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Abstract

We show that some fundamental results about projectivity classes, weakly coreflective s
gories and cotorsion theories can be generalized fromR-modules to arbitrary locally presentab
categories.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

Injectivity in locally presentable categories is well understood (see [2]). The basic
is that a full subcategoryA of a locally presentable categoryK is a small-injectivity class
(i.e., there is a setM of morphisms ofK such thatA consists of all objects injective w.r.
each morphism inM) if and only if A is accessible and closed inK under products an
λ-directed colimits for some regular cardinalλ. Accessibility ofA can be replaced byA
being also closed underλ-pure subobjects. Here,λ-pure subobjects are preciselyλ-directed
colimits of split subobjects. This result was re-proved for additive locally presen
categories by H. Krause [13]. Injectivity classes are closely related to weakly refle
subcategories. Every small-injectivity class of a locally presentable categoryK is weakly
reflective inK and every weakly reflective full subcategoryA of K which is closed unde
split subobjects is an injectivity class (i.e., it consists of all objects injective w.r.t. a claM
of morphisms). Moreover, under the set-theoretical Vopěnka’s principle, injectivity classe
of K coincide with weakly reflective full subcategories closed under split subobject
even with full subcategories closed under products and split subobjects. In the a
setting, weakly reflective subcategories are called covariantly finite (see [4]).
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Much less is known about projectivity in locally presentable categories. Recently, a
result has been found about projectivity in additive locally presentable categories s
that every accessible full subcategoryA of an additive locally presentable categoryK
which is closed under coproducts and directed colimits is weakly coreflective (see
It generalizes the second method of proving the celebrated flat cover conjecture
in [6]. We will show (Proposition 2.3) that this can be extended to all locally presen
categories having enoughλ-pure quotients.λ-pure quotients were introduced for gene
locally presentable categories in [3]. The deep part of El Bashir’s (and Bican’s) proo
show that additive locally presentable categories have enoughλ-pure quotients.

Injectivity classes with injective hulls correspond to stably weakly reflective
subcategories. This observation goes back to Enochs [9] (see also [2, Ex. 4.d]); the c
of stable weak reflectivity is older (see Harris [11]). Enochs [9] proved that if a
subcategory of the category ofR-modules is weakly coreflective and closed under direc
colimits then it is stably weakly coreflective (see also [17]). El Bashir [5] has extende
result to Grothendieck categories. We will show (Theorem 2.5) that it can be proved
locally finitely presentable categories (see [15] for known general results about inje
classes with injective hulls).

In a categoryR-Mod of R-modules, injectivity and projectivity classes are of
induced by cotorsion theories. This can be extended to general locally prese
categories by using weak factorization systems. Weak factorization systems origin
homotopy theory and were introduced by Beke [7]. More about weak factorization sy
can be found in [1] and their relation to cotorsion theories was observed in [14]. In
they are also present in [10] where Proposition 7.2.2 shows how stable weak corefl
can be used to get a weak factorization. We show (Proposition 3.5) that this pheno
does not depend on additivity.

2. Weak coreflectivity

Recall that a full subcategoryA of a categoryK is calledweakly coreflectiveif each
objectK in K has a weak coreflection, i.e., a morphismcK :K∗ → K whereK∗ is in A
such that every morphismf :A → K with A in A factorizes (not necessarily uniquel
throughcK . Every weakly coreflective subcategory is closed under coproducts inK.

A morphismf :K → L in K is called aλ-pure quotient(for a regular cardinalλ)
provided that it is projective w.r.t.λ-presentable objects (cf. [3]). Explicitly, for eve
λ-presentable objectX, all morphismsX → L factorize throughf . If K is locally
λ-presentable thenλ-pure quotients are preciselyλ-directed colimits of split quotients i
the categoryK→ of K-morphisms. In additive locallyλ-presentable categories,λ-split
quotients are precisely cokernels ofλ-pure subobjects and, conversely,λ-pure subobjects
are precisely kernels ofλ-pure quotients.

Definition 2.1. We say that a categoryK has enoughλ-pure quotientsif for each object
K there is, up to isomorphism, only a set of morphismsf :L → K such thatf = h · g,
g λ-pure epimorphism implies thatg is an isomorphism.
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Remark 2.2. (1) Every locally presentable category has enoughλ-pure subobjects in th
sense that for each objectK there is, up to isomorphism, only a set of morphismf :K →L

such thatf = g · h, g λ-pure monomorphism implies thatg is an isomorphism. It follows
from the fact that there is a regular cardinalµ such thatf factorizes as

f :K
h−→M

g−→ L

whereg is aλ-pure monomorphism andM isµ-presentable (see [2, 2.33]). Sinceg should
be an isomorphism,L isµ-presentable. However, up to isomorphism, there is only a s
µ-presentable objects.

