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Abstract

In this paper we compute Lawson homology groups and semi-topological K-theory for certain threefolds and fourfolds. We
consider smooth complex projective varieties whose zero cycles are supported on a proper subvariety. Rationally connected varieties
are examples of such varieties. The computation makes use of different techniques of decomposition of the diagonal cycle, of the
Bloch–Kato conjecture and of the spectral sequence relating morphic cohomology and semi-topological K-theory.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Eric Friedlander and Mark Walker introduced in [16] the (singular) semi-topological K-theory of a complex
projective variety X . This is defined by

K sst
∗ (X) = π∗(Mor(X, Grass)+)

where Grass = qn,N Grassn(PN ). By Mor(X, Grass)+ we define the topological group given by the homotopy
completion of the space of algebraic maps between X and Grass.

Semi-topological K-theory lies between algebraic and topological K-theory in the sense that the natural map
from the algebraic K-theory K∗(X) of a variety X to the connective (complex) topological K-theory ku∗(Xan) of
its underlying analytic space Xan factors through the semi-topological K-theory of X , i.e.

Kq(X) → K sst
q (X) → ku−q(Xan)

for any q ≥ 0.
In [26] Blaine Lawson Jr. introduced the (Lawson) homology groups of a projective complex variety X , which are

given by

Lr Hn(X) = πn−2r (Zr (X))
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where Zr (X) is the naive group completion of the topological monoid

Cr (X) = qd Cr,d(X)

with Cr,d(X) the Chow variety of subvarieties of X of dimension r and degree d.
In [15] Eric Friedlander and Blaine Lawson Jr. introduced the morphic cohomology, a cohomology theory dual to

Lawson homology [14]. They defined

Lr Hn(X) = π2r−n(Z r (X))

where Z r (X) is the naive group completion of the following topological monoid Mor(X, C0(Pr ))/Mor(X, C0(Pr−1)).

Morphic cohomology groups are related to the semi-topological K-theory by means of a semi-topological spectral
sequence compatible with the motivic spectral sequence and the Atiyah–Hirzebruch spectral sequence [13].

In this paper we study the map

K sst
∗ (X) → ku−∗(Xan)

for various complex projective varieties X .
We divide the paper in eight sections. In the second section we fix the notations and recall some essential results

that we need in the paper.
In the third section we study the effects of the Bloch–Kato conjecture on the kernel and cokernel of the generalized

cycle maps. We give a new proof of a theorem of Bloch about the torsion of the singular cohomology of a smooth
projective variety. We also study the torsion of the Borel–Moore homology of a quasi-projective smooth variety. At
the end of the section we construct a birational invariant using Lawson homology.

In the fourth section we study the action of an algebraic cycle on morphic cohomology groups. Our approach is
slightly different than the one used by Peters [30] and our results include the results of [30].

In the fifth section we start comparing the Lawson homology and the singular homology of smooth projective
varieties with zero cycles supported on a subvariety. We essentially use the results of the previous two sections and a
technique introduced by Bloch and Srinivas [4].

The main goal of this section is to study the semi-topological K-theory of our “degenerate” varieties. One of
the main results of the section is the following theorem which computes semi-topological K-theory of “degenerate”
threefolds.

Theorem 1.1. Let X be a smooth projective complex threefold such that there is a proper subvariety V ⊂ X with
C H0(X \ V ) = 0. Then:

K sst
i (X) ' ku−i (Xan), i ≥ 1,

K sst
0 (X) ↪→ ku0(Xan).

Moreover if X is a rationally connected threefold then

K sst
i (X) ' ku−i (Xan), i ≥ 0.

This computation generalizes a result of [13] about the semi-topological K-theory of a rational threefold. In the last
section of the paper we will analyze in more detail the Lawson homology of rational smooth threefolds and fourfolds.

The following result describes the semi-topological K-theory of some “degenerate” fourfolds.

Theorem 1.2. Let X be a smooth projective fourfold such that there is a proper subvariety V ⊂ X of dim(V ) ≤ 2
with C H0(X \ V ) = 0. Then:

K sst
i (X) ' ku−i (Xan), i ≥ 3,

K sst
2 (X) ↪→ ku−2(Xan),

K sst
i (X)Q ' ku−i (Xan)Q, i = 1, 2,

K sst
0 (X)Q ↪→ ku0(Xan)Q.
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We may contrast the above results with a result of Gillet [18] (see also Pedrini and Weibel [29]). He proved that
the image of the map

Kn(X) → ku−n(X)

is finite for any n > 0 and for any smooth complex projective variety X .
In the sixth section of the paper we give some consequences of a theorem of Jannsen [22] and Laterveer [25]

concerning a special decomposition of the diagonal for varieties with small Chow groups.
In the seventh section of the paper we study morphic cohomology of projective smooth linear varieties. The main

idea is to use a K ünneth formula for such varieties proved by Joshua [23] and by Totaro [36]. The results in this
section were proved in [13] using other tools.

The last section of the paper is a short discussion of the morphic cohomology of a rational variety. The results here
generalize and explain previous results of [13,20].

2. Notations and Recollection

Throughout this paper X will define a smooth projective irreducible variety over the complex numbers of dimension
d (unless otherwise stated). By H p,q

M (X), Lq H p(X), L p Hq(X) and Hq(X) we define motivic cohomology, morphic
cohomology, Lawson homology and singular homology with integer coefficients. For a field E we define K M

∗ (E) to
be the Milnor K-theory of E . By cycp,q , respectively cycp,q we define the generalized cycle maps

cycp,q
: L p Hq(X) → Hq(X)

respectively

cycp,q : L p Hq(X) → Hq(X).

Let K q,n
= Ker{cycq,n

}, K p,q = Ker(cycp,q) and Cq,n
= Coker{cycq,n

}, Cq,n = Coker{cycq,n}. For an abelian
group A we define m A = {a ∈ A|ma = 0}.

If for a variety X there is a proper subvariety V ⊂ X such that C H0(X \ V ) = 0 we say as in [4] that X is
“degenerate” and also that its zero cycles “are supported on subvariety V ”.

For a complex variety X we let X∗ denote a resolution of singularities for X .
We will start recalling the basics about the (co)niveau filtration of the singular (co)homology. Let

Nk Hn(X) =

∑
dim(W )≤k

Im(Hn(W ) → Hn(X))

be a step in the niveau filtration of Hn(X). This is an ascending filtration

0 ⊂ N0 Hn(X) ⊂ · · · ⊂ Nk Hn(X) ⊂ · · · ⊂ Hn(X)

which has the property that

Nk Hn(X) = Hn(X) (1)

for any k ≥ min{n, d}.
It is easy to see that Nd Hn(X) = Hn(X) for any natural n. For n < d the above equality follows from an induction

argument using weak Lefshetz theorem. For a smooth projective variety X we know that the niveau filtration is
isomorphic to the coniveau filtration of the cohomology of X , i.e.

Nk Hn(X) ' N d−k H2d−n(X) (2)

where we define

N k Hn(X) =

∑
cd(W )≥k

Im(Hn
W (X) → Hn(X)).

From (1) and from (2) we conclude that

Nd−1 H2d−n(X) ' N 1 Hn(X) ' Hn(X) ' H2d−n(X)
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for any n such that 2d − n ≤ d − 1(⇔ n ≥ d + 1). We also know [9,40] the following property of the generalized
cycle maps

Proposition 2.1 ([9,40]). For a smooth projective variety X

Im(cycq,n) ⊂ N n−q Hn(X)

with equality when n = 2q or n = 2q − 1.

For a quasi-projective variety U , Deligne [6] and Gillet-Soule [19] defined a weight filtration on the Borel–Moore
homology of U an (written H B M

∗ (U an)). We recall the definition of this filtration. Choose a compactification U ⊆ X
so that X is a projective complex variety and let Y be the reduced complement of U in X . Consider Z Sing∗() the
functor taking a space Z to the complex associated to the simplicial set Sing∗Z . We may construct two hypercovers
[19] X∗ → X and Y∗ → Y such that Xn and Yn are smooth projective varieties and such that there is a map Y∗ → X∗

which covers the embedding Y ⊂ X . Denoting Un = Xn t Yn−1 we may construct a bicomplex

· · · → Z Sing∗(U1) → Z Sing∗(U0). (3)

The homology of the total complex of the bicomplex (3) gives the Borel–Moore homology [19]. The weight filtration
for H B M

∗ (U an) is the increasing filtration

· · · ⊆ Wt H B M
n (U an) ⊆ Wt+1 H B M

n (U an) ⊆ · · ·

where

Wt H B M
n (U an) := image(hn(Z Sing∗(Un+t ) → · · · → Z Sing∗(U0)) → H B M

n (U an)).

