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Abstract

We show that some fundamental results about projectivity classes, weakly coreflective subcate-
gories and cotorsion theories can be generalized fRemodules to arbitrary locally presentable
categories.
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1. Introduction

Injectivity in locally presentable categories is well understood (see [2]). The basic result
is that a full subcategoryl of a locally presentable categokyis a small-injectivity class
(i.e., there is a sett of morphisms ofC such thatA consists of all objects injective w.r.t.
each morphism inM) if and only if A is accessible and closed k& under products and
A-directed colimits for some regular cardirtal Accessibility of A can be replaced byl
being also closed undefpure subobjects. Herg;pure subobjects are precisehdirected
colimits of split subobjects. This result was re-proved for additive locally presentable
categories by H. Krause [13]. Injectivity classes are closely related to weakly reflective
subcategories. Every small-injectivity class of a locally presentable cat&garyeakly
reflective inC and every weakly reflective full subcategadyof X which is closed under
split subobjects is an injectivity class (i.e., it consists of all objects injective w.r.t. atfass
of morphisms). Moreover, under the set-theoreticalérfdg’s principle, injectivity classes
of IC coincide with weakly reflective full subcategories closed under split subobjects and
even with full subcategories closed under products and split subobjects. In the additive
setting, weakly reflective subcategories are called covariantly finite (see [4]).
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Much less is known about projectivity in locally presentable categories. Recently, a deep
result has been found about projectivity in additive locally presentable categories saying
that every accessible full subcategodyof an additive locally presentable categd€y
which is closed under coproducts and directed colimits is weakly coreflective (see [5]).
It generalizes the second method of proving the celebrated flat cover conjecture given
in [6]. We will show (Proposition 2.3) that this can be extended to all locally presentable
categories having enoudhpure quotientsi-pure quotients were introduced for general
locally presentable categories in [3]. The deep part of El Bashir’s (and Bican’s) proof is to
show that additive locally presentable categories have enbyylre quotients.

Injectivity classes with injective hulls correspond to stably weakly reflective full
subcategories. This observation goes back to Enochs [9] (see also [2, EX. 4.d]); the concept
of stable weak reflectivity is older (see Harris [11]). Enochs [9] proved that if a full
subcategory of the category fmodules is weakly coreflective and closed under directed
colimits then it is stably weakly coreflective (see also [17]). El Bashir [5] has extended this
result to Grothendieck categories. We will show (Theorem 2.5) that it can be proved for all
locally finitely presentable categories (see [15] for known general results about injectivity
classes with injective hulls).

In a categoryR-Mod of R-modules, injectivity and projectivity classes are often
induced by cotorsion theories. This can be extended to general locally presentable
categories by using weak factorization systems. Weak factorization systems originated in
homotopy theory and were introduced by Beke [7]. More about weak factorization systems
can be found in [1] and their relation to cotorsion theories was observed in [14]. In fact,
they are also present in [10] where Proposition 7.2.2 shows how stable weak coreflections
can be used to get a weak factorization. We show (Proposition 3.5) that this phenomenon
does not depend on additivity.

2. Weak coreflectivity

Recall that a full subcategoryl of a categoryC is calledweakly coreflectivéf each
objectK in K has a weak coreflection, i.e., a morphigg: K* — K whereK* is in A
such that every morphisrfi: A — K with A in A factorizes (not necessarily uniguely)
throughcg . Every weakly coreflective subcategory is closed under coprodusis in

A morphism f: K — L in K is called ax-pure quotient(for a regular cardinak)
provided that it is projective w.r.ti-presentable objects (cf. [3]). Explicitly, for every
A-presentable objeck, all morphismsX — L factorize throughf. If K is locally
A-presentable theR-pure quotients are preciselydirected colimits of split quotients in
the categorylC™ of KC-morphisms. In additive locally.-presentable categories;split
quotients are precisely cokernelsiepure subobjects and, converselypure subobjects
are precisely kernels 6f-pure quotients.

Definition 2.1. We say that a category has enough.-pure quotientsf for each object
K there is, up to isomorphism, only a set of morphisfnd. — K such thatf =& - g,
g A-pure epimorphism implies thatis an isomorphism.
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Remark 2.2. (1) Every locally presentable category has enougiure subobjects in the
sense that for each objektthere is, up to isomorphism, only a set of morphigmk — L
such thatf = g - h, g A-pure monomorphism implies thatis an isomorphism. It follows
from the fact that there is a regular cardipasuch thatf factorizes as

3 Ny VRN

whereg is ai-pure monomorphism an¥ is u-presentable (see [2, 2.33]). Singshould
be an isomorphisnt, is u-presentable. However, up to isomorphism, there is only a set of
w-presentable objects.

