r , . . . , Pr−1, P0, . . . , P r −1), (Q r , . . . , Q r−1, Q 0, . . . , Q r −1)

]
.

2 2 2 2
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Theorem 2.2 also provides us

v̄−1 �→ [
(Q 0, . . . , Q r−1), (P0, . . . , Pr−1)

]
.

The result follows since v v̄ = −1 if and only if −v = v̄−1 and the fact that the projective Robinson–
Schensted correspondence for G(r,n) is injective. �

We denote by I(r, p,q,n) the set of absolute involutions in G(r, p,q,n).

Proposition 4.4. Let G = G(r, p,q,n). Then

∑
φ∈Irr(G)

dim φ �
∣∣I(r,q, p,n)

∣∣.
Proof. By Proposition 4.1 it is enough to show that if v ∈ I(r,q, p,n) is an absolute involu-
tion then v �→ [P , P ], for some P ∈ S T (r,q, p,n). If v is symmetric this is clear by the third
part of Theorem 2.2. So, by Lemma 4.2, we can assume that p is even and v is antisym-
metric. By Lemma 4.3 any lift of v in G(r,n) corresponds to a pair of the form [P , Q ] =
[(P0, . . . , Pr−1), (P r

2
, . . . , Pr−1, P0, . . . , P r

2 −1)]. Since p is even we have that P and Q represent the
same element in S T (r,q, p,n) and the proof is complete. �
Theorem 4.5. Let G = G(r, p,q,n). Then

∑
φ∈Irr(G)

dim φ = ∣∣I(r,q, p,n)
∣∣

if and only if either GCD(p,n) = 1,2, or GCD(p,n) = 4 and r ≡ p ≡ q ≡ n ≡ 4 mod 8.

Proof. By Proposition 4.1 and (the proof of) Proposition 4.4 we may deduce that
∑

φ∈Irr(G) dimφ >

|I(r,q, p,n)| if and only if there exists an element g ∈ G(r,q, p,n) which is not an absolute involution
and such that g �→ [P , P ] for some P ∈ S T (r,q, p,n). By Lemma 4.3 this is the case if and only
if there exists d | p, d > 2 and a shape μ = (λ(0), . . . , λ(r−1)) ∈ Fer(r,q,n) invariant under a cyclic
permutation of order d (i.e. a shift of r/d steps on the indices). For in this case let P ∈ S T μ and P ′ be
the multitableau obtained by a cyclic permutation of the tableaux in P of order d. Then let v ∈ G(r,n)

be such that v �→ [P , P ′]. We have that P and P ′ represent the same class in S T (r,q, p,n) but the
class of v is not an absolute involution in G(r,q, p,n) by Lemma 4.3.

The integer d is necessarily also a divisor of n and so we can assume that GCD(p,n) > 2.
If GCD(p,n) has an odd factor we let d be any odd factor of GCD(p,n). If GCD(p,n) is a power

of 2 and either n/4 or r/q is even we let d = 4. In all these cases we can choose μ = (λ(0), . . . , λ(r−1))

where

λ(i) =
{

1n/d if i ≡ 0 mod r/d,

∅ otherwise,

and we can easily verify that z(μ) = ∑
i|λ(i)| = ∑d−1

j=0
rn
d2 j = rn(d−1)

2d ≡ 0 mod q and so μ ∈ Fer(r,q,n),
and that μ is invariant under the action of the cyclic group of order d.

So we are left with the case GCD(p,n) = 4, n/4 and r/q odd. In this case, since p | r we have 4 | r,
and the condition r/q odd implies 4 | q.
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If 8 | r let h be the smallest nonnegative representative of the class of − 3nr
32 modulo q/4. Note that

0 < h < r/4. Then we let μ = (λ(0), . . . , λ(r−1)) where

λ(i) =
{

1n/4−1 if i ≡ 0 mod r/4,

1 if i ≡ h mod r/4,

∅ otherwise.

In this case we have z(μ) = ∑
i|λ(i)| = 4h + 3nr

8 and this is clearly a multiple of q by construction and
so μ ∈ Fer(r,q,n). It is also clear that μ is invariant under the action of the cyclic group of order 4.

