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This work describes a new procedure to remove the differences in measured forming limits obtained
from Marciniak and Nakazima tests, which are the two most frequently used testing methods to obtain
necking limits for forming limit diagrams (FLD) used in formability analysis of sheet metal stamping
processes. The procedure compensates for the combined effects of curvature and nonlinear strain path
that occur during these tests, using measurements recorded by digital image correlation (DIC)
throughout the deformation history of the point on the test specimen that eventually necks. The severity
of forming is then determined by presenting the critical forming conditions in a stress diagram in order
to account for the effects of through-thickness pressure that influences the onset of localized necking in
the Nakazima test. These stress-based forming limits are then transformed back to the familiar strain
limits (or FLD), but now representing the limits under the restriction of in-plane perfectly linear
stretching and plane-stress conditions. Accounting for the effects of nonlinear strain path is particularly
sensitive to the detection of the actual onset of localized necking, so this work also recommends the use
of realistic methods to detect the actual onset of localized necking. The method adopted in this work is
based on a newmethod described by Min et al. [13,14], in which a change in the surface curvature is used
to detect a geometric effect associated with the onset of localized necking. In addition to demonstrating
that the standard Marciniak and Nakazima tests (punch diameter of 101.6 mm) produce essentially
identical limit curves for a 980 MPa grade multi-phase high strength steel after correction for curvature,
nonlinear strain path, and pressure, the method is also applied to the analysis of data from a non-
standard Nakazima test with a smaller punch diameter of 50.8 mm, where the severity of these pro-
cessing conditions are significantly enhanced. This additional test is further proof of the validity and
comprehensive coverage of the corrections for the different processing conditions involved in mea-
surement of forming limit curves.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The Forming Limit Diagram (FLD) is an important graphical aid
in formability assessment used by the sheet metal forming in-
dustry in the analysis of both finite element (FE) simulations of
sheet metal forming processes and in physical die tryout. The FLD
describes the limit strains, represented by a Forming Limit Curve
(FLC) that defines the upper boundary of deformation that sheet
metals can endure before the onset of through-thickness or loca-
lized necking. This boundary is typically described in a plot of the
major principal strain expressed as a function of the minor
r Ltd. This is an open access article

. Stoughton).
principal strain. There are two primary tests used to experimen-
tally determine the FLC, developed independently and known as
the Nakazima test and the Marciniak test. The Nakazima test [17]
uses a hemispherical dome punch, while the Marciniak test [10]
uses a cylindrical punch. Both tests involve using a set of several
sheet specimen widths with the axisymmetric tool geometries in
order to produce a range of straining conditions from uniaxial to
equal-biaxial tension. The differences in these two tests, including
other variants of test conditions developed from many different
academic, government and industrial labs, particularly with re-
spect to the details of the shapes of the specimen geometries, not
only affect the resulting strain paths, but also the shape and
characteristics of the FLC. These process-dependent differences in
forming limits have until now not been adequately addressed in
industrial application of the FLD.

Almost since the inception of the FLD, strain paths, sheet
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curvature, and contact pressure have been known to affect necking
limits. While the effect of nonlinear strain paths (NLSP) on the
necking limit measurement was first experimentally documented
by Nakazima et al. [17], little attention was given to a solution to
the strain path effect that was reported by Müschenborn and
Sonne [16]. The reason for this was primarily because until the mid
1990's, most industrial engineers believed that strain paths were
nearly linear in the first draw die, where most of the formability
issues arose. Initially there was not much concern about NLSP
effects, and few people were even aware of Müschenborn and
Sonne's work, or if aware, did not appreciate its importance.
Through-thickness pressure also has long been considered to play
a significant role in necking. However, pressure effects have not
been widely considered in industrial applications of sheet forming
processes. The reason for their neglect is attributed to the wide use
and acceptance of shell element elements in sheet forming si-
mulations. The through-thickness stress components in shell ele-
ments are constrained to remain zero, even in areas of contact
between the sheet metal and tool surfaces. The justification of
ignoring pressure effects on necking in analysis using shell ele-
ments is based on consistency with the justification of using shell
elements in the first place, which is that the through-thickness
stress components are negligible.

The effect of sheet curvature was more obvious and solutions
were adopted very early in industrial practice. The reason for this
is that many automotive stampings involve bending sheet metal
on sharp features with radii that approach the sheet thickness, so
that the strain on the convex side of the sheet shows no sign of
necking although it is often well above, sometimes by more than a
factor of 2 higher than the FLC in the first draw die. Furthermore,
when necks were observed in areas affected by this bending, they
were often found in the area where the metal had moved away
from the tool contact radius and had flattened out, essentially
eliminating the high strain gradient through the thickness. Con-
sequently, most industrial engineers adopted the idea of either
restricting the assessment of formability to areas of small curva-
ture, taking advantage of the fact that necking does not occur at
sharp radii, or to be more consistent and provide a formability
assessment in areas of smaller but nonzero curvature, adopted the
intuitively popular idea of comparing the average strain on the
mid-plane through the sheet thickness to the FLC. The latter idea
became so popular, that when FEA analysis was introduced in the
mid-to-late 1990's in commercial analysis codes, the developers
adopted the practice of limiting their formability assessments to
consider only the membrane values of elements that are subjected
to out-of-plane deformation.

The conventional approach to how formability assessment was
applied to the analysis of the first draw die process began to un-
ravel as the use of metal forming simulation of stamping processes
began to expand in the mid-1990's with the hope to effectively
eliminate the high costs of physical die tryout. While consideration
of the importance of accounting for NLSPs was essentially re-
stricted to secondary forming processes for most of the following
decade, Stoughton [22] emphasized that NLSPs are intrinsic to all
forming processes, including the first draw die. Consequently, it
was claimed that solutions to the NLSP problem were necessary
for all metal forming processes in order to obtain reliable and
robust manufacturing solutions. More recently, Leppin et al. [8]
showed that a significant portion of the difference in measured
forming limits between the Marciniak and Nakazima tests can be
removed simply by accounting for NLSP effects in the analysis,
which means that NLSP affects not only the use of forming limits,
but how the forming limit is defined.

The ability to obtain reliable FLCs, as well as account for NLSP
effects, is greatly improved with the use of digital image correla-
tion (DIC) techniques. Several methods [11–14,30,6,9] have been
developed to try to either detect the actual onset of localized
necking, or define a suitable proxy for the limits based on an en-
gineering approximation for the onset of localized necking in or-
der to avoid the human detection methods from the early devel-
opment of the FLD. Using DIC, the strain paths of all areas of in-
terest on forming limit test specimens can be tracked precisely,
which for the first time, makes it convenient to simultaneously
account for effects on the forming process caused by NLSPs. While
DIC strain measurements show that the strain paths of Marciniak
specimens are nearly linear from zero strain up to the onset of
localized necking, significant NLSPs are observed on Nakazima
specimens [1,8].

