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Abstract

We present a Stone duality for bitopological spaces in analogy to the duality between topological spaces
and frames, and discuss the resulting notions of sobriety and spatiality. Under the additional assumption
of regularity, we prove a characterisation theorem for subsets of a bisober space that are compact in one
and closed in the other topology. This is in analogy to the celebrated Hofmann-Mislove theorem for sober
spaces. We link the characterisation to Taylor’s and Escardó’s reading of the Hofmann-Mislove theorem as
continuous quantification over a subspace. As an application, we define locally compact d-frames and show
that these are always spatial.
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1 Introduction

The Hofmann-Mislove theorem, first published as [10], states that in a sober space

the open neighbourhood filters of compact saturated sets are precisely the Scott-

open filters in the corresponding frame of opens. Mathematically, it has some

remarkable consequences, such as the fact that the set of compact saturated subsets

of a sober space form a dcpo when ordered by reverse inclusion, and it links Lawson

duality (applied to the frame of opens) to the idea of the co-compact topology on

the space, [16]. Its significance in Computer Science took some time to emerge,

and credit in this respect is due to Plotkin, [17,18], Smyth, [19], and Vickers, [21],
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who pointed out that it is at the core of the proof that the upper powerdomain

(defined as a free algebraic theory) has a concrete representation as a set of subsets

of the given domain. Quite unexpectedly, it was also required in the classification

of cartesian closed categories of domains, [12].

More recently, Taylor, [20], and Escardó, [6], have interpreted the theorem as

expressing the idea that the compact saturated sets are precisely those for which

there is a continuous universal quantifier. To this end, they read “open set” as

“predicate” and “Scott-open filter of opens” as a map from predicates to Sierpiński

space that is Scott-continuous and finite meet preserving, that is, as a “quantifier”

which tells us whether a predicate is true for all elements of the corresponding

compact set.

Below we present a Stone duality for bitopological spaces motivated by the

idea that a predicate may not only be true for some states, but in general will be

false for others, and that the mechanisms for establishing falsehood will in general

be different from those that establish truth. As Smyth has stressed, the positive

extents of observable predicates form a topology, and so all we do is to add a

second topology for the negative extents. However, in semantics we are already

quite familiar with dealing with two topologies: Early on in the study of continuous

lattices it was discovered by Lawson that the “weak lower topology” is a natural

partner for the Scott-topology, their join being the (compact Hausdorff) Lawson

topology. On hyperspaces Y ⊆ PX one naturally has the upper topology generated

by sets of the form �O := {A ∈ Y | A ⊆ O} (O an open in the original space),

and the lower topology generated by sets of the form �O := {A ∈ Y | A ∩ O �= ∅}.
Abramsky, [1], showed that the three powerdomains can be obtained systematically

from this (bi-)topological point of view.

Our interest in bitopological spaces was driven by these examples and also by

a desire to analyse various Stone dualities, but there is no room here to expand on

this latter aspect; instead we refer the reader to the report [13].

2 Stone duality and the Hofmann-Mislove theorem

We briefly review the duality between topological spaces and frames. For more

details see [2, Chapter 7], and [11,8].

Definition 2.1 A frame is a complete lattice in which finite meets distribute over

arbitrary joins. We denote with �, �,
⊔

, 0, and 1 the order, finite meets, arbitrary

joins, least and largest element, respectively.

A frame homomorphism preserves finite meets and arbitrary joins; thus we have

the category Frm.

For (X; τ) a topological space, (τ ;⊆) is a frame; for f : (X; τ) → (X ′; τ ′) a con-

tinuous function, f−1 : τ ′ → τ is a frame homomorphism. These are the constituents

of the contravariant functor Ω: Top → Frm. It is represented by Top(−, S) where

S is Sierpiński space.

The collection N (a) of open neighbourhoods of a point a in a topological

A. Jung, M.A. Moshier / Electronic Notes in Theoretical Computer Science 173 (2007) 159–175160



space (X; τ) forms a completely prime filter in the frame Ω X, that is, it is an upper

set, closed under finite intersections, and whenever
⋃

O ∈ N (a) then O∩N (a) �= ∅.
This leads one to consider the set of points (sometimes called “abstract points”

for emphasis) of a frame L to be the collection specL of completely prime filters.

Abstract points are exactly the pre-images of {1} under homomorphisms from L

to 2 = {0 < 1}.

A frame L induces a topology on specL whose opens are of the form Φ(x) =

{F ∈ specL | x ∈ F} with x ∈ L. A frame homomorphism h : L → L′ induces a

continuous function spec h : specL′ → specL by letting spech(F ) := h−1(F ) for

F ∈ spec L′. These are the components of the contravariant functor spec from Frm

to Top, represented by Frm(−, 2) .

Theorem 2.2 The functors Ω and spec constitute a dual adjunction between Top

and Frm.

The unit and co-unit of this adjunction are simply N and Φ. That is, for any

space (X; τ) the map ηX : X → specΩ X, given by a 
→ N (a), is continuous; it is

also open onto its image. Likewise, for any frame L the map εL : L → Ω specL,

given by x 
→ Φ(x) is a frame homomorphism; it is also surjective.