The last case to deal with is when r ≡ 4 mod 8, which also forces q ≡ 4 mod 8 since r/q is odd.
Moreover, the fact n/4 odd is equivalent to n ≡ 4 mod 8 and so the condition pq | nr together with
GCD(n, p) = 4 implies also p ≡ 4 mod 8. Under these hypotheses we have to prove that there is no
shape μ ∈ Fer(r,q,n) invariant under a cyclic permutation of order 4. In fact if μ = (λ(0), . . . , λ(r−1))

is invariant under a cyclic permutation of order 4 then

z(μ) =
r−1∑
i=0

i
∣∣λ(i)

∣∣ =
3∑

j=0

r/4−1∑
i=0

(i + jr/4)
∣∣λ(i)

∣∣ = 3nr

8
+ 4

r/4−1∑
i=0

i
∣∣λ(i)

∣∣.
This cannot be a multiple of q since 4 � 3nr

8 and the proof is complete. �
We conclude this section by showing that a projective reflection group G = G(r, p,q,n) and its

dual group G∗ always have the same number of absolute involutions. This fact will be the keypoint in
the description of the character of the model for the groups satisfying the conditions of Theorem 4.5.

Proposition 4.6. We always have

∣∣I(r, p,q,n)
∣∣ = ∣∣I(r,q, p,n)

∣∣.
Proof. We will show the following stronger fact. For any involution σ ∈ Sn we have

∣∣{g ∈ G: g ḡ = 1 and |g| = σ
}∣∣ = ∣∣{g ∈ G∗: g ḡ = 1 and |g| = σ

}∣∣. (1)

Suppose that σ has some fixed points. Then if g ∈ G is such that |g| = σ and g ḡ = 1 then necessarily
g is a symmetric element and we can easily prove that

∣∣{g ∈ G: g ḡ = 1 and |g| = σ
}∣∣ = rc

pq
,

where c is the number of cycles of σ and so Eq. (1) clearly follows in this case.
Now assume that σ has no fixed points. In this case one can show that the number of symmetric

elements

∣∣{g ∈ G: g is symmetric, g ḡ = 1 and |g| = σ
}∣∣ = GCD(2, p)

rc

pq
.

If q is even we have to consider also antisymmetric elements. In this case we can show that

∣∣{g ∈ G: g is antisymmetric, g ḡ = 1 and |g| = σ
}∣∣ =

{
0 if p is even and nr/4 is odd,

GCD(2, p) rc
otherwise.
pq
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Summing up we have that

∣∣{g ∈ G: g ḡ = 1 and |g| = σ
}∣∣ =

{
2 rc

pq if p and q are even and nr/4 is odd,

GCD(2, p)GCD(2,q) rc

pq otherwise.

Since these expressions are symmetric in p and q the proof is complete. �
We say that a projective reflection group G = G(r, p,q,n) is involutory if the dimension of a model

of G is equal to the number of absolute involutions in G . By Proposition 4.6 we have that G(r, p,q,n)

is involutory if and only if it satisfies the conditions in Theorem 4.5.
If we restrict our attention on standard reflection groups we may note that a group G(r, p,n) is

involutory if and only if GCD(p,n) = 1,2. In particular all infinite families of finite irreducible Coxeter
groups (these are An = G(1,1,n), Bn = G(2,1,n), Dn = G(2,2,n), I2(r) = G(r, r,2)) are involutory. The
main goal of this work is to establish a unified construction of a model for all involutory reflection
groups (and the corresponding quotients). This will be an extension of the model for the wreath
products described in Theorem 3.2, where we have to take care of the antisymmetric elements in a
particular way.

Remark. As pointed out by the referee, the fact that G(r, p,n) is involutory if GCD(p,n) = 1,2 can
also be deduced from known results in the following way. From the characterization of automorphism
of complex reflection groups appearing in [16, §1] one can deduce that, under these hypotheses, any
irreducible representation φ of G(r, p,n) can be realized by a matrix representation φ : G(r, p,n) →
GLn(C) satisfying φ(ḡ) = φ(g). Then a straightforward application of the twisted Schur–Frobenius
theory developed in [12] implies that G(r, p,n) is involutory.

5. Models

From the results of the previous section we have that the dimension of the model of an involutory
reflection group G is equal to the number of absolute involutions of G and also to the number of
absolute involutions of G∗ . In this section we show how we can give the structure of a G-model to
the formal vector space having a basis indexed by the absolute involutions in G∗ .

Unless otherwise stated, we let G = G(r, p,n) be an involutory reflection group, i.e. such that
GCD(p,n) = 1,2. By Theorem 2.3 we have that the character χ of a G-model is given by

χ(g) = ∣∣{u ∈ G: uū = g}∣∣,
so our first step is to compute the number of absolute square roots of a given element in G . We
already know from Section 3 how many and which are the absolute square roots of g in G(r,n), so
we have to understand how many of these are in G(r, p,n).

The following is a technical result which is certainly already known but we state it for future
reference and we also sketch a proof of it.