It can be proved [19] that

Wt H B M
n (U an) = 0

for any t < −n and

Wt H B M
n (U an) = H B M

n (U an)

for any t ≥ d − n, where d is the dimension of the variety U .
The generalized cycle maps of a quasi-projective variety have the following property:

Proposition 2.2 ([13]). For any quasi-projective complex variety U the image of the canonical map

cyct,n : L t Hn(U ) → H B M
n (U an)

lies in the part of weight at most −2t of Borel–Moore homology.

We will recall now the following conjecture due to Bloch and Kato.

Theorem 2.1 (Bloch–Kato Conjecture). For any n ≥ 0 and any field E the norm residue homomorphism

K M
n (E)/ l → Hn

et (E, µ
⊗q
m )

is an isomorphism.

This conjecture was proved by V. Voevodsky for any m = 2l and for any natural number l > 0 (this part is also
called Milnor’s conjecture). The general case appears to be proved from the work of Rost [31,32], Voevodsky [37]
and Weibel [41]. Suslin and Voevodsky [34] (see also Geisser–Levine [17]) proved that the Bloch–Kato conjecture is
equivalent to a conjecture due to Beilinson–Lichtenbaum.

Theorem 2.2 (Beilinson–Lichtenbaum Conjecture). The map

Hn
M(X, Z/m(q)) → Hn

et (X, µ
⊗q
m )

is an isomorphism for n ≤ q and a monomorphism for n ≤ q + 1 for any smooth quasi-projective variety X.
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A. Suslin proposed the following characterization for the morphic cohomology with integral coefficients (see [13,40]).

Conjecture 2.1 (Suslin’s Conjecture). The map

Lq Hn(X, Z) → Hn(X, Z)

is an isomorphism for n ≤ q and a monomorphism for n ≤ q + 1 for any smooth quasi-projective variety X.

We notice that the last conjecture contains a conjecture due to Friedlander and Mazur [9].

Conjecture 2.2 (Friedlander–Mazur Conjecture). For any complex smooth quasi-projective variety X

Lq Hn(X) = 0

for any n < 0.

The Friedlander–Lawson duality theorem [14,11] between morphic cohomology and Lawson homology will be used
throughout the paper.

Theorem 2.3. (Friedlander–Lawson Jr. [14], Friedlander [11]) For any quasi-projective smooth complex variety X
of dimension d

Ls Hn(X) ' Ld−s H2d−n(X)

for any n ≤ 2s, n ∈ Z and 0 ≤ s ≤ 2d.

The relation between morphic cohomology and semi-topological K-theory is recalled in the following theorem.

Theorem 2.4 ([13]). For any smooth, quasi-projective complex variety X and any abelian group A, there are natural
maps of strongly convergent spectral sequences

E p,q
2 (alg) = H p−q

M (X, A(−q)) H⇒

��

K alg
−p−q(X, A)

E p,q
2 (sst) = L−q H p−q(X, A) H⇒

��

K sst
−p−q(X, A)

E p,q
2 (top) = H p−q(Xan, A) H⇒ ku p+q(Xan, A).

inducing the usual maps on both E2-terms and abutments.

The following soft improvement of Theorem 3.7 in [13] will be used later in the text.

Theorem 2.5. Let X be a smooth quasi-projective complex variety of dimension d. Let A be an abelian group and
k ≤ 0. Then if

cycq,n
: Lq Hn(X, A) → Hn(Xan, A)

is an isomorphism for n − 2q ≤ k − 1 and a monomorphism for n − 2q ≤ k, then the map

K sst
i (X, A) → ku−i (Xan, A)

is an isomorphism for i ≥ −k + 1 and a monomorphism for i = −k.

Proof. We will use the idea of proof used in Theorem 3.7 [13]. We will prove by induction the following statements:
(1) The map E p,q

r (sst) → E p,q
r (top) is an isomorphism provided p + q ≤ k − 1.

(2) The map E p,q
r (sst) → E p,q

r (top) is a monomorphism provided p + q ≤ k.
We notice that E p,q

2 (sst) → E p,q
2 (top) is an isomorphism if and only if cyc−q,p−q

: L−q H p−q
→ H p−q is an

isomorphism. From the hypotheses we know that cyc−q,p−q is an isomorphism if p − q − 2(−q) = p + q ≤ k − 1
and a monomorphism if p − q − 2(−q) = p + q ≤ k. This implies our assertions in case r = 2.
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Let us suppose that both assertions are true for a fix r ≥ 2 and prove them for r + 1. Theorem 2.4 shows that there
is a commutative diagram

E p−r,q+r−1
r (sst)

d p−r,q+r−1
r

−−−−−−→ E p,q
r (sst)

d p,q
r

−−−−→ E p+r,q−r+1
r (sst)y y y

E p−r,q+r−1
r (top)

d p−r,q+r−1
r

−−−−−−→ E p,q
r (top)

d p,q
r

−−−−→ E p+r,q−r+1
r (top)

with the middle homology groups of the rows given by E p,q
r+1(sst) and E p,q

r+1(top). If p + q ≤ k then the left vertical
map in this diagram is an isomorphism and the middle vertical map is a monomorphism. It implies that the maps
E p,q

r+1(sst) → E p,q
r+1(top) are monomorphisms for any p + q ≤ k. If p + q < k then the left and middle arrow in the

above diagram are isomorphisms and the right one is a monomorphism. This implies that for p + q < k the maps
E p,q

r+1(sst) → E p,q
r+1(top) are surjective. This concludes our induction.

This induction shows that (1) and (2) hold also on E∞-terms of the spectral sequences, and then the map
K sst

i (X, A) → ku−i (Xan, A) has a finite filtration whose quotients are isomorphisms for i ≥ −k + 1 and
monomorphisms for i = −k. �

3. First results concerning generalized cycle maps

We start this section with some applications of the Bloch–Kato conjecture in the context of Lawson homology.
The point (b) in Proposition 3.1 is known as Bloch’s theorem [3]. In Proposition 3.2 we analyze the torsion of the
Borel–Moore homology of a smooth quasi-projective variety.

Proposition 3.1. Let X be a quasi-projective smooth variety. Assume that the Bloch–Kato conjecture is valid for all
the primes. Then:

(a) Let n ≤ q + 1. Then K q,n is divisible and Cq,n is torsion free.
(b) Suppose X is projective. Then the torsion of Hn(X) is supported in codimension one for any n > 0.
(c) Lq Hn(X) is uniquely divisible for n < 0 and Lq H0(X) is torsion free (for any q ≥ 0).

Proof. We write the diagram of universal coefficient sequences for both cohomologies:

0 −−−−→ Lq Hn(X) ⊗ Z/m −−−−→ Lq Hn(X, Z/m) −−−−→ m Lq Hn+1(X) −−−−→ 0y y y
0 −−−−→ Hn(X) ⊗ Z/m −−−−→ Hn(X, Z/m) −−−−→ m Hn+1(X) −−−−→ 0.