(2) If £ has enough.-pure quotients then it has enoughpure quotients for every
regular cardinalt > A. In fact, everyu-pure quotient is.-pure.

The locally presentable category of graphs does not have enepghe quotients for
any A (see [3, Remark 11]). An additive locally presentable category has enocpghe
guotients for any regular cardinal(see [5, 2.1]).

Proposition 2.3. Let K be a locally presentable category having enougpure quotients
for all regular cardinalsi. Let. A be an accessible full subcategory/6fwhich is closed
under coproducts and directed colimits. Théns weakly coreflective ifC.

Proof. Let K be an object inC and take a morphisnf: A — K with A in A. Consider
factorizations

Ak

whereg is a regular epimorphism anBl is in .4. Up to isomorphism, these factorization
form a set which can be ordered by means of

(g.h) < (g'.n') iff ¢’ factorizes througls.

The resulting ordered s& has directed joins because a directed colimit (in fact, any
colimit) of regular epimorphism iiC™ is a regular epimorphism and is closed under
directed colimits inkC. HenceS contains a maximal elemengo, #0). Since anyi-pure
epimorphism is regular (see [3, Proposition 5]) ads closed undeko-pure quotients
for someig [3, Proposition 14], we have

ho = tu, u Ao-pure epimorphism = u isomorphism.

Sincek has enough-pure quotients, there is only a set of such morphism$SinceA is
closed under coproducts, it is weakly coreflectivel

Remark 2.4. Under Voggnka’s principle, every full subcategory of a locally presentable
category which is closed under directed colimits is accessible. Hence we can drop the
assumption thatl is accessible.
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A weakly coreflective subcategowy of a K is calledstably weakly coreflectivieeach
objectK in K has a weak reflectiong : K* — K such that any morphisrfi: K* — K*
with cx - f = cx is an isomorphism. A stable weak coreflection is unique up to an
isomorphism.

Theorem 2.5. Let KC be a locally finitely presentable category adda weakly coreflective
full subcategory ok which is closed under directed colimitsAn ThenA is stably weakly
coreflective.

Proof. Since the comma categoly | K is locally finitely presentable for eacki in K
and A | K (= the full subcategory ofC | K consisting ofA — K, A € A) is closed
under directed colimits ii'C | K provided thatA is closed under directed colimits i4,
it suffices to prove the following result. L&t be a full subcategory of a locally finitely
presentable category closed under directed colimits and having a weakly terminal object.
Then.A has a stably weak terminal objeEt(i.e., everyf : T — T is an isomorphism).
Assume that4 does not have a stably weak terminal object and consider a weakly
terminal objectl". SinceKC is well powered, there is a regular cardinaduch thatl’ x T
does not have an increasing chain of subobjects of lendi¥e define a chain; : T; — T;,
i < j <, of weakly terminal objects ofl by the following transfinite induction. We put
To=T and in a limit stepj we take the colimit;; : 7; — T;,i < j. In an isolated step we
putT;+1 = T;. If there is anf : T; — T; which is not a monomorphism, we ptit,1 = f.
If all morphismsT; — T; are monomorphism, there §s: 7; — T; which is not a strong
epimorphisms (otherwis&; would be stably weakly terminal) and we pyt, 1 = g.
Since directed colimits commute with finite limits A, we have a directed colimit

tipxtj;: Ty xTy—>T; xT;, j<I,

for each limit ordinali < A. It implies that noT; x T;, i < A, has an increasing chain of
subobijects of length. In fact, it suffices to prove it for limit ordinals< A. Assume that it
holds for allj < i and thatXy, & < A, is an increasing chain of subobjectsofx T;. We
get chains of subobjects;; of 7; x T;, j < i, by taking pullbacks

1ji Xtji
Tj X Tj — T, xT;

|

Xkj T Xk

Since all chainsXy;, k < A stabilize and < A, there iskg < A such thatX,,; = X;; for

all ko <k < i andj <i. Thus it suffices to know that; : Xi; — X, j < i, is a directed
colimit for all k < A. But this is a general property of locally finitely presentable categories
which can be proved as follows. Let; : Xi; — Y, j <i, be a colimit ofX,;, j < i, and

hi : Yy — X the induced morphism. Since every morphisn¥ — X; with Z finitely
presentable factorizes through some, 4 is an isomorphism.
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We will show that the ordinals < A such that;; is a monomorphism are cofinal in
Let j <i < A and consider kernel pairs

t t
Jh [j)L Ji
Sj 2 Tj —— T, Sii

t

tji
Tj — T;.