Lemma 5.1. Let a1, . . . ,ak,b ∈ Z. Then the modular equation

∑
i

aixi ≡ b mod p

is solvable if and only if d = GCD(a1, . . . ,ak, p) | b and in this case the number of solutions modulo p
is pk−1d.
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Proof. The condition on d is clearly necessary. For the sufficiency we have to solve the equivalent
equation

∑
i

ai

d
xi ≡ b

d
mod

p

d
.

It is known that the fact GCD(a1/d, . . . ,ak/d, p/d) = 1 implies that the coefficients a1/d, . . . ,ak/d
represent the first line of an invertible matrix A ∈ GL(k,Zp/d). So if we consider the following change
of coordinates (x′

1, . . . , x′
k)

t = A(x1, . . . , xk)
t then the equation becomes x′

1 ≡ b
d mod p

d . This implies
that we can choose any value for x′

2, . . . , x′
k while the value of x′

1 is uniquely determined modulo p/d.
The result follows. �

Let u ∈ G(r,n) be such that uū = g . Let π ∈ Π2,1(g) be the type of u as defined in Section 3.
Recall that there is a bijection between cycles of u and parts of π preserving supports and lengths. Let
c1, . . . , ch be the cycles of u and s1, . . . , sh be the parts of π , where �(ci) = �(si) = �i and Supp(ci) =
Supp(si) for all i ∈ [h]. Then all elements in G(r,n) obtained by multiplying (the second line of) any
cycle of u by an r-th root of unity are still absolute square roots of g of type π . So we denote by
u(x1, . . . , xh) the absolute square root of g whose cycles are (ζ

x1
r c1, . . . , ζ

xh
r ch). How many of these rh

elements are in G(r, p,n)? In other words how many solutions modulo r does the modular equation
in h variables

z
(
u(x1, . . . , xh)

) = z(u) +
h∑

i=1

�i xi ≡ 0 mod p (2)

have? Now, since
∑

�i = n, if there is a cycle of odd length or GCD(p,n) = 1 we necessarily have
GCD(�1, . . . , �h, p) = 1 and hence, by Lemma 5.1 we have exactly ph−1 solutions modulo p and so the
number of solutions modulo r is ph−1(r/p)h = rh/p. Now assume that all cycles have even length and
that GCD(p,n) = 2. In this case Eq. (2) has solutions if and only if z(u) ≡ 0 mod 2, by Lemma 5.1. The
following result, whose proof is a straightforward verification, is the keypoint to understand when
this happens.

Lemma 5.2. Let c = [ i1 i2 ··· id

ζ
z1
r i2 ζ

z2
r i3 ··· ζ

zd
r i1

]
, with d even, be a colored cycle. Then cc̄ = c1c2 where

c1 =
[

i1 i3 · · · id−1

ζ
z1−z2
r i3 ζ

z3−z4
r i5 · · · ζ

zd−1−zd
r i1

]

and

c2 =
[

i2 i4 · · · id
ζ

z2−z3
r i4 ζ

z4−z5
r i6 · · · ζ

zd−z1
r i2

]
.

In particular, for r even, z(c) ≡ z(c1) ≡ z(c2) mod 2.

By Lemma 5.2 the parity of z(u) is equal to the number of pairs of cycles of π having an odd color.
If this number is odd, Eq. (2) has no solutions, while if it is even the number of solutions modulo p
is 2ph−1 and hence we have 2ph−1(r/p)h = 2rh/p solutions modulo r of Eq. (2). We can summarize
these observations in the following result.

Proposition 5.3. Let GCD(p,n) = 1,2 and g ∈ G(r, p,n). Then the number of absolute square roots of g in
G(r, p,n) is
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∑
φ∈Irr(G(r,p,n))

χφ(g) = 1

p

∑
π

επ r�(π)
∏

j

jpair j(π),

where, if π = {s1, . . . , sh},

επ =

⎧⎪⎨
⎪⎩

1 if GCD(p,n, �(s1), . . . , �(sh)) = 1,

2 if GCD(p,n, �(s1), . . . , �(sh)) = 2 and the number of s ∈ π
such that s is a pair of cycles of odd color is even,

0 otherwise,

and the sum in the right-hand side is on all partitions π ∈ Π2,1(g) such that z(s) = 0 for all s ∈ π .

Once we have an algebraic-combinatorial description of the dimension (Theorem 4.5) and of the
character (Proposition 5.3) of a model for G(r, p,n) we have two of the main ingredients of the proof
of our main result. Before state it, we need one more definition. If g ∈ G and v ∈ G∗ we let

u(g, v) = z1(ṽ) − z|g|−1(1)(ṽ) ∈ Zr,

where ṽ is any lift of v in G(r,n). Note that since u(g, v) is the difference of two colors of ṽ it is
well defined. We denote by I(r, p,n)∗ = I(r,1, p,n) the set of absolute involutions in G∗ and we recall
(Lemma 4.2) that these elements can be either symmetric or antisymmetric.