It is important to note that while friction conditions can in-
fluence the location of the instability, as well as influence the
degree of nonlinearity in the strain path in the area of localization,
friction is not expected to have any effect on the necking limit. It
can be advantageous to limit frictional influence using lubricants
or viscoelastic materials and thus promote localization to occur
near the pole of the specimen, but any localization that occurs can
provide valid data for an FLD, provided compensation for non-
linear strain path is made. For example, high friction conditions in
a Nakazima test might push the eventual instability to occur in the
unsupported region of a specimen. In this case, it remains very
important to apply the corrections for effects of NLSP and curva-
ture, but not for the pressure effect since in this case there would
be no punch contact where the neck occurred.

After compensating the FLC's for the effects of these forming
process conditions, they are shown to converge to a single FLC for
both tests, corresponding to the FLC for linear strain paths in the
absence of through-thickness strain gradients, for in-plane stress
conditions in the absence of through-thickness stress, i.e., under
plane-stress conditions. The robustness of this experimental cor-
rection procedure is demonstrated in a third set of experiments
using a 50.8 mm hemispherical dome, which effectively doubles
the severity of curvature and pressure conditions that exist with
the conventional Nakazima test using a 101.6 mm dome. It will be
shown that with the correction procedure, the FLC using the
50.8 mm dome is consistent with the FLC for the 101.6 mm dia-
meter Nakazima and 101.6 mm diameter Marciniak tooling.
2. Effect of processing conditions on localized necking limits

The next three sub-sections respectively review the challenge
and solutions for handling effects of NLSP, curvature, and pressure
in the use of the FLD. It is assumed that the strain limits for per-
fectly linear strain paths for in-plane stretching of a particular
sheet metal in a process involving no through thickness normal or
shear stress are known. The procedure for determining this FLC
will be described in a later section. But here, with this FLC for
linear in-plane deformation defined, the challenge is to describe
the conditions for the onset of localized necking for cases when
conditions are different from this simple mode of deformation.

2.1. Nonlinear strain path effects

The fact that NLSPs affect the forming limit strains has been
noted by many scholars in the plasticity community, beginning
with the seminal work of Nakazima [17]. Among the first to pro-
pose a solution to this challenge was Müschenborn and Sonne
[16], who devised a method of accounting for the strain path effect
based on the work-equivalent plastic strain. Later, Kleemola and
Pelkkikangas [7] and Arrieux et al. [2] proposed using a stress-
based FLD (or forming limit stress diagram, FLSD), defined with
minor and major stresses on the abscissa and ordinate, which for
isotropically hardening materials, is equivalent to the solution
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proposed by Müschenborn and Sonne [16]. However, all of these
authors promoted this solution for application to analysis of sec-
ondary forming processes, and since such analyses were relatively
rare, awareness of this solution and its true significance did not
spread in the engineering community. The importance of NLSPs in
the first draw die became evident as automotive manufacturers
began to apply simulation with the objective to reduce die tryout
costs, leading to an increasing trend to adopt the FLSD or its
equivalent to all forming analysis, beginning with Stoughton [22],
who demonstrated the value of the FLSD using previously pub-
lished forming limit data for NLSP of aluminum alloys published
by Graf and Hosford [3] and for steel alloys published by other
authors.

Stoughton and Zhu [27] demonstrated that if one simply re-
moves the imposed linear strain paths used in the bifurcation
analyses by Hill [5] and Stören and Rice [21], these two theoretical
models for the conventional strain-based FLD validates the idea of
a path-independent FLSD for an isotropically hardening material.
Therefore, to the extent that these theoretical models are con-
sidered valid, they validate the use of FLSD to provide a solution to
account for NLSPs. Although up until then, the determination and
validation of the FLSD had been based on calculated stresses from
the strain histories using a given material model, Yoshida et al.
[31] experimentally demonstrated that the FLSD of an Al–Mg alloy
obtained using a servo-controlled, internal pressure, axial load
type testing machine is almost path-independent. These results
were different from prior studies because the stresses at the onset
of localized necking were measured by mechanical relations that
did not depend on a material model.

Despite these successes and theoretical arguments that support
adoption of the FLSD, large segments of the industry remain re-
luctant to adopt stress metrics in their formability assessments
because it was believed that the low slope of the stress-strain
relation would cause stress metrics to loose significant resolution
in the determination of the forming severity compared to strain
metrics. To address this reluctance, Yoshida et al. [32] re-
commended an adaptation of the approach originally proposed by
Müschenborn and Sonne [16], using instead effective plastic strain
(EPS) limits as a function of the ratio of the current principal
stresses. Zeng et al. [33] recommended using EPS limits as a
function of the ratio of the principal strain rates, after demon-
strating that MK Analysis produced the same FLC for nonlinear
strain paths when defined in terms of these variables. Stoughton
and Yoon [26] recommended a limit on EPS as a function of an
angle equal to the arctangent of the ratio of principal strain rates
or stresses. In this case the limit is defined by an angle equal to the
ratio of the principal strain rates. The resulting polar diagram has
characteristics and behaviors similar to those of the conventional
strain FLD, and therefore has an additional appeal to those en-
gineers who are already experienced and familiar with the con-
ventional strain FLD. This diagram is called the PEPS Diagram and
is already available in some commercial codes. All of these solu-
tions are equivalent to the FLSD for materials that are work
hardening isotropically. Variants of solutions to handle NLSP ef-
fects continue to be introduced in the literature, including He et al.
[4], Volk et al. [29], Nurcheshmeh and Green, [18], Simha et al.
[20], Yoshida et al. [32], and Zhu et al. [34].