We recalled in the second section that Bloch–Kato conjecture implies that the map

Hn
M(X, Z/m(q)) → Hn

et (X, µ
⊗q
m )

is an isomorphism for n ≤ q and a monomorphism for n ≤ q + 1 for any smooth quasi-projective variety X . The
above map factors through the cycle map from morphic cohomology to the singular cohomology [15]. In [35] it is
proved that

Hn
M(X, Z/m(q)) ' Lq Hn(X, Z/m)

for any allowed n, q and any complex projective variety X .
In conclusion the middle vertical map from the above diagram is injective for n ≤ q + 1 and isomorphism for

n ≤ q . Using the snake lemma we conclude that we have the following exact sequence:

0 → Lq Hn(X) ⊗ Z/m → Hn(X) ⊗ Z/m → Ker(m Lq Hn+1(X) →m Hn+1(X)) → 0

for any n ≤ q and that the map Lq Hn(X) ⊗ Z/m → Hn(X) ⊗ Z/m is an injection for n ≤ q + 1. Moreover we
conclude that for n ≤ q we have that the map

m Lq Hn+1(X) →m Hn+1(X)
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is surjective. This means actually that

m Lq Hn(X) →m Hn(X)

is surjective for any n ≤ q + 1 and any m > 1. It implies that

torsion(Im(cycq,n)) = torsion(Hn(X)) (4)

for any n ≤ q + 1. As each image of a generalized cycle map is included in a step of the coniveau filtration, we have

torsion(N n−q Hn(X)) = torsion(Hn(X))

for any n ≤ q + 1. The only case when we conclude something nontrivial from the equality above is when n = q + 1.
In this case for any 0 < n ≤ d + 1 we have

torsion(N 1 Hn(X)) = torsion(Hn(X))

which implies our point (b). Consider now the composition

Lq Hn(X) ⊗ Z/m → Im(cycq,n) ⊗ Z/m → Hn(X) ⊗ Z/m.

The first map is still surjective because − ⊗ Z/m is a right exact functor. For n ≤ q + 1 the composition is injective.
This implies that

Lq Hn(X) ⊗ Z/m ' Im(cycq,n) ⊗ Z/m

and that

Im(cycq,n) ⊗ Z/m ↪→ Hn(X) ⊗ Z/m

for any n ≤ q + 1 and m > 1. Consider now the following short exact sequence

0 → K q,n
→ Lq Hn(X) → Im(cycq,n) → 0.

Tensoring with Z/m we obtain the following exact sequence:

0 →m K q,n
→m Lq Hn(X)

a1
→mIm(cycq,n) → K q,n

⊗ Z/m

→ Lq Hn(X) ⊗ Z/m
a2
→ Im(cycq,n) ⊗ Z/m → 0.

For n ≤ q + 1 the map a2 is an isomorphism and the map a1 is a surjection. From the exactness of the sequence we
get

K q,n
⊗ Z/m = 0

for any n ≤ q + 1 and m > 1. This implies that K q,n is divisible for any n ≤ q + 1.
Consider now the following exact sequence

0 → Im(cycq,n) → Hn(X) → Cq,n
→ 0.

Tensoring with Z/m we obtain the following long exact sequence:

0 →m Im(cycq,n)
a3
→m Hn(X) →m Cq,n

→ Im(cycq,n) ⊗ Z/m
a4
→ Hn(X) ⊗ Z/m → Cq,n

⊗ Z/m → 0.

For n ≤ q + 1 the map a3 is bijective and the map a4 is injective. From the exactness of the sequence we get

mCq,n
= 0

for any n ≤ q + 1 and any m > 1. This implies that Cq,n is torsion free for any n ≤ q + 1.
Suppose now that n < 0. Because 0 ≤ q ≤ d = dim(X), we have n < q. We have the following short exact

sequence

0 → Lq Hn(X) ⊗ Z/m → Lq Hn(X, Z/m) →m Lq Hn+1(X) → 0.

Because Lq Hn(X, Z/m) = 0 for any n < 0 and for any m > 1, we conclude that Lq Hn(X) ⊗ Z/m = 0 for any
n < 0, m > 1 (i.e. Lq Hn(X) is divisible for n < 0) and that m Lq Hn+1(X) = 0 (i.e. Lq Hn(X) is torsion free for any
n ≤ 0). �
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Corollary 3.1. Let n ≤ q + 1. Then:
(a) If there is a natural nonzero number M such that M K q,n

= 0, then cycq,n is injective.
(b) Suppose that cycq,n

⊗ Q is surjective. Then cycq,n is surjective.

Point (b) in Proposition 3.1 has the following formulation in the quasi-projective case:

Proposition 3.2. Let X be a smooth quasi-projective variety of dimension d and let n ≥ d. Fix s = n − d + 1. Then

torsion(W−2s Hn(X)) = torsion(H B M
n (X))

where W−2s Hn(X) is a step in the weight filtration of the Borel–Moore homology H B M
n (X).

Proof. From (4) we have that the groups Im(cycq,q+1) and Hq+1(X) have the same torsion for any q with 0 ≤ q ≤ d.
Using the Friedlander–Lawson duality theorem [11] we have that

tors(Im(Ln−d+1 Hn(X) → Hn(X))) = tors(Hn(X))

for any n ≥ d .
We recalled in the second section that the cycle map from Lawson homology to the Borel–Moore homology of a

smooth quasi-projective variety factors through steps in the weight filtration [13], i.e.

Ls Hn(X) → W−2s Hn(X) ↪→ Hn(X)

for any 0 ≤ s ≤ d and n ≥ 2s. This implies the statement of the theorem. �

The above discussion gives us the following reformulation of the Friedlander–Mazur conjecture.

Proposition 3.3. Let X be a smooth quasi-projective variety. Then the Friedlander–Mazur conjecture is valid for X
if and only if Lq Hn(X)Q ' 0 for any n < 0.

Proof. The point (c) in the Proposition 3.1 shows that these groups are torsion free. �

For a smooth projective variety X of dimension d with

H2
Zar(X, OX ) = H1

Zar(X, OX ) = 0

we know (see for example [5]) that the cohomological Brauer group of X has the following characterization

Br(X) ' tors(H3(X)).

Suslin’s conjecture predicts that the cycle map

Lq Hn(X) → Hn(X)

is an isomorphism for any n ≤ q and a monomorphism for n = q + 1. Assuming Suslin’s conjecture for X we obtain
that

torsion(L3 H3(X)) ' torsion(L4 H3(X)) ' · · · ' torsion(H3(X)).

But (4) shows that

torsion(Im(cyc2,3)) = torsion(H3(X))

and, because of our assumption, we get that the cycle map cyc2,3 is injective. We obtain that

torsion(L2 H3(X)) ' torsion(L3 H3(X)) ' · · · ' torsion(H3(X))

giving a characterization of the cohomological Brauer group of X by means of morphic cohomology. We will show
in sections five, six and seven that Suslin’s conjecture can be verified for certain projective varieties.

A natural question to ask is whether tors(L2 H3) is a birational invariant in general as Suslin’s conjecture predicts.
We will prove below that this is indeed the case. We will use a blow-up formula for Lawson homology proved by
Hu [20] and the fact that birational maps between projective smooth varieties factor as a composition of blow-ups
with centers of codimension greater than two [1].
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Proposition 3.4. tors(L2 H3) is a birational invariant.
That is, for any birational equivalent smooth projective varieties X, X ′ we have:

tors(L2 H3(X)) ' tors(L2 H3(X ′)).

Proof. Let XY → X be a blow-up of a smooth center Y of codimension greater than or equal with 2. From [20] we
know that

Ln−2 H2n−3(XY ) =

⊕
1≤ j≤r−1

Ln−2− j H2n−3−2 j (Y )
⊕

Ln−2 H2n−3(X)

where r is the codimension of Y in X .
It suffices to show that tors(Ln−2− j H2n−3−2 j (Y )) = 0 for any 1 ≤ j ≤ r − 1. We notice that

dim(Y ) − 1 ≤ n − 2 − j ≤ n − 3

and

2dim(Y ) − 1 ≤ 2n − 3 − 2 j ≤ 2n − 5.

If n − 2 − j ≥ dim(Y ), it is obvious that

tors(Ln−2− j H2n−3−2 j (Y )) = 0.

We also have

tors(Ldim Y−1 H2dim Y−1(Y )) ' tors(H2dim Y−1(Y )).

From the universal coefficient sequence one can obtain that

tors(H2dim Y−1(Y )) = tors(H0(Y )) = 0.