"
JjA Ji

Since directed colimits commute with finite limits G, we get thatS; is a directed
union of §;;, j <i < X. SinceT; x T; does not have an increasing chain of subobjects
of length A, there isi < j < A such thatS; = S;;. Now, considerj < A and define a
sequence of ordinalg <i; <--- <i, <+, n <o, by puttingip = j andS;, = S;,i,.;-
Leti, =sup,_, in. Since

Si, = U Si, = U Sipins1 = Ty

n<w n<w

ti,» 1S @ monomorphism.

If #; is a monomorphism themn ;.1 iS @ monomorphism too and, following the
construction, it is not a strong epimorphism. Herfgecontains an increasing chain of
subobjects of length.. SinceT is weakly terminal, there is a morphism 7, — T. If
t;;. i1s @ monomorphism then, following the construction, all morphisgmg; — 7; are
monomorphisms. Hende- ¢;, is a monomorphism because we have a monomorphism

htiy, 10i

i — T —T,.

Consequently; is a monomorphism and we get an increasing chain of subobjeZtobf
lengthA, which is a contradiction. O

3. Weak factorization systems

Let K be a category andf:A — B, g:C — D morphisms such that in each
commutative square

u
——C
£

there is a diagonal : B — C with d - f =u andg - d = v. One says thag has theright
lifting property w.r.t. f and thatf has aleft lifting propertyw.r.t. g. For a classH of
morphisms ofC we put

~
<~

—_—
v
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HY = {g | g has the right lifting property w.r.t. eache H} and
OH ={f| f has the left lifting property w.r.t. eaghe H}.

A weak factorization syste, R) in I consists of two classeandR of morphisms of
K satisfying

(WF1) R =£H and£ =HR, and
(WF2) any morphisnk of IC has a factorizatioh = g - f with f € £ andg € R.

If we denote by R the class of all morphisms in the comma-categéry IC such that
the underlyingC-morphism belongs t& then a morphisy : A — B belongs tH R iff
the object(A, f) is projective w.r.tyRin A | K. Therefore a paiL, R) satisfying (WF1)
is a weak factorization system iff for evet, h) in A | K there is angR-morphism
g: f — hfroman,R-projective objectA, f). Consequently, the full subcategdrya R)
of A | K consisting of all4R-projective objects is weakly coreflective. Moreover, this
full subcategory coincides with the full subcategory4f, K consisting of morphisms
belonging toL. Therefore, iffC has an initial object 0 and a terminal object 1, then a weak
factorization systeni£, R) yields a weakly coreflective full subcategotyR of K and,
dually, a weakly reflective full subcategofif of K. Weak” R-coreflections are given by
factorization

0— K* & k.

The pairs(* R, L*) given by (£, R) satisfying (WF1) can be viewed as a generalization
of cotorsion theories to the non-additive setting.
Recall that a paitF, C) of classes oR-modules is called aotorsion theoryf

C={C|Ext(F,C)=0forall FeF} and
F=|{F|Ext(F,C)=0forallC eC}.

We call a monomorphisnfi: A — B in R-Mod an F-monomorphisnif coker f: B — F
has F € F. The class of allF-monomorphisms is denote@i-Mono. Analogously a
C-epimorphisms an epimorphisng : A — B such thatkeg : C — A hasC e C andC-Epi
denotes the class of all-epimorphisms. Then the definition of a cotorsion theory can be
rewritten as

C = (F-Mono)® and F =2(C-Epi).

(see [10, 7.2, Ex. 2] or [14, 4.3]). Morphisms frofF-Mono)" are calledF-fibrations
and morphisms frorf! (C-Epi) C-cofibrations.