While most of the focus of NLSP has been directed at the use of
FLC data in formability assessment, it obviously plays a role in the
interpretation of measurements of the FLC, which in general do
not follow linear strain paths. Leppin et al. [8] and Abspoel et al.
[1] have already proposed accounting for NLSPs on measurement
of forming limits. This idea is extended in this paper to focus on
the importance of detecting the actual onset of localized necking,
particularly in the analysis of the Nakazima test results, which
involve the largest degree of NLSP. As will be explained later, the
correction for NLSP is particularly sensitive to the accurate iden-
tification of when the start or onset of localized necking occurs
during the test. In this paper, we apply the new curvature method
for detection of onset of localized necking as described by [13,14].
This method detects a perturbation in a simple curvature fit of the
surface along the line that eventually falls into the groove of the
neck. The perturbation is obvious because the curvature changes
very slowly from frame to frame in the case of the Marciniak test
up to the onset of necking instability. There is a similar stability of
the curvature in the case of the Nakazima test, after the sheet
wraps over the punch. Because the frame to frame variation of the
curvature along the direction of the line that eventually necks is
slowly varying, a perturbation of the surface associated with onset
of necking results in a distinct signal in the frame to frame var-
iation of the fitted curvature. However, other methods of detecting
onset of localized necking may be used and combined with the
corrections described in this paper.

Finally, in order to extend the corrections to include the contact
pressure effects, as will be described later, the method of correc-
tion of NLSP used in this paper is necessarily based on stress
metrics, which differs from previous correction methods applied
to the Nakazima test results.

2.2. Curvature effects

As mentioned in the introduction, the effect of curvature on
strains and its impact on determination of conditions for the onset
of localized necking was noticed in the early applications of the
FLD for formability assessment in die tryout. Most of the industry
quickly adopted the intuitive idea that the average strain, i.e., the
strain on the middle layer through the sheet thickness, was the
appropriate strain metric to use in comparison to the strain FLD.
However, to test this assumption, a study of bending under tension
was done at General Motors in 1985 by Mark Tharrett. This study
was done so that as the use of FLD concepts were extended to
simulation analysis, the formability assessments of curved areas of
the mesh could be made with more confidence.

Tharrett's experiments involved stretch-forming strips of metal
under nearly plane-strain conditions over a set of wedge-shaped
punches with different tip radii ranging from 12.5 mm to 0.5 mm.
Tharrett also tested five materials including three thicknesses of
1008 AK steel, an Al–Mg–Si–Cu (2000-series) aluminum alloy, and
a 70/30 brass alloy. Stretching over these punches produced strain
gradients through the sheet thickness that ranged from very low
values to values that were initially as high as 200% on initial
contact, and remained as high as 70% at the onset of localized
necking. Specimens were imprinted on both sides with a 0.5 mm
square grid, and strains were accurately measured using a travel-
ing microscope equipped with Vernier calipers. Details of these
experiments and results are reported by Tharrett and Stoughton
[28] for the three thicknesses of 1008 AK steel. Contrary to ex-
pectations, Tharrett discovered that for tests that were stopped
just before the onset of localized necking was detectable, the
strains on the middle layer were determined to be well above the
measured necking limits for in-plane stretching of all five of the
metals studied. In fact, the only test specimens where onset of
localized necking was detected were those in which the measured
strains on the concave side of the sheet were found to be above
the necking limit for in-plane stretching. This very surprising re-
sult was confirmed in repeated testing of all five metals.

Generally, when necking was observed in specimens, two necks
were observed, one on either side of the punch contact area. These
two necks were associated with peaks in the major strain. These
strain peaks were observed on both the convex and the concave
side. However, these two necks were only observed when the
measured strain on the concave side on both peaks met or
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exceeded the necking limit for in-plane stretching conditions. Al-
though close in value, the magnitude of the two peak strains were
generally not equal. This was attributed to imperfect boundary
conditions, material inhomogeneity, and some degree of experi-
mental uncertainty in the strain measurement. Although small,
these differences were determined to be significant. One specimen
was observed to have only a single detectable neck. Although the
measured strains on the concave side of this specimen had the
typical double peak in the strain distribution, the peak strain on
the concave side, on the side of the punch contact that did not
show any evidence of necking, was measured to be just below the
limit strain for in-plane necking. The measured strain on the other
side of the punch, where onset of localized necking was detected,
was measured to have a strain just above the necking limit. In
order to verify these observations, the judgment as to whether
onset of localized necking was observed was independently con-
firmed by several people. The strain measurements were also re-
peated and validated by others.

Although this discovery was initially unexpected, in hindsight
the experimental observation can be explained by the fact that
necking is an instability phenomenon that simultaneously in-
volves the movement of material points at all layers through the
sheet thickness. Unlike fracture, which can initiate on one side of a
curved surface and propagate through to the other side, the onset
of a localized necking instability would require every layer
through the sheet thickness to exceed the instability criterion that
applies for in-plane stretching. This requirement applies even if
the localized necking through a curved section of the sheet is re-
stricted to a wedge of material, where one point of the wedge is on
the concave side of the sheet and the other two points on the
convex side. In this geometry, one might expect to see evidence of
the neck only on the convex side, rather than find evidence of the
neck on both sides, as in the case of low curvature. However, this
case would still require an instability on all layers because, al-
though the impact to the neck on the concave side goes to zero at
the vertex of this wedge, the additional stretch required to ac-
commodate the geometry of the neck on all other layers through
the sheet thickness is finite. This explains why localized necking
cannot occur in pure bending deformation since the stress on the
inner surface remains in compression, i.e. under negative values of
stress, and is always below the positive values of the stress limit
required to initiate a localized neck.

Stoughton and Yoon [24] extended the interpretation of these
experiments, which involved essentially monotonic linear loading
under nearly plane-strain tension conditions, to general nonlinear
biaxial tensions. Under nonlinear deformation, localized necking is
defined to occur on curved sheet metal only when the stresses on
all through-thickness layers of the sheet exceed the stress limit
that applies under conditions of in-plane stretching. This takes
into consideration that in cyclic bending, for example, stresses on a
given layer through the sheet may rise above the condition for
onset of localized necking, but necking may remain suppressed as
long as other layers are simultaneously below the stress limit, even
if those layers have been previously above the limit. This concept
explains why necking is not an important consideration in incre-
mental forming processes, as discussed by Seong et al. [19], where
it is shown that the large strains achieved in incremental forming
are the result of a series of multiple local bending/unbending cy-
cles in which one or more layers remain below the threshold for
onset of localized necking, even though at other moments during
the latter bending/unbending cycle, each layer is exposed to po-
sitive stress well above the condition that would permit onset of
localized necking.

Consequently, in the experimental determination of the form-
ing limit from the Nakazima test, which has a high curvature, the
stresses and strains on all through-thickness layers should be
examined to determine the least critical layer, and it is the stress
condition on this layer that controls the onset of localized necking
instability. In principle, the same consideration is required for the
Marciniak test, because, although the punch used has a flat face in
the area of the specimen that necks, the bending resistance of the
metal usually causes a slight crown to develop that results in
through-thickness stress and strain gradients.