We can conclude now that

tors(L2 H3(X)) ' tors(L2 H3(X ′))

for any birational equivalent smooth projective varieties X , X ′. �

4. Cycle action on morphic cohomology

Let α be a dimension d = dim(X) irreducible algebraic cycle in X × X with the support contained in V × W ,
where V ⊂ X and W ⊂ X are irreducible subvarieties. Let v = dim(V ) and w = dim(W ). Consider the compositions
i : V ∗

→ V ↪→ X and j : W ∗
→ W ↪→ X , with V ∗ and W ∗ resolutions of singularities of V , respectively W . We

may suppose that pr1(α) = V and that pr2(α) = W . Let α′
= (i × j)−1(α). Based on our assumption, the cycle α is

not entirely included in the singular locus of V × W . This implies that

(i × j)∗α
′
= α

where (i × j)∗ : C Hd(V ∗
× W ∗) → C Hd(X × X). The cycle α gives the following action

α∗ : Lm H l(X) → Ld−m H2d−l(X)

defined as

α∗(x) = pr2∗(pr∗

1 (x) ∩ α).

The above map depends only on the algebraic equivalence class of α because of the properties of cap product [15]. A
similar action in the context of Lawson homology was considered by Peters in [30] (see also [15]).

The above map decomposes in the following way

α∗(x) = pr2∗(pr∗

1 (x) ∩ (i × j)∗(α
′)) = pr2∗(i × j)∗((i × j)∗ pr∗

1 (x) ∩ (α′)) = j∗ prW ∗∗(pr∗

V ∗ i∗(x) ∩ α′)
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by using projection formula (see [12] for a proof of the projection formula) in the morphic cohomology setting. If
we consider, for example, the action of the diagonal cycle of X × X we will obtain the Friedlander–Lawson duality
isomorphism between morphic cohomology and Lawson homology.

The above action commutes with the similarly defined action of the algebraic cycle α on the singular cohomology.
This can be seen from the fact that the cycle maps from morphic cohomology (resp. Lawson homology) to singular
cohomology (resp. singular homology) are natural [12] and commute with the cap product with an algebraic cycle [12].

The above discussion is summarized in the following sequence of commutative diagrams (the horizontal maps are
given by the decomposition of the action of the algebraic cycle α and the vertical maps are given by the cycle maps)

Ld−m H2d−l(X)
i∗

−−−−→ Ld−m H2d−l(V ∗)
pr∗

V ∗

−−−−→ Ld−m H2d−l(V ∗
× W ∗)

∩α′

−−−−→

c1

y c2

y y
H2d−l(X)

i∗
−−−−→ H2d−l(V ∗)

pr∗

V ∗

−−−−→ H2d−l(V ∗
× W ∗)

∩α′

−−−−→

−−−−→ Lm Hl(V ∗
× W ∗)

(prW∗ )∗
−−−−→ Lm Hl(W ∗)

j∗
−−−−→ Lm Hl(X)y c3

y c4

y
−−−−→ Hl(V ∗

× W ∗)
(prW∗ )∗
−−−−→ Hl(W ∗)

j∗
−−−−→ Hl(X)

(5)

for any 0 ≤ m ≤ d and any l ≥ 2m.
The map c2 is an isomorphism for any m ≤ d − v, where v = dim(V ). To see this we divide it in several cases

depending on the value of 2d − l. If 2d − l > 2v ≥ 0 then

Ld−m H2d−l(V ∗) = H2d−l(V ∗) = 0

by [15]. If 0 ≤ 2d − l ≤ 2v then we can consider the following morphic cohomology group Lv H2d−l(V ∗) which is
isomorphic with H2d−l(V ∗) from the Poincare duality and the Dold–Thom theorem (see [12]). At the same time the
composition of s-maps

Lv H2d−l(V ∗) → Ld−m H2d−l(V ∗)

is an isomorphism in this range and commutes with the cycle maps [14]. This implies that

Ld−m H2d−l(V ∗) ' H2d−l(V ∗).

Consider now 2d − l < 0. Then by the Friedlander–Lawson duality theorem and the isomorphism of s-maps in this
range we obtain

0 = Lv H2d−l(V ∗) = Ld−m H2d−l(V ∗).

The map c3 is an isomorphism for any m ≥ w. In the case m = w we have

Lm H2m(W ∗) ' H2m(W ∗)

because W ∗ is irreducible. For m > w we obviously have Lm Hl(W ∗) = Hl(W ∗) = 0 since l ≥ 2m > 2w.
The above discussion proves the following proposition:

Proposition 4.1. Let α be an irreducible algebraic cycle in C Hd(X × X) with the support contained in V ×W , where
V ⊂ X and W ⊂ X are irreducible subvarieties of dimension v, respectively w. The action of the cycle α on the
kernel and the cokernel of the map c1 is zero for m ≥ w = dim(W ) or for m ≤ d − v = codim(V ).

Proof. From the above discussion we conclude that if m ≥ w then c3 is an isomorphism and that if m ≤ d − v then
c2 is an isomorphism. These imply the conclusion of our proposition. �

Corollary 4.1. Suppose α as in Proposition 4.1 and suppose dim(X) = dim(V ) + dim(W ). Then the action of the
cycle α on the kernel and on the cokernel of the map c1 is zero for any 0 ≤ m ≤ d.
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Proof. Direct consequence of Proposition 4.1. �

Remark 4.1. We remark that to study the action of a cycle α =
∑

niαi ∈ C Hd(X × X) with supp(α) ⊂ V × W it
is enough to study the action of each irreducible cycle αi . It is obvious that

supp(αi ) ⊂ supp(α) ⊂ V × W

and that because supp(αi ) is irreducible there are Vi ⊂ V, Wi ⊂ W irreducible components such that

supp(αi ) ⊂ Vi × Wi

By using the Friedlander–Lawson duality theorem [14] we will identify the cycle map c1 with the cycle map
Lm Hl(X) → Hl(X).

This will identify the action of the diagonal cycle with the identity map.

Convention 4.1. From now on by “the action of α is zero for m in some certain range” we will understand that the
action of the cycle α on the kernel and cokernel of the cycle map Lm H∗ → H∗ is zero for m in the respective range.

5. Comparing Lawson homology with singular homology

In this section we study the cycle maps cycq,n
: Lq Hn(X) → Hn(X) for a smooth projective complex variety X

with the property that its zero cycles are supported on a proper subvariety. We prove that these cycle maps behave
nicely for threefolds and fourfolds with this property (being injective or bijective most of the time). We expect that
there are cycle maps cycq,n with nontrivial kernel for varieties of large dimension with zero cycles supported on a
proper subvariety. A support for our expectation is a theorem of Albano and Collino [2] proving that for a generic
smooth cubic hypersurface X ⊂ P8 the Griffiths group Griff 4(X) ⊗ Q is infinitely generated.

We start the section by recalling a result of Friedlander. He proved [10] that for any smooth connected complex
projective variety X of dimension d we have

Ld−1 H2d−2(X) ↪→ H2d−2(X),

Ld−1 H2d−1(X) ' H2d−1(X),

Ld−1 H2d(X) ' H2d(X) ' Z

and that

Ld−1 Hk(X) = 0

for any k > 2d .
We recall that Bloch and Srinivas [4] proved that if a smooth projective variety X has its zero cycles supported on

a not necessary irreducible subvariety V , i.e. C H0(X \ V ) = 0, then the diagonal cycle decomposes as

N∆ = α + β

for some natural nonzero number N and some cycles α, β ∈ C Hd(X ×X) with the support of α included in V ×X and
the support of β included in X × D, where D is a divisor of X . We will also use the transpose of this decomposition,
i.e.

N∆ = αt
+ β t

where αt , β t
∈ C Hd(X × X) are supported on X × V , respectively D × X .

In case X = Pn , we can choose N = 1 in the equality above. Moreover, because the minimal N in the above
decomposition is a birational invariant, we can choose N = 1 for any smooth projective rational variety X . This
remark is a consequence of the proof of the above-mentioned result. We include its proof below because of the lack
of a good reference.
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Proposition 5.1. Let X be a rational projective variety of dimension d over C and let ∆ ⊂ X × X be the diagonal
cycle. Then there exist a divisor D ⊂ X and d-cycles Γ1, Γ2 on X × X such that supp(Γ1) ⊂ Spec(C) × X,
supp(Γ2) ⊂ X × D and

[∆] = [Γ1] + [Γ2]

in C Hd(X × X).