(2) If K has enoughλ-pure quotients then it has enoughµ-pure quotients for ever
regular cardinalµ> λ. In fact, everyµ-pure quotient isλ-pure.

The locally presentable category of graphs does not have enoughλ-pure quotients for
anyλ (see [3, Remark 11]). An additive locally presentable category has enoughλ-pure
quotients for any regular cardinalλ (see [5, 2.1]).

Proposition 2.3. LetK be a locally presentable category having enoughλ-pure quotients
for all regular cardinalsλ. LetA be an accessible full subcategory ofK which is closed
under coproducts and directed colimits. ThenA is weakly coreflective inK.

Proof. Let K be an object inK and take a morphismf :A → K with A in A. Consider
factorizations

f :A
g−→ B

h−→K

whereg is a regular epimorphism andB is in A. Up to isomorphism, these factorizatio
form a set which can be ordered by means of

(g,h)�
(
g′, h′) iff g′ factorizes throughg.

The resulting ordered setS has directed joins because a directed colimit (in fact,
colimit) of regular epimorphism inK→ is a regular epimorphism andA is closed unde
directed colimits inK. HenceS contains a maximal element(g0, h0). Since anyλ-pure
epimorphism is regular (see [3, Proposition 5]) andA is closed underλ0-pure quotients
for someλ0 [3, Proposition 14], we have

h0 = tu, u λ0-pure epimorphism ⇒ u isomorphism.

SinceK has enoughλ-pure quotients, there is only a set of such morphismsh0. SinceA is
closed under coproducts, it is weakly coreflective.✷
Remark 2.4. Under Vop̌enka’s principle, every full subcategory of a locally presenta
category which is closed under directed colimits is accessible. Hence we can dr
assumption thatA is accessible.
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A weakly coreflective subcategoryA of aK is calledstably weakly coreflectiveif each
objectK in K has a weak reflectioncK :K∗ → K such that any morphismf :K∗ → K∗
with cK · f = cK is an isomorphism. A stable weak coreflection is unique up to
isomorphism.

Theorem 2.5. LetK be a locally finitely presentable category andA a weakly coreflective
full subcategory ofK which is closed under directed colimits inK. ThenA is stably weakly
coreflective.

Proof. Since the comma categoryK ↓ K is locally finitely presentable for eachK in K
andA ↓ K (= the full subcategory ofK ↓ K consisting ofA → K, A ∈ A) is closed
under directed colimits inK ↓ K provided thatA is closed under directed colimits inK,
it suffices to prove the following result. LetK be a full subcategory of a locally finitel
presentable category closed under directed colimits and having a weakly terminal
ThenA has a stably weak terminal objectT (i.e., everyf :T → T is an isomorphism).

Assume thatA does not have a stably weak terminal object and consider a we
terminal objectT . SinceK is well powered, there is a regular cardinalλ such thatT × T

does not have an increasing chain of subobjects of lengthλ. We define a chaintij :Ti → Tj ,
i � j � λ, of weakly terminal objects ofA by the following transfinite induction. We pu
T0 = T and in a limit stepj we take the colimittij :Ti → Tj , i < j . In an isolated step w
putTi+1 = Ti . If there is anf :Ti → Ti which is not a monomorphism, we puttii+1 = f .
If all morphismsTi → Ti are monomorphism, there isg :Ti → Ti which is not a strong
epimorphisms (otherwise,Ti would be stably weakly terminal) and we puttii+1 = g.

Since directed colimits commute with finite limits inK, we have a directed colimit

tj i × tj i :Tj × Tj → Ti × Ti, j < i,

for each limit ordinali � λ. It implies that noTi × Ti , i < λ, has an increasing chain
subobjects of lengthλ. In fact, it suffices to prove it for limit ordinalsi < λ. Assume that it
holds for allj < i and thatXk, k < λ, is an increasing chain of subobjects ofTi × Ti . We
get chains of subobjectsXkj of Tj × Tj , j < i, by taking pullbacks

Tj × Tj
tji×tji

Ti × Ti

Xkj
xkj

Xk

Since all chainsXkj , k < λ stabilize andi < λ, there isk0 < λ such thatXk0j = Xkj for
all k0 � k < λ andj < i. Thus it suffices to know thatxkj :Xkj →Xk , j < i, is a directed
colimit for all k < λ. But this is a general property of locally finitely presentable catego
which can be proved as follows. Letykj :Xkj → Yk , j < i, be a colimit ofXkj , j < i, and
hk :Yk → Xk the induced morphism. Since every morphismz :Z → Xk with Z finitely
presentable factorizes through somexkj , hk is an isomorphism.
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We will show that the ordinalsi < λ such thattiλ is a monomorphism are cofinal inλ.
Let j < i < λ and consider kernel pairs

Sj

t ′jλ

t ′′jλ
Tj

tjλ
Tλ, Sji

t ′ji

t ′′ji
Tj

tji
Ti .