2.3. Pressure effects

Through-thickness pressure (negative stress) is widely ac-
knowledged to influence localized necking, but the understanding
of this influence is often confused by the lack of distinction be-
tween localized necking and fracture, and the physical differences
in how these two modes of material failure are affected by non-
plane-stress forming conditions. For example, while there may be
some more complex behaviors in the fracture limit for plane-stress
conditions caused by a Lode angle dependence on fracture, there is
almost universal agreement, at least for conditions of a fixed Lode
angle, that fracture limits decrease as the mean stress increases. In
contrast to this fracture behavior, theoretical considerations lead
to the conclusion that mean stress has no effect on localized
necking at all.

The basis for this theoretical argument on the effect of mean
stress on localized necking was first described by Stoughton and
Yoon [25]. It is almost universally accepted that MK Theory, also
known as the MK Model, or MK Analysis, developed by Marciniak
and Kuczynski [10], is able to predict the onset of localized necking
for a given metal described by a set of constitutive equations. In
this theory, necking is defined to occur by a numerical algorithm
when the strain rate within a defect exceeds the strain rate within
the surrounding homogeneous matrix material by a set factor,
usually set to a ratio of 10. The defect region is constrained to
maintain continuity constraints with the surrounding matrix for a
selected strain path imposed on the matrix. The necking limit is
defined to be the strain in the matrix at the moment the ratio of
strain rates in the defect/matrix exceeds the tolerance. The defect
is pre-defined and is most often defined as a small reduction in the
initial thickness, but the model has been improved by others to
consider other types of inhomogeneity in the material properties,
as well as taking into consideration the geometric orientation of
the defect. Given that the MK Theory and its improvements are so
widely accepted as a realistic model for localized necking in-
stability, they have one thing in common that leads to a very
simple answer to the question of the effect of through-thickness
stress on the onset of localized necking.

As noted by Stoughton and Yoon [25], one can perform a
thought-experiment to answer this question. If one has done an
MK analysis to determine the necking limit for a given strain path
under plane-stress conditions, what effect would there be if one
did the same numerical calculation under a superimposed hy-
drostatic stress? The answer is simple since plastic strains do not
involve plastic dilatancy and therefore the plasticity equations
must be insensitive to a superimposed hydrostatic stress, and
therefore to the superposition of hydrostatic stress in the MK
Analysis, as proposed in the thought-experiment. Although there
would be a small effect from the elastic dilatancy, which is re-
moved when the forming forces are removed and the plastic strain
limits are determined for the strain path, the constitutive law,
which defines the stresses and strains that develop in the matrix
and defect, will result in the same strain path and strain rates as
were obtained in the MK Analysis under plane-stress conditions.
Therefore, the limit strain under superimposed hydrostatic stress
would be identical to the limit strains obtained for a given plane-
stress condition without the superimposed hydrostatic compo-
nent. The same logic of the insensitivity of the constitutive model
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Fig. 1. Optical microstructure of MP980 composed of fine ferrite (F), tempered
martensite (TM) and bainite (B). (RD and TD are rolling direction and transverse
direction, respectively.).

Table 1
Mechanical properties of MP980. Note: the A, B, C , D and h were fitted from true
stress (σy̅) vs. true plastic strain (εp̅) curve based on the modified Hockett-Sherby

hardening law given by Eq. (3).

Lankford coefficients A B C D h

0° 45° 90° ̅r

0.84 1.03 1.07 0.99 1122.6 349.15 �7.979 273.57 0.5477
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to a superposition of hydrostatic pressure was also noted to apply
to other theoretical models of onset of localized necking, including
bifurcation models proposed by Hill [5] and Stören and Rice [21].

Having established by the above arguments that a super-
imposed hydrostatic stress has no effect on the onset of localized
necking, Stoughton and Yoon [25] turned attention to the more
important question at hand, which is the effect of σ3, or through-
thickness stress, on the onset of localized necking. They first noted
that the conclusion regarding superimposed hydrostatic stress
introduces a problem for the original idea of the FLSD, which was
motivated to account for NLSP under plane-stress conditions. The
problem is as follows: If the FLSD is defined under plane stress
conditions as a set of triaxial stress conditions, ( σ σ, ,01 2 ) at the
onset of localized necking, then the insensitivity of the onset of
localized necking to a superimposed hydrostatic stress (σ3) means
that the following set of non-plane-stress conditions,

σ σ σ σ σ σ σ σ( ̃ ̃ ̃ ) = ( + + ) ( ), , , , , 11 2 3 1 3 2 3 3

will also result in the onset of localized necking. This conclu-
sion applies for any value of σ σ̃ =3 3, positive or negative. At first,
this result may appear to undermine the value of the approach
using stress to deal with NLSP effects, and in fact it does under-
mine the value of the original proposal based on the FLSD, which
remains valid if limited to plane-stress conditions. But the ambi-
guity of the forming limits under triaxial stress conditions is
eliminated by simply subtracting the through-thickness stress, σ ,3
from all three principal stresses, leading to the following trans-
formation and equivalent representation,

( ) ( )σ σ σ σ σ σ̃ − ̃ ̃ − ̃ = ( ), , 0 , , 0 . 21 3 2 3 1 2

As was noted by Stoughton and Yoon [25] this simple trans-
formation removes the ambiguity in the stress limits, which then
applies to any triaxial stress condition, and leads to a modification
of the original concept of the FLSD by replacing the coordinates of
( σ σ,1 2), which apply under plane-stress conditions, by the “de-
viatoric” coordinates of ( σ σ σ σ− −,1 3 2 3), which apply under more
general triaxial stress conditions. For convenience, to avoid chan-
ging the shape of the stress FLC that applies under plane-stress
conditions, it was recommended to subtract σ3 rather than revise
the description of stress limits in terms of the actual deviatoric
stresses (by subtracting instead the mean stress from the principal
components). Not only is this method a theoretically consistent
way to determine onset of localized necking under triaxial stress
conditions, but as will be shown in this paper, the transformation
enables us to accurately account for and remove the pressure ef-
fects from the Nakazima test in the determination of the FLC. This
is because in the presence of a negative stress through the sheet
thickness, caused by the contact pressure between the sheet and
Nakazima punch, will delay the onset of necking, resulting in
higher in-plane stresses in order to achieve the localized necking
instability condition that applies under plane-stress conditions.
Consequently, to identify these equivalent stress conditions that
apply under plane-stress conditions, it is necessary to subtract the
magnitude of the pressure through the thickness that is associated
with the in-plane stresses on each layer of the sheet in the Na-
kazima test where this pressure is non-zero.
3. Experimental details