Theorem 5.4. Let GCD(p,n) = 1,2 and let

M(r, p,n)∗ def=
⊕

v∈I(r,p,n)∗
CCv

and 
 : G(r, p,n) → GL(M(r, p,n)∗) be defined by


(g)(Cv)
def=

{
ζ

〈g,v〉
r (−1)invv (g)C|g|v|g|−1 if v is symmetric,

ζ
〈g,v〉
r ζ

u(g,v)
r C|g|v|g|−1 if v is antisymmetric.

(3)

Then (M(r, p,n)∗,
) is a G(r, p,n)-model.

We first prove that Eq. (3) defines on M(r, p,n)∗ the structure of a G(r, p,n)-module.

Lemma 5.5. The map 
 is a group homomorphism.

Proof. From Proposition 3.4 we only have to show that u(gh, v) = u(h, v) + u(g, |h|v|h|−1). By
Lemma 3.3 we have

u(h, v) + u
(

g, |h|v|h|−1) = z1(ṽ) − z|h−1|(1)(ṽ) + z1
(|h|ṽ|h|−1) − z|g|−1(1)

(|h|ṽ|h|−1)
= z1(ṽ) − z|h−1|(1)(ṽ) + z|h|−1(1)(ṽ) − z|h|−1|g|−1(1)(ṽ)

= z1(ṽ) − z|gh|−1(1)(ṽ)

= u(gh, v),

and the proof is complete. �
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We observe that if GCD(p,n) = 1 then επ = 1 for all π ∈ Π2,1(g) and for all g ∈ G(r, p,n). In
particular, by Proposition 5.3, the character of the model for G(r, p,n) is 1

p times the character of
the model of G(r,n). Moreover, in this case, the elements in I(r, p,n)∗ are all symmetric and so the
proof of Theorem 5.4 is a slight modification of the proof of Theorem 3.2 and is therefore left to
the reader. Alternatively one can extract a proof of the case GCD(p,n) = 1 from the more involved
situation where GCD(p,n) = 2.

We can also observe that, by [9, Theorem 4.4], a reflection group G = G(r, p,n) is isomorphic to
its dual as an abstract group precisely if GCD(p,n) = 1.

So, unless otherwise stated, from now on we always assume that GCD(p,n) = 2.
The next target is to understand which are the elements v ∈ I(r, p,n)∗ such that σ vσ−1 = v for a

given σ ∈ Sn .

Lemma 5.6. Let σ ∈ Sn and w ∈ G(r,n) be such that σ wσ−1 = ζ
k r

p
r w with k ∈ [p]. Then either k = p or

k = p
2 .

Proof. Since z(gg′) = z(g) + z(g′) for all g, g′ ∈ G(r,n) the hypothesis forces z(ζ
k r

p
r ) = 0. This implies

that nk r
p ≡ 0 mod r, i.e. nk

p is an integer. Therefore k is a multiple of p
GCD(n,p)

and the proof is
complete. �

We let Fix(g) be the set of elements in G(r,n) whose corresponding classes in G(r, p,n)∗ are
absolute involutions and are fixed by the conjugation by |g|, i.e.

Fix(g)
def= {

w ∈ G(r,n): w w̄ ∈ C p and |g|w|g|−1 ∈ C p w
}
.

This set will allow us to compute the character of the representation 
 since

χ
(g) = 1

p

∑
w∈Fix(g)

φg(w),

where

φg(w) =
{

ζ
〈g,w〉
r (−1)invw (g) if w is symmetric,

ζ
〈g,w〉
r ζ

u(g,w)
r if w is antisymmetric.

This is simply because any element in I(r, p,n)∗ has p lifts in G(r,n), so that we are counting any
element exactly p times.