Since directed colimits commute with finite limits inK, we get thatSj is a directed
union ofSji , j < i < λ. SinceTj × Tj does not have an increasing chain of subobj
of length λ, there isi < j < λ such thatSj = Sji . Now, considerj < λ and define a
sequence of ordinalsi0 � i1 � · · · � in � · · ·, n < ω, by puttingi0 = j andSin = Sinin+1.
Let iω = supn<ω in. Since

Siω
∼=

⋃

n<ω

Sin =
⋃

n<ω

Sinin+1
∼= Tiω ,

tiωλ is a monomorphism.
If tiλ is a monomorphism thenti i+1 is a monomorphism too and, following th

construction, it is not a strong epimorphism. HenceTλ contains an increasing chain
subobjects of lengthλ. SinceT is weakly terminal, there is a morphismh :Tλ → T . If
tiλ is a monomorphism then, following the construction, all morphismsf :Ti → Ti are
monomorphisms. Henceh · tiλ is a monomorphism because we have a monomorphis

Ti
htiλ−−−→ T

t0i−−−→ Ti.

Consequently,h is a monomorphism and we get an increasing chain of subobjects ofT of
lengthλ, which is a contradiction. ✷

3. Weak factorization systems

Let K be a category andf :A → B, g :C → D morphisms such that in eac
commutative square

A
u

f

C

g

B
v

D

there is a diagonald :B → C with d · f = u andg · d = v. One says thatg has theright
lifting property w.r.t. f and thatf has aleft lifting propertyw.r.t. g. For a classH of
morphisms ofK we put
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be
H� = {g | g has the right lifting property w.r.t. eachf ∈ H} and

�H = {f | f has the left lifting property w.r.t. eachg ∈ H}.

A weak factorization system(L,R) in K consists of two classesL andR of morphisms of
K satisfying

(WF1) R= L� andL = �R, and
(WF2) any morphismh of K has a factorizationh= g · f with f ∈ L andg ∈R.

If we denote byAR the class of all morphisms in the comma-categoryA ↓ K such that
the underlyingK-morphism belongs toR then a morphismf :A → B belongs to�R iff
the object(A,f ) is projective w.r.t.AR in A ↓K. Therefore a pair(L,R) satisfying (WF1)
is a weak factorization system iff for every(A,h) in A ↓ K there is anAR-morphism
g :f → h from anAR-projective object(A,f ). Consequently, the full subcategory�(AR)

of A ↓ K consisting of allAR-projective objects is weakly coreflective. Moreover, t
full subcategory coincides with the full subcategory ofA ↓ K consisting of morphism
belonging toL. Therefore, ifK has an initial object 0 and a terminal object 1, then a w
factorization system(L,R) yields a weakly coreflective full subcategory�R of K and,
dually, a weakly reflective full subcategoryL� of K. Weak�R-coreflections are given b
factorization

0 →K∗ cK−−→K.

The pairs(�R,L�) given by(L,R) satisfying (WF1) can be viewed as a generaliza
of cotorsion theories to the non-additive setting.

Recall that a pair(F ,C) of classes ofR-modules is called acotorsion theoryif

C = {
C | Ext(F,C)= 0 for all F ∈ F

}
and

F = {
F | Ext(F,C)= 0 for allC ∈ C

}
.

We call a monomorphismf :A→ B in R-Mod anF -monomorphismif cokerf :B → F

hasF ∈ F . The class of allF -monomorphisms is denotedF -Mono. Analogously a
C-epimorphismis an epimorphismg :A→B such that kerg :C →A hasC ∈ C andC-Epi
denotes the class of allC-epimorphisms. Then the definition of a cotorsion theory can
rewritten as

C = (F -Mono)� and F = �(C-Epi).

(see [10, 7.2, Ex. 2] or [14, 4.3]). Morphisms from(F -Mono)� are calledF -fibrations
and morphisms from�(C-Epi) C-cofibrations.