We can ask when a frame L is spatial in the sense that it is isomorphic to Ω X

for some space X. The adjunction transfers isomorphisms: L ∼= Ω X if and only

if X ∼= specL. So L is spatial if and only if L ∼= Ω specL, that is, εL is a frame

isomorphism. Because εL is already a surjective frame homomorphism, this holds

if and only if εL is injective.

Similarly, we can ask when a space X is sober in the sense that it is home-

omorphic to specL for some frame L. By the same reasoning as in frames, this

holds if and only if ηX is a homeomorphism. Because ηX is already continuous and

open onto its image, it suffices for ηX to be a bijection. Injectivity is precisely the

T0 axiom and surjectivity says that every completely prime filter of opens is the

neighbourhood filter of a point.

Theorem 2.3 The functors Ω and spec restrict to a dual equivalence between sober

spaces and spatial frames.

This is the setting for the Hofmann-Mislove theorem, [10], which we are now

ready to state.

Theorem 2.4 In a sober space (X, τ), there is a bijection between the set of com-

pact saturated subsets of X and the set of Scott-open filters in τ .

Although a direct proof is possible, [15], it more useful for us to refer to Stone

duality, as in the original paper [10]:

Lemma 2.5 A Scott-open filter in a frame L is equal to the intersection of the

collection of completely prime filters containing it.

Proof. (Sketch) Let S be the Scott-open filter and a an element not in S. Extend

a to a maximal chain outside S and take its supremum v, which by Scott openness
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is a maximal element of L \ S. Because S is a filter, v is irreducible, and because

L is distributive, it is furthermore prime. The set L \ ↓v is completely prime and

separates a from S. �

Proof. (of 2.4) Clearly, the neighbourhoods of a compact subset form a Scott-open

filter. For the converse, let A be the intersection of a Scott-open filter S of opens.

By the lemma, every open neighbourhood of A belongs to S. Because S is assumed

to be Scott-open, A is compact (and obviously saturated).

A saturated set is the intersection of its open neighbourhoods by definition, and

a Scott-open filter is the intersection of the completely prime filters containing it

by the lemma, so the two translations are inverses of each other. �

3 Stone duality for bitopological spaces

Without spending too much time on motivation, we now sketch a Stone duality for

bitopological spaces; for the full picture we refer to [13].

A bitopological space is a set X together with two topologies τ+ and τ−. No con-

nection between the two topologies is assumed. Morphisms between bitopological

spaces are required to be continuous with respect to each of the two topologies; this

gives rise to the category biTop.

For a Stone dual it is natural to consider pairs (L+, L−) of frames (and pairs of

frame homomorphisms) but for some purposes it is more convenient to axiomatise

the product τ+×τ−, that is, to have a single-sorted algebraic structure. In fact, the

two views are completely equivalent:

Proposition 3.1 The category Frm×Frm is equivalent to the category whose ob-

jects are frames which contain a pair of complemented elements tt and ff , and whose

morphisms are frame homomorphisms that preserve tt and ff .

Proof. In one direction, one assigns to a pair (L+, L−) the product L+×L− and

the constants tt := (1, 0) and ff := (0, 1). In the other direction, one assigns to

(L; tt , ff ) the two frames L+ := [0, tt ] and L− := [0, ff ]. The isomorphism from L

to [0, tt ]×[0, ff ] is given by α 
→ 〈α+, α−〉 := 〈α � tt , α � ff 〉. The isomorphism from

L+×L− to L is given by 〈x, y〉 
→ x � y. �

In addition to the notation 〈α+, α−〉 introduced in the proof above we will also

use α �+ β in case α+ � β+, and similarly �−. One has α � β if and only if

α �+ β and α �− β.

Having two frames is not enough, however, as we also need to express the fact

that they represent topologies on the same set. One approach for achieving this was

introduced by Banaschewski, Brümmer, and Hardie in [3]; their biframes axiomatise

the two topologies and the joint refinement τ+ ∨ τ−. Our proposal is different; we

only record when two open sets O+ ∈ τ+ and O− ∈ τ− are disjoint from each other,

and when they cover the whole space X. In the first case we say that they are

consistent, in the second that they are total.
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Definition 3.2 A d-frame consists of a frame L, a pair of complemented elements

tt and ff , and two unary predicates con and tot. Morphisms between d-frames

are required to preserve all of this structure. The resulting category is denoted

by dFrm.

As we have already explained informally, the contravariant functor Ω from

bitopological spaces to d-frames assigns to a space (X; τ+, τ−) the d-frame

(τ+×τ−; (X, ∅), (∅,X), con, tot) where (U, V ) ∈ con if and only if U ∩ V = ∅ and

(U, V ) ∈ tot if and only if U ∪ V = X. The functor associates with a bicontin-

uous function f the map (U, V ) 
→ (f−1(U), f−1(V )). A trivial bit of set theory

will convince the reader that the consistency and totality predicates are preserved.

Figure 1 shows some small examples. The bitopological space S.S, which looks like

a product of two copies of Sierpinski space, allows us to represent the functor Ω

as biTop(−, S.S). Note how the four elements of S.S correspond to the four ways

in which an element of the space can be related to an open from τ+ and an open

from τ−: it can be in one of the two but not the other, it can be in both, or it can

be in neither.