Proof. Consider Q ⊂ k to be an extension of finite transcendence degree which contains all the coefficients of the
polynomials that cut out X in some projective space, all the coefficients of the birational morphism between X and
Pd
C and of its inverse. Let µ be the generic point of X := X/k, L = k(X) = OX,µ and choose an embedding L ↪→ C.

We can see µ as a zero cycle on X L . Owing to the way we choose k, we obtain that X is a rational variety over k.
This implies that C H0(X F ) = Z for any finitely generated field extension F/k [27]. In particular C H0(X L) = Z. Let
pt := Spec(k) be a k-rational point of X . We know that such a point exists because X is rational over an infinite field
k. We have that

µ ∈ C Hd(X L) → C Hd((X \ {pt})L) = 0

so we can conclude that µ = 0 in C Hd((X \ {pt})L), i.e. there is γ a cycle supported on Spec(k)× Spec(L) such that
µ = γ . Let Γ1 be the closure of γ in Spec(k) × X . Then

∆ − Γ1 ∈ Ker(C Hd(X × X) → C Hd(X L)).

As C Hd(X L) = limDC Hd(X × (X \ D)), where the limit runs over all divisors D of X , we have that

[∆] = [Γ1] + [Γ2]

with Γ2 supported on X × D. A fortiori, this decomposition can be seen over C. �

The following theorem computes K sst for “degenerate” threefolds.

Theorem 5.1. Let X be a smooth projective complex threefold such that there is a proper subvariety V ⊂ X with
C H0(X \ V ) = 0. Then:

K sst
i (X) ' ku−i (Xan), i ≥ 1,

K sst
0 (X) ↪→ ku0(Xan).

Moreover if X is a rationally connected threefold then

K sst
i (X) ' ku−i (Xan)

for any i ≥ 0.

Some examples which fulfill the conditions in Theorem 5.1 are: rationally connected threefolds (e.g. smooth Fano
threefolds [24]), Kummer threefolds [4], certain quotient varieties such

(X × E)/(Z/2)

with X a K3 covering of an Enriques surface and E an elliptic curve [4].
The above result on rationally connected threefolds generalizes the same result on rational threefolds proved in [13]

with other tools.

Proof. The proof of the above theorem is based on the spectral sequence relating morphic cohomology and semi-
topological K-theory [13] and on the following two propositions which compute the Lawson homology groups of a
threefold X with zero cycles supported on a subvariety.

Proposition 5.2. Let X be a smooth projective complex threefold such that there is a proper subvariety V ⊂ X with
C H0(X \ V ) = 0 and with dim(V ) ≤ 1. Then:

(a) L1 H2(X) ↪→ H2(X) is injective and a rational isomorphism.
(b) L1 H3(X) ' H3(X).
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(c) L2 H4(X) ' L1 H4(X) ' H4(X).
(d) L2 H5(X) ' L1 H5(X) ' H5(X).
(e) L3 H6(X) ' L2 H6(X) ' L1 H6(X) ' H6(X).

(f) Lk Hn(X) = 0 for any n ≥ 7 and any k ≥ 0.
In particular any such a threefold fulfills Suslin’s conjecture.
Moreover if X is a rationally connected threefold then

L∗ H∗(X) = H∗(X)

for all possible indices.

Proof. It is enough to prove the case dim(V ) = 1. Consider the above decomposition

N∆ = αt
+ β t

with αt supported on X × V and β t supported on D × X , with D a divisor on X . Remark 4.1 shows that it is enough
to consider the case when V and D are irreducible. We recall that we let D∗, respectively by V ∗, to be the resolution
of singularities of D, respectively V .

Proposition 4.1 gives us that the action of β t is zero on Ker(Lm H∗(X) → H∗(X)) for m ≤ codim(D) = 1 and the
action of αt on the same kernel is zero for m ≥ v = dim(V ) = 1. This implies that for m = 1 we have

N (Ker(L1 Hk(X) → Hk(X))) = 0

for any 2 ≤ k ≤ 6 and that

N L1 Hk(X) = 0

for any k ≥ 7. Proposition 3.1 implies that L1 Hk(X) = 0 for any k ≥ 7 and Corollary 3.1 implies that the cycle maps
L1 Hk(X) → Hk(X) are injective for any 3 ≤ k ≤ 6.

Let x ∈ Hk(X) ' H6−k(X), where 3 ≤ k ≤ 6. Then, from the Diagram (5), we can see that

β t
∗x ∈ Im(L1 Hk(X) → Hk(X))

because L2 H6−k(D∗) ' H6−k(D∗).
For k ≥ 3, we have αt

∗x = 0 because the action of αt on Hk(X) factors through Hk(V ∗) and dim(V ) = 1. This
implies that

N x = β t
∗x ∈ Im(L1 Hk(X) → Hk(X))

for any 3 ≤ k ≤ 6. For k = 2, we can see that

αt
∗x ∈ Im(L1 H2(X) → H2(X))

because L1 H2(V ∗) ' H2(V ∗).
Because x ∈ Hk(X) is arbitrary chosen, we conclude that the rational cycle maps

L1 Hk(X) ⊗ Q → Hk(X) ⊗ Q

are surjective for any 3 ≤ k ≤ 6. Corollary 3.1 shows that the cycle maps L1 Hk(X) → Hk(X) are surjective for any
3 ≤ k ≤ 6. For k = 2 we have

N x = αt
∗x + β t

∗x ∈ Im(L1 H2(X) → H2(X))

This means that L1 H2(X) ⊗ Q → H2(X) ⊗ Q is a surjective map. For k = 2 we use a result of Bloch–Srinivas. They
prove that varieties with our hypothesis have the property that algebraic equivalence and homological equivalence
coincide for codimension 2 cycles [4]. This means that the cycle map

L1 H2(X) → H2(X)

is injective.
Consider now the decomposition

N∆ = α + β
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with α supported on V × X and β supported on X × D. Proposition 4.1 gives that the action of α is zero on
Ker(Lm H∗(X) → H∗(X)) for m ≤ d − v = codim(V ) = 2 and that the action of β is zero on Ker(Lm H∗(X) →

H∗(X)) for m ≥ dim(D) = 2. This implies that for m = 2 we have

N (Ker(L2 Hk(X) → Hk(X))) = 0

for 4 ≤ k ≤ 6 and that

N L2 Hk(X) = 0

for k ≥ 7. Proposition 3.1 implies that L2 Hk(X) = 0 for any k ≥ 7 and Corollary 3.1 implies that the cycle maps
L2 Hk(X) → Hk(X) are injective for any 4 ≤ k ≤ 6.

Let x ∈ Hk(X) with 4 ≤ k ≤ 6. Then, as the Diagram (5) shows,

α∗(x) ∈ Im(L2 Hk(X) → Hk(X))

because L1 H6−k(V ∗) ' H6−k(V ∗). The action of β on Hk(X) is zero for 5 ≤ k ≤ 6 because this action factors
through Hk(D∗) and dim(D∗) = 2. If k = 4 then

β∗(x) ∈ Im(L2 H4(X) → H4(X)),

because L2 H4(D∗) ' H4(D∗) (see Diagram (5)). As

N x = α∗(x) + β∗(x)

we conclude that for 4 ≤ k ≤ 6 the cycle maps

L2 Hk(X) ⊗ Q → Hk(X) ⊗ Q

are surjective. Applying Corollary 3.1 we conclude that these maps are surjections with integer coefficients.
Let us consider now the case of a smooth rationally connected threefold X . We want to prove that, in this case,

L1 H2(X) ' H2(X, Z). For a smooth rationally connected threefold X we have that H4(X, C) = H2,2(X) because
h1,3

= h3,1
= h2,0

= 0 (see [39]). This implies that

H2(X, Z) ' H4(X, Z) ' H2,2(X, Z)

where we defined H2,2(X, Z) = {η ∈ H4(X, Z) such that coef ∗(η) ∈ H2,2(X) with coef ∗ : H4(X, Z) → H4(X, C)

being the coefficient map}.
C. Voisin proved the following theorem:

Theorem 5.2 (Voisin [38]). The Hodge conjecture with integral coefficients is valid for any smooth uniruled threefold
X. That is, the map

C H1(X) → H2,2(X, Z)

is surjective for any such X. In particular all torsion cycles of H2(X, Z) are algebraic.