Let g ∈ G and w ∈ Fix(g). Then |g||w||g|−1 = |w| and in particular we can apply all the results
in §3 of [1] on the relation between the cycle structures of g and w . From this we know that w
determines a partition π(w) ∈ Π2,1(g) of the set of cycles of g into singletons and pairs. In this
partition a cycle c is a singleton of π(w) if the restriction of |w| to Supp(c) is a permutation of
Supp(c) and {c, c′} is a pair of π(w) if the restriction of |w| to Supp(c) is a bijection between Supp(c)
and Supp(c′) (and vice versa, since |w| is an involution). From this decomposition we have

Fix(g) =
⋃

π∈Π2,1(g)

Fixπ ,

this being a disjoint union, where Fixπ = {w ∈ Fix(g): π(w) = π}. We will need a further decom-
position of the sets Fixπ . By Lemma 4.2, if w ∈ G(r,n) is such that w w̄ ∈ C p , then necessarily either
w w̄ = 1, i.e. w is symmetric, or w w̄ = −1, i.e. w is antisymmetric. Furthermore, if w ∈ Fix(g), by
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Lemma 5.6, we have that either |g|w|g|−1 = w , i.e. |g| and w commute, or |g|w|g|−1 = −w , i.e. |g|
and w anticommute. With this in mind we let

S+(g) = {
w ∈ Fix(g): w is symmetric and commutes with |g|},

S−(g) = {
w ∈ Fix(g): w is symmetric and anticommutes with |g|},

A+(g) = {
w ∈ Fix(g): w is antisymmetric and commutes with |g|},

A−(g) = {
w ∈ Fix(g): w is antisymmetric and anticommutes with |g|}.

Now let Xε(g) be one of the previous four sets (i.e. X = S, A and ε = +,−). If π ∈ Π2,1(g) we let
Xε

π = Xε(g) ∩ Fixπ . If π = {s1, . . . , sh} ∈ Π2,1(g) and w ∈ Xε
π then, by construction, w = w1 · · · wh ,

with wi ∈ G(r,Supp(si)). Then necessarily wi ∈ Xε(gi) for all i, where gi is the restriction of g to
Supp(si). So we have the following factorization

Xε{s1,...,sh} =
∏

i

Xε{si}.

So the ultimate pieces that we have to evaluate are the sets of the form Xε
s

def= Xε
π when π = {s} has

only one part (which can be either a singleton or a pair).
The determination of all these sets proceeds as follows. One first considers all the elements

σ ∈ Sn such that |g|σ |g|−1 = σ with the given cycle structure, and then tries to put colors on σ
so that the resulting element has the requested symmetry and commuting properties. For exam-
ple let s = {(i1, . . . , id)} with d even and suppose we want to compute the set A−

s . If w ∈ A−
s then

necessarily either |w| : ih �→ ih for all h or |w| : ih �→ ih+ d
2

by [1, §3] (but the reader should better

figure it out by himself). The first case is not possible since w is antisymmetric so we necessarily
have |w| : ih �→ ih+ d

2
. It is clear that any scalar multiple of w is still in A+

s so that we can assume

zi1 (w) = 0. In this case |g| is the single cycle (i1, . . . , id) and so from the condition w|g| = −|g|w we
have w|g|(i1) = w(i2) = −|g|w(i1) = −|g|(i1+ d

2
) = −i2+ d

2
. In particular we have zi2 (w) = r/2. A sim-

ple recursive argument then shows that zih (w) = (h − 1)r/2. So we have that w : ih �→ (−1)h−1ih+ d
2

.

This element is antisymmetric if and only if d/2 is odd, i.e. d ≡ 2 mod 4. So we deduce that, if
s = {(i1, . . . , id)}, with d even, then

A−
s =

{⋃
k{w ∈ G(r,Supp(s)): w(ih) = ζ k

r (−1)h−1ih+ d
2
} if d ≡ 2 mod 4,

∅ if d ≡ 0 mod 4.

With similar reasonings one can verify the following description of these sets. So let π = {s} where
s = {(i1, . . . , id)} is a singleton. Then

• if d is odd

S+
s =

⋃
k∈Zr

{
v ∈ G

(
r,Supp(s)

)
: v(ih) = ζ k

r ih
}
,

S−
s = ∅,

A+
s = ∅,

A−
s = ∅;
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• if d ≡ 2 mod 4

S+
s =

⋃
k∈Zr

({
v ∈ G

(
r,Supp(s)

)
: v(ih) = ζ k

r ih
} ∪ {

v ∈ G
(
r,Supp(s)

)
: v(ih) = ζ k

r ih+ d
2

})
,

S−
s = {

v ∈ G
(
r,Supp(s)

)
: v(ih) = ζ k

r (−1)hih
}
,

A+
s = ∅,

A−
s =

⋃
k∈Zr

{
v ∈ G

(
r,Supp(s)

)
: v(ih) = ζ k

r (−1)hih+ d
2

};
• if d ≡ 0 mod 4 we have

S+
s =

⋃
k∈Zr

({
v ∈ G

(
r,Supp(s)

)
: v = ζ k

r

} ∪ {
v ∈ G

(
r,Supp(s)

)
: v(ih) = ζ k

r ih+ d
2

})
,

S−
s =

⋃
k∈Zr

({
v ∈ G

(
r,Supp(s)

)
: v(ih) = ζ k

r (−1)hih
}

∪ {
v ∈ G

(
r,Supp(s)

)
: v(ih) = ζ k

r (−1)hih+ d
2

})
,

A+
s = ∅,

A−
s = ∅.