For a functor in the reverse direction, we continue to follow the theory of frames

by considering d-frame morphisms from L = (L; tt , ff ; con, tot) to 2.2, depicted in

the upper right corner of Figure 1. Such morphisms are determined by pairs of

frame homomorphisms p+ : L+ → 2 and p− : L− → 2 that together preserve con

and tot. So they correspond to pairs of completely prime filters F+ ⊂ L+, F− ⊂ L−

such that

(dpcon) α ∈ con =⇒ α+ �∈ F+ or α− �∈ F−;

(dptot) α ∈ tot =⇒ α+ ∈ F+ or α− ∈ F−.

The reader should pause at this point to assure himself that the pair of neighbour-

hood filters (N+(x),N−(x)) of a point x in a bitopological space satisfies these two

axioms.

On L itself, a point manifests itself as a pair (F ∗
+, F ∗

−) of completely prime filters

that satisfy the analogue of (dpcon) and (dptot), plus

(dp+) tt ∈ F ∗
+;

(dp−) ff ∈ F ∗
−;

Figure 2 illustrates the idea that (F ∗
+, F ∗

−) determines four “quadrants” so that

con does not intersect with the “upper quadrant” and tot does not intersect with

the ‘lower.”

The set of d-points becomes a bitopological space by considering the collection

of Φ+(x) := {(F+, F−) | x ∈ F+}, x ∈ L, as the first topology T+, and the collection

of Φ−(x) := {(F+, F−) | x ∈ F−}, x ∈ L, as the second topology T−. Together,

this is the spectrum of the d-frame L, which we denote as specL, following the

notation for frames. The construction for objects is extended to a (contravariant)

functor spec : dFrm → biTop in the usual way, that is, by noting that the inverse

image of a point under a d-frame morphism is again a point.
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Fig. 1. Some bitopological spaces and their concrete d-frames. (D-frame elements in the con-predicate are
indicated by an additional circle, those in the tot-predicate are filled in.)
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Fig. 2. An abstract point in a d-frame.
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Theorem 3.3 The functors Ω and spec establish a dual adjunction between biTop

and dFrm.

We say that a bitopological space X is (d-) sober if it is bihomeomorphic to

specL for some d-frame L. As with frames and topological spaces, d-sobriety is

equivalent to the unit x 
→ (N+(x),N−(x)) being a bijection.

Example 3.4 All the bitopological spaces in Figure 1 are d-sober. For the one-

point space this is clear, as the associated d-frame admits only one point. For the

other four spaces one argues as follows: The underlying frame is the same in each

case and it admits four completely prime filters:

F 1
+ := ↑tt F 1

− := ↑ff

F 2
+ := ↑(O+, ∅) F 2

− := ↑(∅, O−)

The notation already indicates which of these can be used as the first, respectively

second, component of a point. From this we get four possible combinations, and

these are indeed all available in the last example. In the other three examples,

the con/tot labelling of the element (O+, O−) in the centre of the d-frame excludes

certain combinations: if it belongs to con, then F 2
+ cannot be paired with F 2

−, and

if it belongs to tot then F 1
+ cannot be paired with F 1

−.

For an exploration into the concept of d-sobriety we refer to [13]; here we confine

ourselves to one particular class of examples.

Definition 3.5 A bitopological space (X; τ+, τ−) is called order-separated if

≤ = ≤+ ∩ ≥− is a partial order and x �≤ y implies that there are disjoint open sets

O+ ∈ τ+ and O− ∈ τ− such that x ∈ O+ and y ∈ O−. (The relations ≤+ and ≤−

refer to the specialisation orders on X with respect to τ+ and τ−, respectively.)

Lemma 3.6 In an order-separated bitopological space the following are true:

(1) ≤+ = ≥−;

(2) ≤+ ∩ ≤− = ‘=’.

Proof. For the first claim assume x �≤+ y. This implies x �≤ y and we get a

separating consistent pair (O+, O−). Since y ∈ O− but x �∈ O− we conclude x �≥− y.

So �≤+ = �≥− and this is equivalent to the first claim.

The second claim follows immediately from (1) and anti-symmetry of ≤. �

Theorem 3.7 Order-separated bitopological spaces are sober.

Proof. Order separation clearly implies that the canonical map η : X → spec Ω X

is injective; the real issue is surjectivity. So assume that (F+, F−) is a point of ΩX.

Consider the two sets

V+ :=
⋃

{O+ ∈ τ+ | O+ �∈ F+} V− :=
⋃

{O− ∈ τ− | O− �∈ F−}
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and their complements V c
+, V c

−. Because of condition (dptot), V+∪V− cannot be the

whole space, in other words, the intersection V c
+ ∩ V c

− is non-empty.

Next we show that every element of V c
+ is below every element of V c

− in the

specialisation order ≤ = ≤+ ∩ ≥−. Indeed, if x ∈ V c
+, y ∈ V c

−, and x �≤ y, then by

order separation there is a partial predicate (O+, O−) with x ∈ O+ and y ∈ O−. By

definition of V+, V− we have O+ ∈ F+ and O− ∈ F−, contradicting condition (dpcon)

of d-points.