We recall that a smooth projective complex variety is uniruled if there is a rational curve through every point of the
variety. As any smooth rationally connected variety is uniruled, we conclude using Voisin’s result that for a smooth
rationally connected threefold X the cycle map C H1(X) → H2(X, Z) = H2,2(X, Z) is surjective. This implies that
L1 H2(X) → H2(X, Z) is a surjective map. �

Proposition 5.3. Let X be a smooth projective complex threefold such that there is a proper subvariety V ⊂ X with
C H0(X \ V ) = 0 and with dim(V ) = 2. Then:

(a) L1 H2(X) ↪→ H2(X).
(b) L1 H3(X) ' H3(X).
(c) L2 H4(X) ' H1,1(X, Z) ↪→ L1 H4(X) ' H4(X).

(d) L2 H5(X) ' L1 H5(X) ' H5(X).
(e) L3 H6(X) ' L2 H6(X) ' L1 H6(X) ' H6(X).

(f) Lk Hn(X) = 0 for any n ≥ 7 and any k ≥ 0.
In particular any such a threefold fulfills Suslin’s conjecture.
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Proof. Consider the decomposition

N∆ = α + β

with α and β being supported on V × X , respectively on X × D. It is enough to consider the case when V and D are
irreducible varieties (see Remark 4.1). The action of α is zero for m ≤ d − v = codim(V ) = 1 and the action of β is
zero for m ≥ dim(D) = 2 (see Convention 4.1).

Suppose that m = 1. As D∗ is an irreducible surface, we have

L1 Hl(D∗) ' Hl(D∗)

for any l ≥ 3. This implies that the action of β is zero for m = 1 and l ≥ 3 (see Diagram (5)). As we already know
that the action of α is zero for m = 1, it implies that

L1 Hl(X)Q ' Hl(X)Q

for any l ≥ 3. Applying Corollary 3.1 we obtain

L1 Hl(X) ' Hl(X)

for any l ≥ 3.
Suppose that m = 2. As V ∗ is an irreducible surface, we have

L1 H6−l(V ∗) ' H6−l(V ∗)

for any l ≥ 5, which means that the action of α is zero on L2 Hl(X) for any l ≥ 5. As we know that for m = 2 the
action of β is zero we can conclude as above that

L2 Hl(X) ' Hl(X)

for any l ≥ 5.
The injectivity with integer coefficients in (a) and (c) follows from the result of Bloch–Srinivas used in the

Proposition 5.2 and from the fact that algebraic equivalence coincides with homological equivalence for divisors.
The isomorphism L2 H4(X) ' H1,1(X, Z) comes from Lefschetz (1, 1) theorem. �

Using now Theorem 2.5 for k = 0, together with Propositions 5.2 and 5.3 we can conclude Theorem 5.1. �

Remark 5.1. For X and V as in the Theorem 5.1 and dim(V ) ≤ 1 the injection

K sst
0 (X) ↪→ ku0(Xan)

is moreover a rational isomorphism.

Convention 5.1. Remark 4.1 shows that it is enough to study the action of an irreducible cycle. In the rest of the
paper, without reducing the generality, we will understand that a decomposition of the form N∆ = α + β, with α

supported on V × X and β supported on X × D, has V and D irreducible varieties.

The next theorem computes K sst for certain “degenerate” smooth fourfolds.

Theorem 5.3. Let X be a smooth projective fourfold such that there is a proper subvariety V ⊂ X of dim(V ) ≤ 2
with C H0(X \ V ) = 0. Then:

K sst
i (X) ' ku−i (Xan), i ≥ 3,

K sst
2 (X) ↪→ ku−2(Xan),

K sst
i (X)Q ' ku−i (Xan)Q, i = 1, 2,

K sst
0 (X)Q ↪→ ku0(Xan)Q.

Some examples of varieties which fulfill the conditions of the theorem are: rationally connected fourfolds, certain
quotient varieties as in [4] etc.
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Proof. The proof is similar to the proof of the Theorem 5.1. It is a corollary of the spectral sequence relating morphic
cohomology groups and K sst and of the computation of some Lawson groups given in the propositions below.

Proposition 5.4. Let X be a smooth projective fourfold such that there is a proper subvariety V ⊂ X of dim(V ) ≤ 1
with C H0(X \ V ) = 0. Then:

(a) L1 H2(X)Q ' H2(X)Q.

(b) L1 H3(X)Q ' H3(X)Q.

(c) L2 H4(X) ↪→ L1 H4(X) ' H4(X).

(d) L2 H5(X) ' L1 H5(X) ' H5(X).

(e) L3 H6(X) ' L2 H6(X) ' L1 H6(X) ' H6(X).

(f) L3 H7(X) ' L2 H7(X) ' L1 H7(X) ' H7(X).

(g) L4 H8(X) ' L3 H8(X) ' L2 H8(X) ' L1 H8(X) ' H8(X).

(h) Lk Hn(X) = 0 for any n ≥ 9 and any k ≥ 0.
In particular any such a fourfold fulfills Suslin’s conjecture.

Proof. Consider the decomposition

N∆ = α + β

with α supported on V × X and β supported on X × D. The action of α is zero for m ≤ 3 = codim(V ) and the action
of β is zero for m ≥ 3 = dim(D). This implies that

L3 H∗(X) ⊗ Q ' H∗(X) ⊗ Q

and because of Corollary 3.1, we obtain

L3 H∗(X) ' H∗(X).

As D∗ is a smooth irreducible threefold, we have that the cycle map L2 Hl(D∗) → Hl(D∗) is an isomorphism for
l ≥ 5 and a monomorphism for l = 4. This implies that the action of β on the kernel and cokernel of the cycle map

L2 Hl(X) → Hl(X)

is zero for l ≥ 5. As we already know that the action of α is zero for m = 2, we conclude using Corollary 3.1 that

L2 Hl(X) ' Hl(X)

for any l ≥ 5. The injection from the point (c) comes from the fact that for such varieties algebraic equivalence and
homological equivalence coincide on codimension 2 cycles.

Consider now the decomposition

N∆ = αt
+ β t

with αt supported on X × V and β t supported on D × X . The action of αt is zero for m ≥ dim(V ) = 1 and the action
of β t is zero for m ≤ codim(D) = 1 (see Convention 4.1). This implies that

L1 Hl(X) ⊗ Q ' Hl(X) ⊗ Q

for any l ≥ 2 and from Corollary 3.1 we obtain

L1 Hl(X) ' Hl(X)

for any l ≥ 4. �

Proposition 5.5. Let X be a smooth projective fourfold such that there is a proper subvariety V ⊂ X of dim(V ) = 2
with C H0(X \ V ) = 0. Then:

(a) L1 H2(X)Q ↪→ H2(X)Q.

(b) L1 H3(X)Q ' H2(X)Q.

(c) L2 H4(X) ↪→ L1 H4(X) ' H4(X).

(d) L2 H5(X) ' L1 H5(X) ' H5(X).

(e) L3 H6(X) ↪→ L2 H6(X) ' L1 H6(X) ' H6(X).
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(f) L3 H7(X) ' L2 H7(X) ' L1 H7(X) ' H7(X).

(g) L4 H8(X) ' L3 H8(X) ' L2 H8(X) ' L1 H8(X) ' H8(X).

(h) Lk Hn(X) = 0 for any n ≥ 9 and any k ≥ 0.
In particular any such a fourfold fulfills Suslin’s conjecture.

Proof. Consider the decomposition

N∆ = α + β

with α supported on V × X and β supported on X × D. The action of α is zero for m ≤ codim(V ) = 2 and the action
of β is zero for m ≥ dim(D) = 3 (see Convention 4.1).

As D∗ is a smooth threefold, we have that the cycle map

L2 Hl(D∗) → Hl(D∗)

is an isomorphism for l ≥ 5 and a monomorphism for l = 4. This implies that the action of β on the kernel and
cokernel of the cycle map

L2 Hl(X) → Hl(X)

is zero for l ≥ 5. As we already know that the action of α is zero for m = 2, we conclude that

L2 Hl(X) ' Hl(X)

for any l ≥ 5. The injection from the point (c) comes from the fact that for such varieties algebraic equivalence and
homological equivalence coincide on codimension 2 cycles [4].