Now suppose that π = {s} has one single part which is a pair of cycles of the same length, i.e.
s = {c1, c2}, with c1 = (i1, . . . , id) and c2 = ( j1, . . . , jd). Then

• if d is odd

S+
s =

⋃
k∈Zr

⋃
l∈Zd

{
v ∈ G

(
r,Supp(s)

)
: v(ih) = ζ k

r jh+l and v( jh) = ζ k
r ih−l

}
,

S−
s = ∅,

A+
s =

⋃
k∈Zr

⋃
l∈Zd

{
v ∈ G

(
r,Supp(s)

)
: v(ih) = ζ k

r jh+l and v( jh) = −ζ k
r ih−l

}
,

A−
s = ∅;

• if d is even

S+
s =

⋃
k∈Zr

⋃
l∈Zd

{
v ∈ G

(
r,Supp(s)

)
: v(ih) = ζ k

r jh+l and v( jh) = ζ k
r ih−l

}
,

S−
s =

⋃
k∈Zr

⋃
l∈Zd

{
v ∈ G

(
r,Supp(s)

)
: v(ih) = ζ k

r (−1)h jh+l and v( jh) = ζ k
r (−1)h−l ih−l

}
,

A+
s =

⋃
k∈Zr

⋃
l∈Zd

{
v ∈ G

(
r,Supp(s)

)
: v(ih) = ζ k

r jh+l and v( jh) = −ζ k
r ih−l

}
,

A−
s =

⋃
k∈Zr

⋃
l∈Zd

{
v ∈ G

(
r,Supp(s)

)
: v(ih) = ζ k

r (−1)h jh+l and v( jh) = −ζ k
r (−1)h−l ih−l

}
.
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Table 2

s S+
s S−

s A+
s A−

s

{(i1, . . . , id)} with d odd ih �→ ζ k
r ih ∅ ∅ ∅

{(i1, . . . , id)} ih �→ ζ k
r ih ih �→ ζ k

r (−1)hih ∅ ih �→ ζ k
r (−1)h ih+ d

2with d ≡ 2 mod 4 ih �→ ζ k
r ih+ d

2

{(i1, . . . , id)} ih �→ ζ k
r ih ih �→ ζ k

r (−1)hih ∅ ∅
with d ≡ 0 mod 4 ih �→ ζ k

r ih+ d
2

ih �→ ζ k
r (−1)hih+ d

2

{(i1, . . . , id), ( j1, . . . , jd)} ih �→ ζ k
r jh+l ∅ ih �→ ζ k

r jh+l ∅
with d odd and jh �→ ζ k

r ih−l and jh �→ −ζ k
r ih−l

{(i1, . . . , id), ( j1, . . . , jd)} ih �→ ζ k
r jh+l ih �→ ζ k

r (−1)h jh+l ih �→ ζ k
r jh+l ih �→ ζ k

r (−1)h jh+l

with d even and jh �→ ζ k
r ih−l and jh �→ ζ k

r (−1)h−l ih−l and jh �→ −ζ k
r ih−l and jh �→ −ζ k

r (−1)h−l ih−l

In the previous description the indices of i1, . . . , id, j1, . . . , jd should be considered in Zd . The descrip-
tion of the sets S+

s , S−
s , A+

s and A−
s , where s is either a single cycle or a pair of cycles of the same

length is summarized in Table 2 for the reader’s convenience. In any box of the table, the parameters
k ∈ Zr and l ∈ Zd are arbitrary but fixed.

The next result shows that the elements in Fix(g) that anticommute with |g| give no contribution
to χ
(g).

Lemma 5.7. Let π ∈ Π2,1(g). Then

∑
w∈S−

π

φg(w) = −
∑

w∈A−
π

φg(w).

Proof. We proceed by a case-by-case analysis depending on the structure of π .

• π has either a singleton of odd length or a pair of cycles of odd length. In this case the result is
trivial since both S−

π and A−
π are empty (see Table 2).