Proposition 3.1. Let (F ,C) be a cotorsion theory inR-Mod. Then (F -Mono,C-Epi)
satisfies(WF1).
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Proof. Following [14, 4.4], (F -Mono)� = C-Epi becauseF contains all projective
R-modules. HenceF -Mono ⊆ �(C-Epi). Considerf :A → B in �(C-Epi) and lete :
A→E be an embedding ofA into an injectiveR-moduleE. SinceC contains all injective
R-modules, we get a diagonalt in the square

A
e

f

E

B

t

0

Thusf is a monomorphism. We have to show that cokerf :B → F hasF ∈ F , i.e., that
everyC-epimorphismg :X → F splits. But this follows from the existence of a diagon
in the square

A
0

f

X

g

B
cokerf

F

✷

Remark 3.2. A cotorsion theory(F ,C) is said to be haveenough injectivesif any
morphismM → 0 satisfies (WF2). Dually,(F ,C) hasenough projectivesif any morphism
0 → M satisfies (WF2). Cotorsion theories having enough projectives and en
injectives are also calledcomplete. The basic result is that every cotorsion the
cogenerated by a set is complete (see [8], or [9, 7.4.1]). The proof of Theorem
[14] shows that if(F ,C) is cogenerated by a set then(F -Mono,C-Epi) satisfies (WF2) for
all morphisms, i.e., that it is a weak factorization system. Moreover, this weak factoriz
system is cofibrantly generated.

Definition 3.3. A weak factorization system(L,R) will be called a stable weak
factorization systemif (WF2) is strengthened to

(WF2s) any morphismh of K has a factorizationh= g f such thatf ∈ L, g ∈R and any
t with tf = f andgt = g is an isomorphism.

In a stable weak factorization system, the full subcategories�(AR) are stably weakly
coreflective, and dually, the full subcategories(LB)

� are stably weakly reflective.

Remark 3.4. Stable weak factorization systems were introduced by Tholen [16] u
essential morphisms instead of stable weak reflections. They were called essentia
factorization systems. The use of stability immediately yields that every left essential
factorization system is right essential.
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Proposition 3.5. Let K be a category with pushouts andL, R classes of morphism
satisfying(WF1)and such that the full subcategories�(AR) are stably weakly coreflectiv
for eachA in K. Then(L,R) is a stable weak factorization system.

Proof. Considerh :A→ B and take a stable weak coreflectionch :h∗ → h of h to �(AR):

A
h

h∗

B

B∗
ch

We have to prove thatch ∈ R. Let

X
u

l

B∗

ch

Y
v

B

(∗)

be a commutative square withl ∈L. Fill it with a pushout ofl andu

X
u

l

B∗
l̄

chP

t

Y
v

ū

B

and take the induced morphismt . SinceL is closed under taking pushout and composit
(see [12, 8.2.9 and 8.2.5]), we havel̄ ∈ L andl̄h∗ ∈L (h∗ ∈L as anAR-projective object).
Hence l̄h∗ ∈ �(AR) and sincech is a stable weak coreflection, we getw making the
following diagram commutative

B∗
ch

A

h∗

l̄h∗

B

P

t

w

Thuswl̄ is an isomorphism andg = (wl̄)−1wū satisfies
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gl = (
w̄l

)−1
wūl = (

w̄l
)−1

wl̄u= u

and

chg = ch
(
w̄l

)−1
wū= chwū= t ū= v

becausechwl̄ = t l̄ = ch. Henceg is a diagonal in (∗). ✷
Corollary 3.6. Let K be a locally finitely presentable category andL, R classes of
morphisms satisfying(WF1)and such that�(AR) is weakly coreflective and closed und
directed colimits inA ↓ K for eachA in K. Then(L,R) is a stable weak factorizatio
system.

It follows from 2.5 and 3.5.

Theorem 3.7. Let (F ,C) be a cotorsion theory inR-Mod such thatF is closed under
directed colimits. Then(F -Mono,C-Epi) is a stable weak factorization system.

Proof. Following 3.1,(F -Mono,C-Epi) satisfies (WF1). SinceF is closed under directe
colimits inR-Mod, �(K(C-Epi)) is closed under directed colimits inK ↓R-Mod (because
it consists ofF -monomorphismsK → X). We will show that�(K(C-Epi)) is weakly
coreflective inK ↓R-Mod. Then the result follows from 3.6.

SinceF is closed under coproducts, it is weakly coreflective (see [5]). Letf :K → X

be anF -monomorphism and consider the diagram

K
f

kerv

X
cokerf

Y

Z

u

v
Y ∗

cY

wherecY is a weakF -coreflection ofY and the square is a pullback. Thenu · kerv = f

and thus(Z,kerv) is a weak�(K(C-Epi))-coreflection of(X,f ). ✷
An analogous result was proved in [14] under stronger assumptions aboutF (cf.

Theorem 4.5).
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