The material used for demonstration of the analytical methods
was a 1.2 mm thick multi-phase advance high strength steel
(AHSS) with a strength class of 980 MPa (MP980), which was
composed of ferrite, tempered martensite, and bainite, with the
microstructure as shown in Fig. 1. The mechanical properties of
the steel at room temperature are listed in Table 1. The following
5-parameter modified Hockett-Sherby Law was the best fit to the
experimental stress-strain data along the rolling direction of the
sheet coil, with the parameters given in Table 1, obtained by least-
squares method,

⎡
⎣⎢

⎤
⎦⎥( )σ ε ε̅ = − − ̅ + ̅ ( )

A B C Dexp .
3y p

h
p

where σy̅ is the yield stress, εp̅ is the effective plastic strain,
A B C h, , , , and D are material constants, obtained by a fit to the
stress-plastic-strain data along the RD. The Lankford coefficients,
( )r r r, ,0 45 90 , are required to calibrate most advanced anisotropic
material models. They are also used to calculate the average r
value, ̅r , which is required to calibrate the Hill (1948) Normal
Anisotropic Model [35] used in Section 4.2, in Eqs. (11) and (14).

Both Marciniak and Nakazima tests were included in this study.
In the Marciniak test, two flat-head punches with a diameter (DM)
of 101.6 mm were used: a conventional Marciniak test with a
profile radius (rM) of 10 mm, and a modified tool with rM of 25 mm,
which was needed to avoid fracture at the profile radius that oc-
curred with some specimen widths for this AHSS. The material of
the carrier blank used in the Marciniak test was mild steel with a
thickness of 0.7 mm, cut with a central hole diameter of 32 mm.
The placement of the specimen and carrier blank in the Marciniak
test is illustrated in Fig. 2. In the Nakazima test, two spherical
punches with diameters ( DN) of 101.6 mm and 50.8 mm were
employed to investigate the effect of bending radius and contact
pressure on the forming limits. The non-conventional punch with
smaller diameter was employed to amplify the pressure and cur-
vature effects associated with the conventional 101.6 mm Naka-
zima test for the purpose of putting the analytical methods de-
scribed in this paper to an extreme test. The tests with 101.6 mm



Fig. 2. Illustration of the Marciniak test. Note that two Teflon films (not shown) as
lubricant were inserted between the punch and carrier blank, and the conventional
deep single-drawbead was modified to shallow double-drawbead to avoid fracture
but lock the sheets at binder area during testing.
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and 50.8 mm hemispherical punches are designated Nakazima-4
and Nakazima-2, respectively. Thus, three sets of forming limit
tests, namely, Marciniak, Nakazima-4 and Nakazima-2 were used
to measure three sets of forming limits for the same material in
order to confirm the validity of the correction methods and obtain
a realistic picture of the actual forming limit of the material under
study. The binder and die in all three tests were identical, and the
punch stroke rate was set to 0.5 mm/s.

All specimens were rectangular with a length of 180 mm along
the rolling direction (RD) of the MP980 sheet. The widths of the
specimens were selected following this procedure: firstly, the
width of the specimen ( wFLD0) associated with plane strain, i.e.
minor strain ~0, was determined from a series of tests in all three
aforementioned forming limit tests; then 3–4 widths were se-
lected between 20 mm and wFLD0 to obtain forming limit data from
uniaxial to plane-strain tension and 3–4 widths between wFLD0 and
180 mm to obtain forming limit data from plane-strain tension to
balanced biaxial stretching. The specimen widths in the three tests
are summarized in Table 2.

The applied clamping forces varied from 200 kN to 600 kN for
the specimens with widths from 20 mm to 180 mm. No slippage
was observed between the binder and each specimen. Further-
more, no specimen fractures occurred in the binder area, which
was attributed to the use of shallow double-drawbeads. Two
0.1 mm thick Teflon films with an in-between light layer of grease
were inserted between the specimen and the punch for all Na-
kazima tests or between the carrier blank and the punch in all
Marciniak tests to limit the effect of friction.

Digital image correlation (DIC) techniques were applied to
measure strains, strain paths, as well as XYZ-coordinate data on
the outer surface of specimens. To generate the necessary DIC
contrast pattern on the outer specimen surface, the following
standard procedure was performed: the specimen surface was
cleaned with chloroform to remove any oils and dirt; a layer of
white paint was sprayed on the cleaned surface followed by a
10 min drying period before applying random speckles of black
paint with a size of �0.5 mm upon the white paint layer. The
stereo DIC system included two 4-megapixel cameras, and in all
Table 2
Widths of Marciniak and Nakazima specimens.

Tests Widths [mm]

Marciniak 70 90 110 120 128 (wFLD0)
Nakazima-4 40 50 60 80 100 (wFLD0)
Nakazima-2 20 40 50 75 (wFLD0)
tests, the exposure time and the framing rate of the two cameras
were set to 70 μs and 10 frames/s, respectively. The objective in
setting the punch speed and frame rate is to ensure that the
frame-to-frame strain increments at the time of onset of necking
are smaller than the desired precision in the measurement of the
strain FLC. Although it is conceivable that one could interpolate a
strain limit between two frames, limiting the strain increments
makes it convenient to define onset of necking from the data in
one frame and directly use the information in this and prior
frames to determine the FLC. In the case of the MP 980, at a punch
speed of 0.5 mm/s and 10 frames per s, the maximum strain in-
crement from frame-to-frame at the onset of necking was on the
order of 0.002. For post-processing of the deformation, an area of
interest (AOI) was defined over the center of each specimen, and a
grid point spacing with 7 pixels in 29 by 29 overlapping square
pixel subsets was set within the VIC-3D 2010 software from Cor-
related Solutions, Inc.