Consider the action of α on the kernel and the cokernel of the cycle maps

L3 Hl(X) → Hl(X).

This action factors through L1 H8−l(V ∗) ' L1 Hl−4(V ∗) (see Diagram (5)). As V ∗ is an irreducible surface, we have
that the cycle map

L1 Hl−4(V ∗) → Hl−4(V ∗)

is an isomorphism for any l ≥ 7 and injective for l = 6. As the action of β is zero for m = 3, we have that

L3 Hl(X) ⊗ Q ' Hl(X) ⊗ Q

for any l ≥ 7. From Corollary 3.1 we conclude that

L3 Hl(X) ' Hl(X)

for any l ≥ 7. The injectivity in point (e) comes from the fact that on divisors algebraic equivalence coincides with
homological equivalence.

Consider now the decomposition

N∆ = αt
+ β t

with αt and β t being supported on X × V , respectively D × X . The action of αt is zero for m ≥ dim(V ) = 2 and the
action of β t is zero for m ≤ codim(D) = 1. As V ∗ is a surface, we have that

L1 Hl(V ∗) → Hl(V ∗)

is an isomorphism for any l ≥ 3 and a monomorphism for l = 2. This implies that

L1 Hl(X) ⊗ Q → Hl(X) ⊗ Q

is an isomorphism for any l ≥ 3 and a monomorphism for l = 2. Using Corollary 3.1 we can conclude that

L1 Hl(X) ' Hl(X)

for any l ≥ 4. �

Using now Theorem 2.5 and our Propositions 5.4 and 5.5 we can conclude our Theorem 5.3. �
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Remark 5.2. As smooth cubic fourfolds show, the injectivity

K sst
0 (X)Q ↪→ ku0(Xan)Q

is the best we can obtain. This is because a generic cubic fourfold has nontrivial nondiagonal Hodge numbers.

The following proposition was previously known only in the case of generic cubic hypersurfaces [21] which are known
to be rationally connected varieties.

Proposition 5.6. Let X be a projective smooth variety of dimension d ≥ 3 and suppose that there is a subvariety
V ⊂ X of dim(V ) ≤ 2 with C H0(X \ V ) = 0. Then

N 1 Hd(X, Z) = Hd(X, Z).

Proof. Without restricting the generality we may suppose that dim(V ) = 2. We consider the following decomposition
of the diagonal

N∆ = αt
+ β t

with αt supported on X × V and β t supported on D × X . As before we obtain that the action of αt is zero for
m ≥ 2 = dim(V ) and the action of β t is zero for m ≤ codim(D) = 1 (see Convention 4.1). Let V ∗ be a
desingularization of V . As V ∗ is a surface, we have

L1 Hl(V ∗) ⊗ Q ' Hl(V ∗) ⊗ Q

for any l ≥ 3. This implies that

L1 Hl(X)Q ' Hl(X)Q

for any l ≥ 3. From Corollary 3.1 we get

L1 Hd(X) ' Hd(X)

and because the image of this cycle map is included in Nd−1 Hd(X) = N 1 Hd(X), we obtain our conclusion. �

6. About varieties with small Chow group

It is proved by Jannsen [22] and independently by Laterveer [25] that if the following cycle maps are injective

C Hk(X) ⊗ Q ↪→ H2k(X) ⊗ Q

for any 0 ≤ k ≤ r (in which case, we say that X has small Chow group of rank r [8,25]), then we have the following
decomposition of the diagonal

N∆ = α0 + α1 + α2 + · · · + αr + β (6)

where αi are supported on Vi × Wd−i and β is supported on X × Γ r+1 and N is a nonzero natural number (the lower
indices represent the dimension of the subvariety and the upper indices represent the codimension of the subvariety).
We let d to be the dimension of the variety X .

The following theorem and corollary are extensions of the main results of Peters [30].

Theorem 6.1. Let X be a smooth projective variety with small Chow group of rank r. Then there is a natural nonzero
number N such that

(a) N Ks,∗ = 0 for any s ∈ {0, 1, . . . , r + 1} [30].
(b) N K s,∗

= 0 for any s ∈ {0, 1, . . . , r + 2}.

Proof. As X has small Chow group of rank r , the diagonal cycle decomposes as in (6). As the cycles αi are supported
on Vi × Wd−i with dim(Vi ) + dim(Wd−i ) = dim(X), we know from Corollary 4.1 that the action of αi is zero for any
m (see Convention 4.1). This implies that

N∆∗ = β∗
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on the kernel and the cokernel of the cycle map

Lm Hl(X) → Hl(X).

But the action of β is zero for m ≥ d −r −1 because it factors through Lm Hl(Γ r+1) (see Diagram (5)). We know [10]
that the cycle map

Ld−r−2 H∗(Γ r+1∗) → H∗(Γ r+1∗)

is injective (where Γ r+1∗
→ Γ r+1 is a resolution of singularities). This implies that the action of β on the kernel of

the cycle map

Lm Hl(X) → Hl(X)

is zero for any m ≥ d − r − 2. This means that

N (Ker(Lm H∗(X) → H∗(X))) = 0

for 0 ≤ m ≤ r + 2
Point (a) was proved in [30]. �

Corollary 6.1. Let X be a smooth projective variety such that rational equivalence coincides with homological
equivalence in C H∗(X) ⊗ Q in degrees less than or equal to r . Then the algebraic equivalence coincides with
homological equivalence in C H∗(X) ⊗ Q in degrees less than or equal to r + 1 [30] and in degrees greater than
or equal to d − r − 2.

Proof. This is just a reformulation of Theorem 6.1. �

Remark 6.1. It is conjectured [28] that for a smooth complete intersection X in Pn+1 of multi-degree d1 ≥ d2 ≥

· · · ≥ ds ≥ 2 and of dimension d we have

C Hl(X)Q ' Q

for any l ≤ k − 1, where k = [
n+1−

∑
i=2,s di

d1
], the integer part of the rational number

n+1−
∑

i=2,s di

d1
.

In particular this would imply that X has small Chow group of rank k − 1. Supposing this conjecture and using
Theorem 6.1 we conclude that in our case we have

Griff r (X)Q = 0

for any r ≥ d − k − 1 and r ≤ k and moreover

K r,∗
Q = 0

for the same range of indices.
H. Esnault, M. Levine and E. Viehweg made in [7] an attempt to prove this conjecture on a class of complete

intersections. We will analyze below some applications of their results in the context of morphic cohomology.

It is known that the conjecture from Remark 6.1 is valid for generic cubic fivefold and sixfold [28]. The next
proposition studies the Lawson homology groups of such cubics.

Proposition 6.1. (a) Let X be a smooth generic cubic of dimension d = 5. Then

L∗ H∗(X) ⊗ Q ' H∗(X) ⊗ Q

for all defined indices.
(b) Let X be a smooth generic cubic of dimension d = 6. Then
(1) Lm Hl(X) ⊗ Q ' Hl+2m(X) ⊗ Q for any m 6= 3 and l ≥ 2m or for m = 3 and any l ≥ 7.
(2) L3 H6(X) ↪→ H6(X) is an injective map.
In particular Suslin’s conjecture is valid for both the generic cubics X.
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Proof. In [28] it is proved that a generic smooth cubic of dimension d ≥ 5 has

C H0(X) ' C H1(X) ' Z.

This implies that there is a decomposition

N∆ = α0 + α1 + β

with αi supported on Vi × Wd−i and β supported on X × Γ 2, cycles of codimension d in X × X . As in Theorem 6.1,
we get the equality N∆∗ = β∗ on the kernel and the cokernel of the cycle map Lm H∗(X) → H∗(X) for any m.

Suppose that d = 5. As the action of β is zero for m ≥ dim(Γ 2) = 3 and the action of β t is zero for
m ≤ codim(Γ 2) = 2, we obtain that the Lawson homology of a generic smooth cubic fivefold is isomorphic with
singular homology up to torsion, i.e.

L∗ H∗(X) ⊗ Q ' H∗(X) ⊗ Q.