Proposition 3.1. Let (F,C) be a cotorsion theory irR-Mod. Then (F-Mono, C-Epi)
satisfiegWF1).
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Proof. Following [14, 4.4], (F-Mono)™ = C-Epi becauseF contains all projective
R-modules. HenceF-Mono < U(C-Epi). Considerf: A — B in H(C-Epi) and lete :
A — E be an embedding of into an injectiveR-moduleE. SinceC contains all injective
R-modules, we get a diagonain the square

e
— F
7
e

t
/
/

~
o<~

HO

Thus f is a monomorphism. We have to show that cokeB — F hasF € F, i.e., that
everyC-epimorphismg : X — F splits. But this follows from the existence of a diagonal
in the square

0
—_—

A
7
fl 7
7/
B

—_—
cokerf

8 O

- -~

Remark 3.2. A cotorsion theory(F,C) is said to be haveenough injectivesf any
morphismM — 0 satisfies (WF2). Dually(F, C) hasenough projective any morphism

0 - M satisfies (WF2). Cotorsion theories having enough projectives and enough
injectives are also calledomplete The basic result is that every cotorsion theory
cogenerated by a set is complete (see [8], or [9, 7.4.1]). The proof of Theorem 4.5 in
[14] shows that if(F, C) is cogenerated by a set théA-Mono, C-Epi) satisfies (WF2) for
allmorphisms, i.e., that it is a weak factorization system. Moreover, this weak factorization
system is cofibrantly generated.

Definition 3.3. A weak factorization system{£,R) will be called a stable weak
factorization systernf (WF2) is strengthened to

(WF25) any morphisnt of K has a factorizatioh = g f such thatf € £, g € R and any
t with tf = f andgt = g is an isomorphism.

In a stable weak factorization system, the full subcategarigsk) are stably weakly
coreflective, and dually, the full subcategorigs)? are stably weakly reflective.

Remark 3.4. Stable weak factorization systems were introduced by Tholen [16] using
essential morphisms instead of stable weak reflections. They were called essential weak
factorization systems. The use of stability immediately yields that every left essential weak
factorization system is right essential.
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Proposition 3.5. Let K be a category with pushouts anfl R classes of morphisms
satisfying(WF1) and such that the full subcategoriés, R) are stably weakly coreflective
for eachA in K. Then(£, R) is a stable weak factorization system.

Proof. Considet:: A — B and take a stable weak coreflection h* — h of ht0 2 (4 R):

We have to prove that, € R. Let

u
- B*

l o ()
B

~ <

_—
v
be a commutative square witte L. Fill it with a pushout of andu

u
X ——— B*
e
P ch
7N
B

v

l
Y
and take the induced morphismSince” is closed under taking pushout and composition

(see[12,8.2.9 and 8.2.5]), we have £ and/h* € L (h* € L as any R-projective object).
Hencelh* € 2(4R) and sincec;, is a stable weak coreflection, we getmaking the

following diagram commutative
A"
w

p

A B

Thuswl is an isomorphism angl = (wl) ~wi satisfies
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gl= (u_)l)ilwzll = (u’)l)ilwl_u =u
and
chg =cp (u‘)l)ilwﬁ =cpwil =t =0
because;,w! = tl = c;,. Henceg is a diagonal in£). O

Corollary 3.6. Let £ be a locally finitely presentable category amy R classes of
morphisms satisfyin/VF1) and such that (4 R) is weakly coreflective and closed under
directed colimits inA | K for eachA in K. Then(£, R) is a stable weak factorization
system.

It follows from 2.5 and 3.5.

Theorem 3.7. Let (F,C) be a cotorsion theory ilR-Mod such thatF is closed under
directed colimits. The7-Mono, C-Epi) is a stable weak factorization system.

Proof. Following 3.1,(F-Mono, C-Epi) satisfies (WF1). Sincé& is closed under directed
colimits in R-Mod, 2 (x (C-Epi)) is closed under directed colimits i | R-Mod (because
it consists of 7-monomorphismk — X). We will show that® (x (C-Epi)) is weakly
coreflective ink | R-Mod. Then the result follows from 3.6.

SinceF is closed under coproducts, it is weakly coreflective (see [5]). ek — X
be anF-monomorphism and consider the diagram

f cokerf
K X Y
\ T u T cy
kerv
Z——>Y*

v

wherecy is a weakF-coreflection ofY and the square is a pullback. Thenkerv = f
and thus(Z, kerv) is a weak® (g (C-Epi))-coreflection of X, f). O

An analogous result was proved in [14] under stronger assumptions @bdaf.
Theorem 4.5).
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