Here it is worth mentioning that not all specimens listed in
Table 2 exhibited localized necking prior to fracture. In particular,
the specimens (in either Marciniak, Nakazima-4 or Nakazima-2
test) having strain paths closest to equal-biaxial tension fractured
without localized necking, and examples were presented by
[13,14], where no change of surface curvature to signal the onset of
localized necking was observed in these specimens and cross-
sectional views of the fracture also demonstrated the phenom-
enon, fracture without localized necking. These specimens were
summarized in Table 3 and were not included in the following
analysis, since fracture limit curve rather than FLC (associated with
the onset of localized necking) may be used to assess formability
of these specimens. However, the fracture limit criterion is beyond
the scope of the current work but will be studied in future.
4. Compensation of the FLC for process-dependent effects

This section describes the procedure to rectify strain mea-
surements at the onset of localized necking in experimental tests,
developed to compensate for the effects of curvature (e.g. due to
bending), NLSP, and non-zero through-thickness stress (e.g. due to
the contact pressure between the tool and sheet specimen) fol-
lowing the ideas described in the previous section. The objective of
this compensation is to obtain the FLC for the metal that applies
under in-plane plane-stress deformation restricted to perfectly
linear strain paths. The validity of this compensation procedure
will be demonstrated by showing that the compensated FLC ob-
tained using the Marciniak cylindrical punch is effectively identical
to the compensated FLC's obtained using both the Nakazima-2 and
Nakazima-4 hemispherical punches.

4.1. Determination of the strain path on all layers through the sheet
thickness

As noted in Section 2.2, in order to determine the conditions
giving rise to localized necking instability in curved sheet, it is
necessary to evaluate the severity of the forming conditions on
every layer. However, since the deformation history in both the
Nakazima-2 and Nakazima-4 tests, where curvatures are largest,
135 140 145 150 165 180
120 135 140 145 150 160 180
100 120 140 160 180



Table 3
Summary for fracture and localized necking of Marciniak and Nakazima specimens.

Tests Punch description Specimens Failure locations Necked or fracture without neck

Marciniak DM ¼101.6 mm, rM ¼10 mm Widthr128 mm Specimen center Necked
128 mmoWidthr145 mm Punch profile radius (Failure in wrong location)
Width4145 mm Specimen center Fracture without neck

DM ¼101.6 mm, rM ¼25 mm 135 mm, 140 mm Specimen center Necked
Nakazima-4 DN ¼101.6 mm Widthr145 mm Close to pole Necked

Width4145 mm Close to pole Fracture without neck
Nakazima-2 DN ¼50.8 mm Widtho160 mm Close to pole Necked

WidthZ160 mm Close to pole Fracture without neck

Outer
surface

Inner 
surface

Middle 
surface

Fig. 3. Illustration for an out-of-plane deformation ( =i 1, 2 indicate the principal
directions).
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involves nearly monotonic changes in curvature that at most in-
volve a brief cycle in compression on inner layers, it is considered
here to be sufficient to only evaluate the severity of forming on the
Outer, Middle, and Inner Surfaces of the sheet, where the “Outer”
side refers to the side opposite to the side in contact with the
punch. Therefore, it is only necessary to determine the strain
history of these three layers. This strain history is defined by three
sets of data, ( )=X O M I, , , respectively representing the strain paths
of the Outer, Middle, and Inner Surfaces, symbolically represented
by a set of pairs of major and minor principal strains,

( ) ( )ε ε =j N, , 0,j
X

j
X

1, 2, obtained from N frame images, where the initial

strain ( ) ( )ε ε =, 0,0X X
1,0 2,0 . The locations of the three strains on the

three surfaces for a given frame image are illustrated in Fig. 3.
The history of the total principal strain on the Outer Surface of

the sheet at the point that is identified to be the location where
localized necking initiates, is measured directly by the DIC mea-
surement system and extracted for analysis. The entire strain path
up to the last DIC frame just before fracture for the Marciniak,
Nakazima-4, and Nakazima-2 tests of all specimen widths listed in
Table 2 are shown in Fig. 4(a)–(c), respectively. The symbol over-
layed on each path in these figures indicate the strain level at the
onset of localized necking detected for each specimen.

In conventional analyses of Marciniak and Nakazima tests,
without process corrections that are proposed in this work, se-
lecting the correct frame at the onset of necking is important be-
cause selection of an earlier (or later) frame, and using the strain
level recorded in that frame, would result in lower (or higher)
strain limits. This would result in over-estimating (or under-esti-
mating) the possibility of necking in a given metal deformation
analysis unless attention was given to ensure that the end frame
coincides with the true onset of necking. But the importance of
correctly identifying the frame at the onset of necking is even
more critical for the compensation required to account for non-
linear strain paths. The reason for this higher sensitivity is most
easily appreciated by considering the simplistic concept of loca-
lized necking, in which the stress state immediately changes to
plane-strain stress conditions at the onset of necking. This would
be reflected in the DIC data at the point where the increments of
minor strain suddenly becomes zero. In this simplistic idea, if the
selected frame is even slightly after the onset of necking, then the
forming limit would describe a state of plane-strain stress. In this
case, one would not obtain a forming limit curve, but a forming
limit point, applicable only under plane-strain stress conditions.

Of course the reality is, as seen in Fig. 4, that post necking
deformation generally does not immediately change to plane-
strain stress conditions, but changes much more gradually. It is
clearly seen in this figure that the minor strain increments remain
finite between onset of necking and the last recorded frame image.
However, the tangents to these strain paths are changing
throughout the test, even before reaching the point of necking, but
more so after the onset of necking. A change in the direction of the
local tangent to these strain paths means that the stress conditions
are also changing direction during these tests. While the stress
condition generally never reaches plane-strain stress conditions
and, since the minor strain increments never go to zero, the pro-
cess of slowly transitioning towards plane-strain stress conditions
after onset of necking moves the critical condition slightly closer to
plane-strain stress conditions than is suggested by the value of the
net strain. If one selects a frame that is beyond the true onset of
necking, it will not only result in an over-estimate of the actual
strain limit, but after correction for nonlinear strain path, will end
up at a stress condition that is closer to plane-strain stress con-
ditions compared to the stress conditions that existed earlier in
the test at the true onset of necking. It is for this reason that it is
doubly important to ensure that accurate determination of the
onset of necking is employed. In this analysis, onset of localized
necking was determined by the curvature method described by
[13,14].

Fig. 5 overlays the limit strains determined for all three tests
prior to consideration of the effect of the unique processing con-
ditions. While the differences between the Marciniak and Naka-
zima-4 seem mostly significant on the left hand side of the FLD,
which may explain why these differences are often ignored by
industry, the superposition of the Nakazima-2 test results clearly
show evidence of systematic differences between the hemi-
spherical dome of both Nakazima tests and cylindrical punch of
the Marciniak test. These differences can be roughly described as a
shift of the entire FLC obtained by the Marciniak test in the di-
rection of a positive increment in the major strain and a positive
increment in the minor strains by a magnitude that is roughly
proportional to the curvature of the Nakazima punch. The argu-
ment that the shift appears to be proportional to the curvature of
the Nakazima punch is a consequence of the fact that the location
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Fig. 4. Strain paths and the limit strains associated with the onset of localized
necking in (a) the Marciniak Test, (b) the Nakazima-4 Test and (c) the Nakazima-2
Test. Symbols denote the strain level at which onset of localized necking is de-
tected, which for most strain paths occurs well before fracture of the MP980 steel.
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Fig. 5. Comparison of the limit strains from three tests, prior to consideration of
the effect of processing conditions those are unique to each test.
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of the cusp of the FLC in the case of the Nakazima-2 punch is
shifted nearly exactly twice as far from the cusp in the Marciniak
test, as the shift of this cusp in the Nakazima-4 test. This shift
moves the low point of the FLC from the plane-strain condition to
a location with a positive minor strain.