Finally, let a be an element in the intersection V c
+ ∩ V c

−. We show that F+ is

the neighbourhood filter of a in τ+. Assume a ∈ O+; this implies O+ �⊆ V+ and the

latter is equivalent to O+ ∈ F+. For the converse we start at O+ �⊆ V+, which gives

us an element b ∈ V c
+∩O+ about which we already know that b ≤ a. It follows that

b ≤+ a and hence a ∈ O+. �

From this result it follows immediately that the real line together with the

usual upper and lower topology is d-sober. Likewise, one sees that the punctured

unit interval [0, 1] \ {1
2} is d-sober with respect to the same two topologies. Note

that neither is sober in the traditional sense when equipped with only one of the

topologies.

4 The logical structure of d-frames

Before we consider spatiality for d-frames let us have a look at the duality from the

point of view of logic. For this we interpret the elements of a d-frame L as logical

propositions. An abstract point (F+, F−) is then a model, and F+ consists of those

propositions which are true in the model, F− of those that are false. If a proposition

belongs to con then for no model is it both true and false (and may be neither);

if it belongs to tot then in every model it is either true or false (or indeed both).

The set of all models (i.e., specL) becomes a bitopological space by collecting into

one topology all sets of models in which some proposition is true (the “positive

extents”) and in the other the sets of models where some proposition is false (the

“negative extents”).

From this perspective it is natural to consider an order between propositions

which increases the positive extent and shrinks the negative one. As it turns out,

this additional relation is always present in a d-frame, and in fact it follows from

the distributive lattice structure and the two complemented elements alone. The

earliest reference to this appears to be [5], but the proof is entirely straightforward

and can be left as an exercise.

Proposition 4.1 Let (L;�,�, 1, 0) be a bounded distributive lattice, and (t, f) a

complemented pair in L, that is, t � f = 0 and t � f = 1. Then by defining

x ∧ y := (x � f) � (y � f) � (x � y) = (x � f) � (y � f) � (x � y)

x ∨ y := (x � t) � (y � t) � (x � y) = (x � t) � (y � t) � (x � y)

one obtains another bounded distributive lattice (L;∧,∨, t, f), in which (1, 0) is a
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complemented pair. The original operations are recovered from it as

x � y = (x ∧ 0) ∨ (y ∧ 0) ∨ (x ∧ y) = (x ∨ 0) ∧ (y ∨ 0) ∧ (x ∨ y)

x � y = (x ∨ 1) ∧ (y ∨ 1) ∧ (x ∨ y) = (x ∧ 1) ∨ (y ∧ 1) ∨ (x ∧ y)

Furthermore, any two of the operations �, �, ∧, and ∨ distribute over each other.

If L is a frame, then ∧ and ∨ are also Scott continuous.

This justifies our choice of symbols tt and ff in a d-frame, and suggests that we

regard (L;∧,∨, tt , ff ) as the logical structure of a d-frame. Altogether, then, we see

that d-frames are special “bilattices,” which were introduced by Ginsberg, [9], as a

generalisation of Belnap’s four-valued logic [4].

Exploiting Proposition 3.1 we can easily compute conjunction and disjunction

in terms of the representation of a d-frame as L+×L−:

〈x, y〉 ∧ 〈x′, y′〉 := 〈x � x′, y � y′〉

〈x, y〉 ∨ 〈x′, y′〉 := 〈x � x′, y � y′〉

Note the reversal of order in the second component. This makes sense, as we think

of the second frame as providing negative answers.

5 Reasonable d-frames and spatiality

We say that a d-frame L is spatial if it is isomorphic to Ω X for some bitopological

space X. As with d-sobriety, this is equivalent to the co-unit ε : α 
→ (Φ+(α),Φ−(α))

being an isomorphism of d-frames. As it is always surjective by definition, the

condition boils down to ε being injective and reflecting con and tot. If this is spelt

out concretely, one arrives at the following:

Proposition 5.1 A d-frame L is spatial if and only if the following four conditions

are satisfied:

(s+) ∀α ��+ β ∃(F+, F−) ∈ specL. α ∈ F+, β �∈ F+;

(s−) ∀α ��− β ∃(F+, F−) ∈ specL. α ∈ F−, β �∈ F−;

(scon) ∀α �∈ con ∃(F+, F−) ∈ specL. α+ ∈ F+, α− ∈ F−;

(stot) ∀α �∈ tot ∃(F+, F−) ∈ specL. α+ �∈ F+, α− �∈ F−;

The following lemma is very easy to prove for concrete d-frames that arise from

a bitopological space, and it confirms the intuition of con as the set of pairs of open

sets that do not intersect, and tot as those pairs that cover the whole space.