• π = {s1, . . . , sh} has a singleton of length d with d ≡ 0 mod 4, say s1 = {(i1, . . . , id)}. In this case
A−

π is empty (see Table 2) so we have to show that
∑

w∈S−
π

φg(w) = 0. This is similar to the proof
of Theorem 3.2. We define an involution ι : S−

s1
→ S−

s1
by

(
ih �→ ζ k

r (−1)hih
) ι�→ (

ih �→ ζ k
r (−1)hih+ d

2

)
,

and we extend it to an involution ι : S−
π → S−

π by ι(w1 · · · wh) = ι(w1)w2 · · · wh , where wi ∈ S−
si

for all i. Then, by Lemmas 3.7 and 3.8 we have φg(w) = −φg(ι(w)) and we are done.
• π = {s1, . . . , sh} has only singletons of length d for some d ≡ 2 mod 4 and pairs of cycles

of even length. In this case we consider the bijection ψ : S−
π → A−

π defined as follows. If
s = {(i1, . . . , id)( j1, . . . , jd)} is a pair of cycles of odd length we let ψ : S−

s → A−
s be defined

by

ψ : (ih �→ ζ k
r (−1)h jh+l and jh �→ ζ k

r (−1)h−l ih−l
)

�→ (
ih �→ ζ k

r (−1)h jh+l−1 and jh �→ −ζ k
r (−1)h−l+1ih−l+1

)
.

If s = {(i1, . . . , id)} is a singleton of length d ≡ 2 mod 4 we let ψ : S−
s → A−

s be defined by

ψ : (i j �→ ζ k
r (−1) j i j

) �→ (
i j �→ ζ k

r (−1) j i j+ d

)
.

2
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The complete map ψ : S−
π → A−

π is such that ψ(w1 · · · wh) = ψ(w1) · · ·ψ(wh) where wi ∈ S−
si

.
We observe that if w ∈ S−

π then zi(w) = zi(ψ(w)) for all i. Moreover inv(g, w) = 0 in this case
by Lemma 3.8. Let’s compute u(g, w) if w ∈ A−

π . We have

u(g, w) = z1(w) − z|g|−1(1)(w).

Let s be the part of π whose support contains 1. If s = {(i1, . . . , id)} is a singleton we can clearly
assume 1 = i1 and |g|−1(1) = id . The element w is such that w(i j) = ζ k

r (−1) j i j+ d
2

by Table 2

and in particular w(i1) = ζ k
r (−1)i1+ d

2
and wid = ζ k

r (−1)did+ d
2

. In particular z1(w) = k + r
2 and

zid (w) = k since d is even. It follows that u(g, w) = r
2 . If s = {(i1, . . . , id)( j1, . . . , jd)} is a pair of

cycles of even length we can clearly assume that 1 = i1 and so |g|−1(1) = id . In this case w is
such that w(ih) = ζ k

r (−1)h jh+l by Table 2 and in particular z1(w) = k + r
2 and zid (w) = k, since d

is even. So, also in this case we have u(g, w) = r
2 . Hence if w ∈ S−

π , where π has pairs of cycles
of even length and singletons of length ≡ 2 mod 4, we have

φg(w) = ζ
〈g,w〉
r (−1)invw (g) = ζ

〈g,w〉
r

= −ζ
〈g,w〉
r ζ

r
2

r = −ζ
〈g,ψ(w)〉
r ζ

u(g,ψ(w))
r

= −φg
(
ψ(w)

)
,

and the proof is complete. �
Lemma 5.8. Let π be a partition of the cycles of g with a singleton of even length. Then

∑
w∈Fix(g)

φg(w) = 0.

Proof. Let π = {s1, . . . , sh} with s1 a singleton of even length. Since A+
π = ∅ by Table 2 and the contri-

butions of S−
π and A−

π cancel each others by Lemma 5.7 we only have to show that
∑

w∈S+
π

φg(w) = 0.
This can be proved with the same argument used in Theorem 3.2 and Lemma 5.7 and the proof is
therefore omitted. �

We are now ready to prove the main theorem of this work.

Proof of Theorem 5.4. We have to evaluate

∑
w∈Fix(g)

φg(w).

By Lemmas 5.7 and 5.8 we have

∑
w∈Fix(g)

φg(w) =
∑
π

∑
w∈S+

π ∪A+
π

φg(w),

where the first sum in the right-hand side is on all partitions π ∈ Π2,1(g) with no singletons of even
length.
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If π = {s1, . . . , sh} has a singleton of odd length then, by Table 2, A+
π = ∅. So we have

∑
w∈S+

π ∪A+
π

φg(w) =
∑

w∈S+
π

φg(w)

=
h∏

i=i

( ∑
wi∈S+

si

φgi (wi)

)
,

where gi is the restriction of g to Supp(si). Now, by Table 2, any element in S+
si

is the scalar multiple
of an element wi ∈ S+

si
such that z j(wi) = 0 for all j ∈ Supp(si) and, on the other hand, any scalar

multiple of an element wi with this property is still in S+
si

. So we can apply the same argument used
in the proof of Theorem 3.2 to conclude that