The strain paths on the Middle and Inner Surfaces are a function
of the strains on the Outer Surface and the principal curvatures and
thickness of the sheet, and therefore require additional calculation
effort. As a first step to determine the strains on the other surfaces, it
is necessary to determine the curvatures of the sheet on the Outer
Surface at the location of the neck. To determine these curvatures, a
set of 41 points were extracted from the DIC surface coordinate data
through the neck in the direction of the major strain represented by
the coordinates, ( ) ( ) ( )= =x z j N k, , 1, , 1,41 .j k

O
j k

O
1, , 1, , Another set of 41

points were extracted through the localized neck in the direction of
the minor strain represented by the coordinates,

( ) ( ) ( )= =x z j N k, , 1, , 1,41 .j k
O

j k
O

2, , 2, , Sequential points along these per-

pendicular sections were selected at approximately 0.5 mm intervals
in the last DIC frame available, and tracked back through the DIC
record to the reference image as material points (where the spacing
between these points will be more or less 0.5 mm, depending on
whether the section was compressed or stretched in the direction of
the corresponding principal strain during the deformation). The 3D
surface coordinates, ( )⃗ = =x x x z z, ,j

O
j

O
j

O
j

O
1, ,21 2, ,21 1, ,21 2, ,21 ( )=j N, 1, at the

point that is at the intersection of the two sections in all frames, was
identified to be the surface coordinate of the point where necking
initiated. Once these data sets were extracted, the 2D coordinates of
each of the two perpendicular sections, ( )=i 1,2 , for each frame

( )=j N1, were fit to a quadratic equation, ( ) = + +z x a b x c xi j i j i j, , ,
2,

where ( )a b c, ,i j i j i j, , , are the parameters of each fit. Finally the two

principal curvatures along the direction of principal strains,( )κ κ,j
O

j
O

1, 2,

at frame, ( )=j N1, were calculated at the intersection of the two
sections using the curvature formula for a quadratic curve,

κ =
+ ( )

c

b c x

2

2
.

4
i j
O i j

i j i j i j
O,

,

, , , ,21

The radii of curvatures on the Outer Surface in the directions of
the major and minor principal strains ( )R R,j

O
j

O
1, 2, were then defined

for each frame, ( )=j N1, , by inverting the curvatures, κ=R 1/i j
O

i j
O

, , .
The fidelity of the quadratic equation ( )z x to the DIC data was

visually verified during data processing of each test and the cal-
culated curvatures on the Outer Surface was checked for
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consistency. For full width specimens, which involve nearly equal-
biaxial strain, the two curvatures along the two principal direc-
tions were found to be nearly equal. Furthermore, the curvatures
were found to be nearly static corresponding to a small crown on
the surface of the metal at the location of the neck in the case of
the Marciniak test. In contrast, after contact with a punch in the
Nakazima tests, a slowly increasing curvature was observed, con-
sistent with the sum of the punch radius and the expected varia-
tion of the sheet thickness. In some cases using the narrow width
specimens, the calculated curvature along the minor strain direc-
tion was noticeably smaller that the major strain axis. This ob-
servation is attributed to having insufficient tension in the minor
strain direction to overcome the bending resistance of MP 980.
Therefore, it is concluded that the above method of curvature
determination is sufficiently accurate for this application. How-
ever, other algorithms and other parameters of the above algo-
rithm are expected to work just as well in this application. For
example, the decision to select 41 points at nominally 0.5 mm
spacing was decided primarily to limit file sizes for long term
storage of the test results, but have enough points so that the small
crown in the Marciniak test was resolved in figures of the DIC data.

The next step for the determination of the strain path on the
other layers requires the calculation of the sheet thickness. Since
the surface is not flat, both the curvature and strain measurements
are factored in the determination of the local sheet thickness. Min
et al. [15] derived a cubic equation for calculating the thickness of
a stretched curved surface, based on a mapping function described
as the “Radius Method” that imposes volume constraints on the
deformation described by two principal strains measured on one
side of the sheet of an infinitesimal disk mapped onto a curved
surface described by two principal curvatures. If t0 is the initial

sheet thickness, ( )ε ε,j
O

j
O

1, 2, are the current principal strains on the

Outer Surface, then the sheet thickness tj at frame ( )=j N1, is
determined by the following cubic equation,
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and εV j
e
, is the elastic volume change. Note that the parameters,

( )a b c, , in Eqs. (5), (6a)–(6c) are unrelated to the ( )a b c, ,i j i j i j, , ,

parameters of the quadratic equation used to calculate the cur-
vatures in Eq. (4). Note also that εV j

e
, is initialized to zero in the
calculation of the thickness. Although the neglect of the elastic
dilatancy effects is justified in most cases, if greater accuracy in the
thickness and stress calculations is desired for high strength steels
or light-weighting metals with low elastic moduli, the thickness
and stress calculation described later can be updated by iteration
using the calculated stresses at each step of the iteration to update
the value of εV j

e
, until a converged solution is obtained.

With the thickness, tj, calculated using the cubic formula in
Eq. (5), and the curvatures along the principal strain directions for
each frame, the principal strains on the Middle and Inner Surfaces
of the sheet specimen are respectively defined by

( ) ( )ε ε κ= + − ⋅ = = ( )t i j Nln 1 /2 for 1, 2, 1, 7ai j
M

i j
O

j i j
O

, , ,

and

( ) ( )ε ε κ= + − ⋅ = = ( )t i j Nln 1 for 1, 2, 1, . 7bi j
I

i j
O

j i j
O

, , ,

Note that Eqs. (7a) and (7b) can be generalized to calculate the
strain history on any specific layer through the sheet thickness, if it
was considered necessary to calculate strains on additional layers
to find the least critical layer for determination of the conditions
controlling the onset of localized necking. This might be important
for example, if the location of the neutral axis hops around mul-
tiple times, moving from the exterior of one side to the exterior of
the other during bending/reverse bending cycles under tension.
However, such complex deformation histories do not arise in the
Nakazima test, although one compression-tension cycle is ob-
served on the Inner Surface of the sheet in the early stage of
deformation.