Lemma 5.2 Let (L; tt , ff ; con, tot) be a spatial d-frame. The following properties

hold:
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(con–↓) α � β & β ∈ con =⇒ α ∈ con

(tot–↑) α � β & α ∈ tot =⇒ β ∈ tot

(con–tt) tt ∈ con

(con– ff ) ff ∈ con

(con–∧) α ∈ con & β ∈ con =⇒ (α ∧ β) ∈ con

(con–∨) α ∈ con & β ∈ con =⇒ (α ∨ β) ∈ con

(tot–tt) tt ∈ tot

(tot– ff ) ff ∈ tot

(tot–∧) α ∈ tot & β ∈ tot =⇒ (α ∧ β) ∈ tot

(tot–∨) α ∈ tot & β ∈ tot =⇒ (α ∨ β) ∈ tot

(con–
⊔

↑) A ⊆ con directed w.r.t. � =⇒
⊔

↑A ∈ con

(con–tot) α ∈ con, β ∈ tot, (α =+ β or α =− β) =⇒ α � β

Definition 5.3 A d-frame which satisfies the properties stated in Lemma 5.2 is

called reasonable. The category of reasonable d-frames is denoted by rdFrm.

Note that the converse of Lemma 5.2 does not hold, i.e., a reasonable d-

frame need not be spatial: take a frame L without any points and consider

(L×L; (1, 0), (0, 1), con, tot) where 〈x, y〉 ∈ con if x � y = 0, and 〈x, y〉 ∈ tot if

x � y = 1. It is a trivial exercise to prove that the resulting d-frame is reasonable,

but it obviously can’t have any points.

Proposition 5.4 The forgetful functor from rdFrm to Set has a left adjoint.

Proof. The free reasonable d-frame over a set A is (FA×FA; (1, 0), (0, 1), con, tot)

where FA is the free frame over A. Generators are the pairs (a, a), a ∈ A. The

two relations are chosen minimally: 〈x, y〉 ∈ con if and only if x = 0 or y = 0;

〈x, y〉 ∈ tot if and only if x = 1 or y = 1. The conditions for a reasonable d-frame

are proved by case analysis. �

As an example, the structure labelled 3.3 in Figure 1 is the free reasonable

d-frame generated by a one-element set.

The following additional property of spatial d-frames will also play a part in our

presentation of a Hofmann-Mislove theorem for sober bitopological spaces, but we

do not consider it elementary enough to be included in the definition of “reasonable.”

The proof-theoretic terminology used in its label refers to a presentation of d-frames

that places more emphasis on the logical structure, see [13, Section 7].

Proposition 5.5 Every spatial d-frame satisfies the following property:

(CUTr) 〈x, y �
⊔

i∈I

bi〉 ∈ tot & ∀i ∈ I. 〈x�ai, y〉 ∈ tot & 〈ai, bi〉 ∈ con ⇒ 〈x, y〉 ∈ tot
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6 Regularity and the Hofmann-Mislove theorem

A major practical problem with d-frames is that it is very difficult to construct

abstract points for them. For example, consider the proof of the Hofmann-Mislove

lemma 2.5, where we exploited the fact that in a frame there is a one-to-one cor-

respondence between completely prime filters F and �-prime elements v (given by

the translations v 
→ L \ ↓v and F 
→
⊔

L \ F ). The analogue for d-frames is not

very helpful. The situation improves if we also require regularity.

Definition 6.1 Let (L; tt , ff ; con, tot) be a reasonable d-frame. For two elements

x, x′ ∈ L+ we say that x′ is well-inside x (and write x′ � x) if there is y ∈ L− such

that 〈x′, y〉 ∈ con and 〈x, y〉 ∈ tot. To avoid lengthy verbiage, we will usually write

rx′� x for the “witnessing” element y (although it is not uniquely determined). On

L− the well-inside relation is defined analogously.

A d-frame is called regular if every x ∈ L+ is the supremum of elements well-

inside it, and similarly for elements of L−.

For a bitopological space to be regular we require that at least one of the two

topologies is T0 and that the corresponding d-frame is regular.

We note that the elements well-inside a fixed element x of a reasonable d-frame

form a directed set; this follows from (con–∨) and (tot–∨). That they are all

below x is a consequence of (con–tot). 1 � 1 is always true as 0 can be chosen

as the witness in the other frame. It is an easy exercise to show that a regular

bitopological space is order-separated (and hence d-sober), but a regular d-frame

need not be spatial.

Lemma 6.2 Let L be a reasonable d-frame and x ∈ L+. Define

P(x) := {b ∈ L− | ∃a �� x. 〈a, b〉 ∈ con} and C(x) := {b ∈ L− | 〈x, b〉 �∈ tot}

(1) P(x) ⊆ C(x);

(2) If L is regular then
⊔

P(x) =
⊔

C(x).

Proof. (1) is a direct consequence of (con–tot): if we have 〈a, b〉 ∈ con and 〈x, b〉 ∈
tot then a � x follows.

For (2) let b′ � b ∈ C(x). The witness rb′� b cannot be below x as otherwise

we could conclude 〈x, b〉 ∈ tot from 〈rb′� b, b〉 ∈ tot. We also have 〈rb′� b, b
′〉 ∈ con

and so find that b′ ∈ P(x). By regularity,
⊔

P(x) is above b itself. It follows that⊔
P(x) �

⊔
C(x), and by (1) the two suprema are in fact the same. �

Lemma 6.3 Let L be a reasonable d-frame and v+ ∈ L+, v− ∈ L−. Consider the

following statements:

(i) v− = max C(v+) and v+ = maxC(v−);

(ii) (L+ \ ↓v+, L− \ ↓v−) is a d-point;

(iii) 〈v+, v−〉 �∈ tot and v− �
⊔

↑P(v+);

(iv) 〈v+, v−〉 is a maximal element of (L+×L−) \ tot.
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The following are true:

(1) (i) ⇒ (ii) ⇒ (iii), and (i) ⇒ (iv).