∑
wi∈S+

si

φgi (wi) =
{

0 if z(si) 	= 0,

|S+
si
| otherwise,

and so, if z(si) = 0 for all i ∈ [h]

∑
w∈S+

π ∪A+
π

φg(w) =
h∏

i=1

∣∣S+
si

∣∣ = r�(π)
∏

j

jpair j(π)

by Table 2.
Now suppose that π has no singletons. In this case we observe that if w ∈ S+

π then invw(g) ≡ 0
mod 2 by Lemma 3.8, and if w ∈ A+

π then u(g, w) = 0 by Table 2. In particular we have that if

w ∈ S+
π ∪ A+

π then φg(w) = ζ
〈g,w〉
r . As in the previous paragraph we can show that

∑
w∈S+

π

φg(w) =
{ |S+

π | if z(s) = 0 for all s ∈ π,

0 otherwise.

Now we consider A+
si

, where si = {c1, c2}. Then, by Table 2, any element in A+
si

is the scalar mul-
tiple of an element wi ∈ A+

si
such that z j(wi) = 0 if j ∈ Supp(c1) and z j(wi) = r/2 if j ∈ Supp(c2). If

wi has this property we can consider the previous sum restricted to all scalar multiples of wi and we
obtain

r∑
k=1

ζ
〈gi ,ζ

k
r wi〉

r =
r∑

k=1

ζ

∑
j∈Supp(c1) z j(gi)k+∑

j∈Supp(c2) z j(gi)(
r
2 +k)

r

=
r∑

k=1

(
ζ

z(si)
r

)k
ζ

r
2 z(c2)

r

= (−1)z(c2)

r∑
k=1

(
ζ

z(si)
r

)k
.

So we have that

∑
w∈A+

s

φg(w) =
{

(−1)z(c2)|A+
si
| if z(si) = 0,

0 otherwise.

i
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In particular, since |A+
π | = |S+

π |, by Table 2, we have that
∑

w∈A+
π

φg(w) = ∑
w∈S+

π
φg(w) if the

number of parts of π which are pairs of cycles of odd length is even, and
∑

w∈A+
π

φg(w) =
−∑

w∈S+
π

φg(w) if the number of parts of π which are pairs of cycles of odd length is odd. The
proof is complete. �

As in the case of the wreath products G(r,n) there is a natural decomposition of M(r, p,n)∗ into
G(r, p,n)-submodules. In fact, if q | r and pq | rn we can consider the submodule M(r,q, p,n) ⊆
M(r, p,n)∗ spanned by all elements Cv such that v ∈ I(r,q, p,n). The next result shows that
M(r,q, p,n) is the sum of all irreducible representations of G(r, p,n) indexed by elements μ ∈
Fer(r,q, p,n).

Corollary 5.9. Let GCD(p,n) = 1,2. Then the pair (M(r,q, p,n),
), where


 : G(r, p,q,n) → GL
(
M(r,q, p,n)

)
is defined as in Theorem 5.4, is a G(r, p,q,n)-model.

Proof. The proof is very similar to that of Corollary 3.9 and is therefore omitted. �
If GCD(p,n) = 2, there is another natural decomposition of M(r, p,n)∗ into 2 G(r, p,n)-

submodules: The submodule Sym(r, p,n)∗ spanned by symmetric elements and the submodule
Asym(r, p,n)∗ spanned by antisymmetric elements. Recall from Proposition 2.1 that an irreducible
representation μ of G(r,n) when restricted to G(r, p,n) either remains irreducible if the stabilizer
(C p)μ is trivial, or splits into two irreducible representations of G(r, p,n) if (C p)μ has two elements
(note that there are no other possibilities since GCD(p,n) = 2), and that all irreducible representations
of G(r, p,n) are obtained in this way. The author feels that the following can be true.

Conjecture 5.10. Let χ be the character of Sym(r, p,n)∗ and φ be an irreducible representation of G(r,n).
If φ does not split in G(r, p,n) then 〈χ,χφ〉 = 1. If φ splits into two irreducible representations φ+ , φ− of
G(r, p,n) then

〈χ,χφ+〉 = 1 ⇐⇒ 〈χ,χφ−〉 = 0.

In other words this conjecture says that Sym(r, p,n)∗ is isomorphic as a G(r, p,n)-module to the
direct sum of all unsplit irreducible representations and of exactly one of any pair of split represen-
tations. This conjecture has been verified for the Weyl groups of type D and rank n < 9.
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