Using Corollary 3.1, we obtain Suslin’s conjecture for generic smooth cubic fivefold.
Suppose d = 6. Then the action of β is zero for m ≥ 4 = dim(Γd−2) and the action of β t is zero for

m ≤ 6 − 4 = 2 = codim(Γd−2). We remark that the action of αi is zero for any m ≥ 1. As above, we conclude that
for any generic smooth cubic sixfold

Lm H∗(X) ⊗ Q ' H∗(X) ⊗ Q

for any m ≥ 4 and any m ≤ 2. The action of β on L3 Hl(X) factors through L3 Hl(Γ4) → Hl(Γ4) which is an
isomorphism for any l ≥ 7 and a monomorphism for l = 6. It implies that the cycle map L3 H6(X)⊗Q → H6(X)⊗ Q
is injective and that L3 Hl(X) ⊗ Q ' Hl(X) ⊗ Q for any l ≥ 7. Using now Corollary 3.1 we conclude that Suslin’s
conjecture holds for any generic smooth cubic sixfold. �

Corollary 6.2. Let X be a smooth generic cubic fivefold. Then

K sst
∗ (X) ⊗ Q ' ku−∗(X) ⊗ Q

for any ∗ ≥ 0.

Corollary 6.3. Let X be a smooth generic cubic sixfold. Then

K sst
i (X) ⊗ Q ' ku−i (X) ⊗ Q

for any i ≥ 1 and

K sst
0 (X) ⊗ Q ↪→ ku−0(X) ⊗ Q.

Theorem 6.2. Let X be a smooth projective variety. If all the cycle maps C H∗

Q(X) → H∗

Q(X) are injective, then
L∗ H∗(X)Q ' H∗(X)Q for any possible indices.

In particular Suslin’s conjecture is valid for such an X.

Proof. Our condition on X gives us the following decomposition of the diagonal

N∆ = α0 + α1 + · · · + αd

where each αi is supported on Vi × Wd−i . We remark that dim(Vi ) + dim(Wd−i ) = dim X = d. Using Corollary 4.1
we can conclude that

N x = N∆∗(x) = 0

for any x in the kernel and in the cokernel of the cycle map

L∗ H∗(X) → H∗(X).

This implies that

Lm Hl(X) ⊗ Q ' Hl(X) ⊗ Q.

We conclude now Suslin’s conjecture for X by using Corollary 3.1. �
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We notice that the same techniques used in Theorem 6.1 and in Theorem 6.2 give us the following proposition, initially
proved by J. Lewis and, independently, by C. Schoen.

Proposition 6.2. Let X be a smooth projective complex variety such that the cycle class maps

cl : C Hl(X)Q → H2l(X, Q)

are injective for 0 ≤ l ≤ k. Then H p,q(X) = 0 for
(a) p 6= q, p + q even and q ≤ k.
(b) | p − q |> 1, p + q odd and q ≤ k.

Proof. The vanishing of the above Hodge numbers comes from the equalities in the coniveau filtration implied by the
decomposition of the diagonal and from the fact that coniveau filtration with rational coefficients is included in the
Hodge filtration. �

Let X ⊂ Pn+1 be a complete intersection complex variety defined by r equations of degree d1 ≥ d2 ≥ · · · ≥ dr ≥ 2

and k = [
n+1−

∑r
i=2 di

d1
]. H. Esnault, M. Levine and E. Viehweg proved the following result [7]:

Theorem 6.3 ([7]). Let X ⊂ Pn+1 be the union of some of the irreducible components of the intersection of r
hyperplanes of degree d1 ≥ d2 ≥ · · · ≥ dr ≥ 2 and either d1 ≥ 3 or r ≥ l + 1. If

r∑
i=1

(
di + l

l + 1

)
≤ n + 1

then C Hs(X)Q ' Q for any 0 ≤ s ≤ l.
If d1 = d2 = · · · = dr = 2 and r ≤ l we have the same conclusion assuming the inequality

r(l + 1) ≤ n − l + r

Corollary 6.4. Assume the conditions from the above theorem. Then

Ls H∗(X)Q ' H∗(X)Q

for any s ≥ n − l − 1 and s ≤ l + 1.

Proof. This corollary follows from Theorem 6.3 using the same techniques used in the proof of Proposition 6.1. �

7. The case of projective linear varieties

Totaro [36] and Jannsen [22] gave the definition of a linear variety (see also [23]).

Definition. A complex variety is called 0-linear if it is either empty set or isomorphic to any affine space An
C. Let

n > 0. A complex variety Z is n-linear if there is a triple (U, X, Y ) of complex varieties so that Y ⊂ X is a closed
immersion with U its complement; Y and one of the varieties U or X is (n − 1)-linear and Z is the other member in
U, X . We say that Z is linear if it is n-linear for some n ≥ 0.

Among examples of linear varieties are toric varieties, flag varieties [36,22,23]. Joshua [23] and Totaro [36] proved
the following Künneth formula for projective linear varieties:

Theorem 7.1 ([36,23]). Let X be a projective smooth linear variety of dimension d. Then

C H∗(X) ⊗ C H∗(X) ' C H∗(X × X).

In particular there is a decomposition of the diagonal cycle ∆ ∈ C Hd(X × X) of the form

∆ =

∑
αi × βi

with αi , βi ∈ C H∗(X) algebraic cycles with dim(αi ) + dim(βi ) = d.
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Using Corollary 4.1 and Theorem 7.1 we can conclude that the action of ∆ is zero on the kernel and the cokernel of
the cycle map Lm H∗(X) → H∗(X). This implies the following proposition:

Proposition 7.1. Let X be a projective smooth linear variety. Then

L∗ H∗(X) ' H∗(X)

for any possible indices. In particular we have

K sst
i (X) ' ku−i (Xan)

for any i ≥ 0.

The above proposition was first proved in [13] by other methods.

8. The case of projective rational varieties

Let X be a smooth projective rational variety over complex numbers. In this section, we compute some Lawson
homology groups of X . These computations generalize and explain some the results of [13,20].

Theorem 8.1. Let X be a smooth projective rational variety of dimension d. Then:
(a) L1 H∗+2(X) ' H∗+2(X) for any ∗ ≥ 0.
(b) Ld−2 H∗(X) ' H∗(X) for any ∗ ≥ 2d − 3 and Ld−2 H2d−4(X) ↪→ H2d−4(X).

Proof. As X is a smooth rational variety, we can choose N = 1 in Bloch–Srinivas decomposition of the diagonal (see
Proposition 5.1). Now applying the same idea of proof as in Proposition 5.4 we obtain the result. �

Corollary 8.1. Let X be a smooth rational fourfold. Then:
(a) L1 H2(X) ' H2(X).

(b) L1 H3(X) ' H2(X).

(c) L2 H4(X) ' H2,2(X, Z) ↪→ L1 H4(X) ' H4(X).

(d) L2 H5(X) ' L1 H5(X) ' H5(X).

(e) L3 H6(X) ' L2 H6(X) ' L1 H6(X) ' H6(X).

(f) L3 H7(X) ' L2 H7(X) ' L1 H7(X) ' H7(X).

(g) L4 H8(X) ' L3 H8(X) ' L2 H8(X) ' L1 H8(X) ' H8(X).

(h) Lk Hn(X) = 0 for any n ≥ 9 and any k ≥ 0.

Proof. It follows directly from Theorem 8.1. As integral Hodge conjecture holds for codimension 2 cycles on a
rational variety [33], we obtain

L2 H4(X) ' H2,2(X, Z). �

The next corollary was proved in [13] by other methods.

Corollary 8.2. Let X be a smooth rational fourfold. Then:

K sst
∗ (X) ' ku−∗(Xan)

for any ∗ ≥ 1 and

K sst
0 (X) ↪→ ku0(Xan).

Proof. It follows directly from Corollary 8.1 using the spectral sequence relating morphic cohomology and semi-
topological K-theory. �

Remark 8.1. For a smooth rational fourfold, Corollary 8.2 is the best that can be obtained. This is because there are
rational varieties with nonzero nondiagonal Hodge numbers.
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Lawson homology of a smooth rational threefold can be obtained without the use of Bloch–Kato conjecture, as a
corollary of Theorem 8.1.

Corollary 8.3. Let X be a smooth rational threefold. Then

L∗ H∗(X) ' H∗(X)

for all defined indices.
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