(2) If L is regular then (iii) ⇒ (i).

(3) If L satisfies the (CUTr) rule then (iv) ⇒ (ii).

Proof. Part (1), (i) ⇒ (ii): If 〈x, y〉 ∈ tot then either x �� v+ or y �� v− as

otherwise we would have 〈v+, v−〉 ∈ tot by (tot–↑). If 〈x, y〉 ∈ con and x �� v+ then

y ∈ P(v+) ⊆ C(v+) by the previous lemma; hence y � v−. Thus we have shown that

the pair (L+ \ ↓v+, L− \ ↓v−) satisfies conditions (dptot) and (dpcon) for d-points

and it remains to show that we have two completely prime filters. This will hold

if v+ and v− are �-irreducible. So let v− = y � y′; by (tot–∨) either 〈v+, y〉 /∈ tot

or 〈v+, y′〉 /∈ tot, which means that either y = v− or y′ = v−.

(ii) ⇒ (iii): If x �� v+ and 〈x, y〉 ∈ con then y � v− by (dpcon). So we have

v− �
⊔

P(v+). 〈v+, v−〉 �∈ tot follows from (dptot). The set P(v+) is directed because

L+ \ ↓v+ is a filter and (con–∧) is assumed for reasonable d-frames.

(i) ⇒ (iv) is trivial.

Part (2), (iii) ⇒ (i): On the side of L− we already have v− �
⊔

C(v+) by the

previous lemma. For the other direction, assume x �� v+. By regularity there is

x′ � x with x′ �� v+. Because of 〈x′, rx′� x〉 ∈ con we have rx′� x � v− by assumption,

and then from 〈x, rx′� x〉 ∈ tot we infer 〈x, v−〉 ∈ tot by (tot–↑). It follows that

C(v−) ⊆ ↓v+. Together with 〈v+, v−〉 �∈ tot this is exactly (i).

Part (3), (iv) ⇒ (ii): As in (i) ⇒ (ii) we get that v+ and v− are �-prime, and

that condition (dptot) is satisfied for (L+ \ ↓v+, L− \ ↓v−). In order to show (dpcon)

assume 〈x, y〉 ∈ con. If we had x �� v+ and y �� v− then by (the contrapositive

of) the (cuttot) rule we would have either 〈v+, v− � y〉 �∈ tot or 〈v+ � x, v−〉 �∈ tot,

contradicting the maximality of 〈v+, v−〉. �

We are ready to formulate and prove the d-frame analogue to the Hofmann-

Mislove lemma 2.5:

Lemma 6.4 Let L be a regular d-frame that satisfies (CUTr). Assume that S+ is

a Scott-open filter in L+ and U− = L− \ ↓u− is a completely prime upper set in L−

such that:

(hmcon) α ∈ con =⇒ α+ /∈ S+ or α− /∈ U−

(hmtot) α ∈ tot =⇒ α+ ∈ S+ or α− ∈ U−

Then the following are true:

(1) u− =
⊔

↑{b | ∃a ∈ S+. 〈a, b〉 ∈ con}, that is, U− is uniquely determined by S+.

(2) S+ = {a | 〈a, u−〉 ∈ tot}, that is, S+ is uniquely determined by U−.

(3) x � S+ ⇔ (x, u−) ∈ con.

(4) For any point (F+, F−) ∈ specL, S+ ⊆ F+ ⇔ F− ⊆ U−.

(5) S+ is the intersection of all F+ where (F+, F−) is a point and S+ ⊆ F+.

(6) U− is the union of all F− where (F+, F−) is a point and F− ⊆ U−.
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(7) The set A := {(F+, F−) | S+ ⊆ F+} = {(F+, F−) | F− ⊆ U−} is T+-compact

saturated and T−-closed in the bitopological space (specL;T+,T−).

Proof. (1) The element u− can not be any smaller because of (hmcon). For

the converse assume y � u−. The corresponding witness ry� u−
belongs to S+

by (hmtot) and so y ∈ {b | ∃a ∈ S+. 〈a, b〉 ∈ con}. By regularity, then, u− �⊔
↑{b | ∃a ∈ S+. 〈a, b〉 ∈ con}.

(2) Because of (hmtot) it is clear that S+ must contain all a ∈ L+ with 〈a, u−〉 ∈
tot. For the converse let x ∈ S+. By regularity and Scott-openness of S+ there

is x′ � x still in S+. The corresponding witness rx′� x must be below u− because

of (hmcon), but then 〈x, u−〉 ∈ tot by (tot–↑).

(3) Assume x � a for all a ∈ S+. By (con–↓) we have (x, b) ∈ con for all

b ∈ {b | ∃a ∈ S+. (a, b) ∈ con}, so (x, u−) ∈ con by (con–
⊔

↑) and part (1). For the

converse, remember that (a, u−) ∈ tot for all a ∈ S+ by (2), so (x, u−) ∈ con implies

x � a by (con–tot).

(4) Let v+ =
⊔

(L+\F+). From S+ ⊆ F+ and (hmcon) we get P(v+) ⊇ (L−\U−),

so v− =
⊔

P(v+) � u− and hence F− ⊆ U−.

Starting with the right hand side, F− ⊆ U−, we let v− =
⊔

(L− \ F−). From

(hmcon) we get P(v−) ∩ S+ = ∅. So v+ =
⊔

↑P(v−) �∈ S+ and hence S+ ⊆ F+.

(5) Assume that x �∈ S+. Because S+ is assumed to be Scott-open, we can apply

Zorn’s Lemma to obtain a maximal element v+ above x that does not belong to S+.

The set F+ := L+ \↓v+ is a completely prime filter that separates x from S+, and it

remains to show that it is the first component of a d-point. According to Lemma 6.3

the right candidate is F− = L− \ ↓v− where v− =
⊔

↑P(v+) =
⊔

C(v+). Note that

u− � v− as u− ∈ C(v+) by (hmtot). Using Lemma 6.3(iii) we only need to show that

〈v+, v−〉 �∈ tot. For this we employ (CUTr): for all 〈a, b〉 ∈ con with a ∈ F+ we have

〈v+�a, v−〉 ∈ tot by (2); if it was the case that 〈v+, v−〉 = 〈v+, u−�
⊔

↑P(v+)〉 ∈ tot,

then 〈v+, u−〉 ∈ tot would follow, contradicting (hmtot).

For part (6) let y ∈ U−. By regularity and the assumption that U− is completely

prime, some y′ � y also belongs to U−. The witness ry′� y is not in S+ because

of 〈ry′� y, y
′〉 ∈ con and assumption (hmcon). By part (5) there is a point (F+, F−)

that separates ry′� y from S+. By (4) we have that F− ⊆ U− and because of

〈ry′� y, y〉 ∈ tot it must also be the case that y ∈ F−.

Finally, consider the last claim; the two descriptions of A are equal because

of (4). Any T+-open neighbourhood of A has the form Φ+(x) with x ∈ S+ by (5).

It follows that A is T+-compact. Only the maximality of u− in L− \ U− is required

to see that A is the complement of Φ−(u−). �

Theorem 6.5 For a regular d-frame L that satisfies (CUTr) there is a one-to-one

correspondence between

(i) maps q from L to the four-element d-frame 2.2 which preserve tt,
⊔

↑, con, tot,

and the logical operation ∧, and

(ii) subsets A of specL which are compact saturated in the positive and closed in

the negative topology.
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Proof. Given a map q as described in part (i), consider S+ = q−1(tt) ∩ L+ and

U− = q−1(ff ) ∩ L−. It is straightforward to show that the pair (S+,U−) satisfies

the assumptions of Lemma 6.4. The translation in the opposite direction is equally

easy. �

A few comments on this result are in order: Given a consistent predicate ϕ, that

is, ϕ ∈ con, the value of q at ϕ can only be tt , ff , or 0. The first outcome indicates

that all elements of A satisfy ϕ, the second that some element of A fails ϕ, and the

last that neither holds (which is a possibility because a consistent predicate does

not need to be Boolean). This means that q acts like a universal quantifier for

partial predicates.

Generally, one would expect a universal quantifier to preserve tt but not neces-

sarily ff , because A could be the empty set. Also, one would expect it to preserve

conjunction (∧) but not disjunction (∨), and certainly one would not want it to be

inconsistent (returning 1) for a consistent predicate, or to be undecided (returning 0)

for a total predicate, that is, one expects it to preserve con and tot.

The preservation of
⊔

↑ can be seen as a computability condition on the universal

quantifier: If a (partial) predicate ϕ is the directed supremum of (partial) predi-

cates ϕi, and if the universal quantifier applied to ϕ returns a definite answer, that

is, either tt or ff , then computability requires the same answer be obtained from an

approximant ϕi already.

All in all, then, Theorem 6.5 is a generalisation of the theory of continuous

quantification on topological spaces, discovered by Taylor [20] and Escardó [6], to a

logic in which predicates are allowed to have value ff as well as tt .

For a version of Theorem 6.5 on the side of bitopological spaces we first observe

that regularity implies that the space is order-separated, so by Theorem 3.7 it is

automatically d-sober. In an order-separated space a τ+-compact saturated set is

also τ−-closed. Furthermore, the corresponding d-frame ΩX satisfies (CUTr) by

Proposition 5.5, and so 6.5 applies:

Theorem 6.6 If (X; τ+, τ−) is a regular bitopological space then there is a one-to-

one correspondence between

(i) maps from Ω X to 2.2 which preserve tt,
⊔

↑, con, tot and ∧, and

(ii) subsets A of X which are compact saturated with respect to τ+.

7 An application: local compactness

We use the machinery of the previous section to define a notion of local compactness

for regular bitopological spaces.

Definition 7.1 Let S be a Scott-open filter of L+ and U− a completely prime upper

set of L−. We say that (S+,U−) is an HM-pair if it satisfies the conditions (hmcon)

and (hmtot) of Lemma 6.4.

For x′, x ∈ L+ we set x′
� x if there is an HM-pair (S+,U−) such that x′ �

S+ � x.

A. Jung, M.A. Moshier / Electronic Notes in Theoretical Computer Science 173 (2007) 159–175172



A d–frame is called locally compact if it is regular, satisfies (CUTr), and the

following two conditions hold:

(lc+) ∀x ∈ L+. x =
⊔

{x′ | x′
� x}

(lctot) ∀α. (∀(S+,U−). α+ ∈ S+ or α− ∈ U−) ⇒ α ∈ tot

We note that (lctot) is just the converse of (hmtot).

Proposition 7.2 Locally compact d-frames are spatial.

Proof. We check the conditions of Proposition 5.1. For (s+) assume x �� a ∈ L+; by

local compactness there is x′
� x with x′ �� a. Let (S+,U−) be the corresponding

HM-pair with x′ � S+ � x. The element a can not be contained in S+, so by

Lemma 6.4(5) there exists a point (F+, F−) such that S+ ⊆ F+ and a �∈ F+.

Next we tackle (stot), so assume α �∈ tot. By the contrapositive of (lc−) there

exists an HM-pair (S+,U−) such that α− �∈ U− and α+ �∈ S+. By 6.4(5) we obtain

a point (F+, F−) with S+ ⊆ F+ �� α+ and from 6.4(4) we get that α− �∈ F− ⊆ U−.

For (s−) assume y �� b ∈ L−. By regularity, there exists y′ ∈ L− with y′ � y

and y′ �� b. The witness ry′� y satisfies 〈ry′� y, b〉 �∈ tot by (con–tot). From (stot) we

obtain a point (F+, F−) such that ry′� y �∈ F+, b �∈ F−. Because 〈ry′� y, y〉 ∈ tot, we

must have y ∈ F−.

For (scon) assume 〈x, y〉 �∈ con. Because of local compactness and Lemma 5.4

(together with (con–∨)) there exists x′
� x such that 〈x′, y〉 �∈ con. Let (S+,U−)

be the corresponding HM-pair. By Lemma 6.4(3), x′ � S+ forces 〈x′, u−〉 ∈ con,

hence y must belong to U−. Using 6.4(6) we obtain a point (F+, F−) such that

y ∈ F− ⊆ U− and by 6.4(4) we also have x ∈ S+ ⊆ F+. �

Note that we did not need that the sets {x′ | x′
� x} are directed, but this is

in fact the case: If x′
1, x

′
2 � x with witnessing HM-pairs (S1

+,U1
−), (S2

+,U2
−), then

(S1
+ ∩ S2

+,U1
− ∪ U2

−) witnesses x′
1 � x′

2 � x.

Definition 7.3 A bitopological space (X; τ+, τ−) is called locally compact if it is

regular and τ+ is locally compact in the usual T0 sense.

Proposition 7.4 For (X; τ+, τ−) a locally compact bitopological space, the d–frame

ΩX is locally compact.

Proof. Obviously, an HM-set on X gives rise to an HM-pair in ΩX, and only (lctot)

needs checking. For this assume that the union of O+ ∈ τ+ and O− ∈ τ− does not

cover X, that is, there is p ∈ X \ O+ ∪ O−. Then by order-separation ↑p is τ+-

compact and τ−-closed, that is, an HM-set. Neither is O+ a neighbourhood of it,

nor does O− intersect with it, so we conclude the contrapositive of (lctot). �

Theorem 7.5 The functors Ω and spec restrict to a dual equivalence between locally

compact bitopological spaces and locally compact d-frames.
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8 Discussion

As we pointed out in the introduction, a corollary of the classical Hofmann-Mislove

theorem is that the collection of compact saturated sets forms a dcpo under reverse

inclusion. The analogue for bitopological spaces need not be true:

Example 8.1 The punctured unit interval [0, 1] \ {1
2} is locally compact when

equipped with the usual τ+ and τ−. Each set of the form [r, 1] \ {1
2}, 0 ≤ r < 1

2 is

HM but their intersection is (1
2 , 1] which is not.

However, our motivation for studying this problem was based on the view of

HM-sets as the continuously “quantifiable” ones, as explained in the text after

Theorem 6.5 above, and this part of the story works out in a most satisfying way.

Another motivation was the desire to extend the duality between stably com-

pact spaces and strong proximity lattices, [14]. There, it is the case that the two

topologies determine each other (each being the co-compact topology with respect

to the other), but this is no longer true in the locally compact case:

Example 8.2 Let (X; τ) be a locally compact Hausdorff space. Then (X; τ, τ) is

a locally compact bispace in the sense of Definition 7.3. However, this is also true

of (X; τ, τcc) where τcc is the co-compact topology with respect to τ . In general,

τ and τcc are different; for a concrete example consider R with its usual metric

topology.

Still, we believe that our definition of “locally compact bispace” is very promising

as a generalisation of “stably compact” and that it warrants further investigation.
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