To illustrate the above strain calculations on the 50 mm wide
specimen used in the Nakazima-4 test, Fig. 6 shows the calculated
strain paths on the Middle and Inner Surfaces up to the detected
onset of localized necking compared to the measured strain path
on the Outer Surface. The Outer Surface data corresponds to the
strain path shown in its entirety (beyond onset of localized neck-
ing) in the second-from-the-left curve shown in Fig. 4(b). As seen
in Fig. 6, while the Outer Surface in the Nakazima-4 test first
stretches almost equal-biaxially to about 1% strain, the Inner
Surface goes into nearly equal-biaxial compression to a similar
level of strain, before reversing into tension. The Middle Surface
also appears to go into a slightly compressive state, which may be
an artifact of a small error in the thickness calculation, or may be
caused by the initial deformation required to set the bead or other
locking mechanism in the binder while the binder closes. But the
dominant initial deformation of the Middle Surface involves
stretching in a near plane strain mode (vertical direction) for 2–3%
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strain before heading toward a straining direction common to all
three layers, which is seen to be midway between plane-strain
tension and uniaxial tension. Eventually the strain path on all
three layers are observed to follow a parallel path, indicating a
common ratio of the principal stresses on all three layers, even
though the magnitude of the stress on all layers is expected to be
different because of different curvatures and deformation
histories.

The final step in preparation for analysis and compensation of
the FLC data for NLSP, curvature, and pressure, is to represent the
strain history of the three layers, through the sheet thickness,
defined by ( ) ( )ε ε =j N, , 0,j

X
j

X
1, 2, , ( )=X O M I, , , as a set of N strain in-

crements ( )ε εΔ Δ,j
X

j
X

1, 2, , where

( )ε ε εΔ = − = = ( )− i j Nfor 1, 2, and 1, . 8i j
X

i j
X

i j
X

, , , 1

4.2. Correction of forming limit for normal anisotropic metals

This section describes the method of correction for a simple
model representing metals with normal anisotropy, where the
properties through the sheet thickness generally differ from those
in the plane of the sheet, while the properties in the plane of the
sheet are effectively isotropic. Although the example given will be
for a specific model, with additional consideration of minor var-
iants, Section 4.3 describes how to apply this procedure to the
most general anisotropic model, and this general case includes the
explicit model described in more detail in this section as well as all
other “simple” models for in-plane isotropic metals. The more
general solution will also enable the correct handling of elastic
strains, but for this simple example, we will treat the elastic strains
as negligible. However, in order to make this example as accurate
as possible, it is necessary to ensure that the total strain incre-
ments determined by Eq. (8) are large enough that it makes sense
to ignore the elastic contribution within each increment, so that
the total strain increments can serve as a proxy for the plastic
strain increment. The most convenient way to handle this is to
remove data pairs from the data set so that the following re-

quirement is satisfied for successive datums in the ^≤N N data pairs
that remain,

( )( ) ( )ε ε ε ε εΔ − Δ + Δ − Δ ≥ Δ = ^
( )− − j Nfor 2, , 9aj

X
j

X
j

X
j

X
min1, 1, 1

2
2, 2, 1

2

and

( ) ( )ε ε εΔ + Δ ≥ Δ = ( )jfor 1. 9bj
X

j
X

min1,
2

2,

2

Because the last strain increment ( = ^j N) is critical to the cor-
rection procedure, this filtering is applied point by point, com-
paring each data pair to the previous (in time) data pair in the
decision to remove the previous data pair and working in the re-
verse direction down to the first DIC frame. The minimum strain
increment, εΔ min, is nominally set to 0.01, but the impact of raising
or lowering this tolerance by a factor of two was found to be
negligible. While a lower bound on the value of εΔ min is essential in
the case where the total strains defined by DIC measurements are
interpreted as purely plastic strains, it is found that this filtering is
not necessary in the more general approach described in Section
4.3, where an elastic model will be used to correctly separate the
elastic and plastic components of the total strain. In the simple

model covered in this section, however, the N̂ plastic strain in-

crements Δpi j
X
, will be assumed to be effectively equal to the N̂ total

strain increments,
( )εΔ ≅ Δ = ^
( )p j Nfor 1, . 10i j

X
i j
X

, ,

This filtering may also be required if the uncertainty in the DIC
strain measurement is high, so that a significant component of the
strain increments from one frame to the next represent the fluc-
tuation caused by this uncertainty. In this case, the minimum
threshold should be at least an order of magnitude larger than the
measurement uncertainty. The best approach is to start with small
threshold values and increase the threshold until a stable FLC is
obtained, but before the threshold for the minimum strain incre-
ment is increase so far that the filtered strain path does not track
the original DIC recording.

The model chosen to demonstrate the correction method is
based on a quadratic, pressure-insensitive yield function with
normal anisotropy characterized by a single parameter, ̅r , known
as the normal anisotropy coefficient. The yield function is given by,

σ σ σ σ σ σ σ̅ ( ) = + − ̅
+ ̅ ( )
r
r

,
2

1
.

11y 1 2 1
2

2
2

1 2

Isotropic hardening is assumed to be characterized by either
Swift Law hardening,

( ) ( )σ ε ε ε̅ ̅ = + ̅ ( )K , 12ay p p
n

0

Voce Law hardening,

( ) ( )σ ε ε̅ ̅ = − − ̅ ( )A Bexp C , 12by p p

or a 5-parameter modified Hockett-Sherby Law (Eq. (3)), where
εK n A B C, , , , , ,0 and ̅r are material constants. For the MP980 steel

used in this study, the modified Hockett-Sherby Law (Eq. (3)) with
parameters defined in Table 1 best fit the experimental data. The
effective plastic strain is defined by the integral of the effective
plastic strain rate, ε ̅ṗ

∫ε ε τ¯ = ¯ ̇
( )

τ
d . 13p p

0

where τ is the time. The equation for the ε ̅ṗ corresponding to the
quadratic yield function given by Eq. (11) is defined in terms of the
plastic strain rates, ( )̇ ̇p p,1 2 , as follows
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For finite piecewise linear plastic strain increments given by
the set of points defined by Eq. (10), the integral in Eq. (13) used to
define the total effective plastic strain at the end of the nonlinear
strain path on the surface ( )=X O M I, , is expressed in terms of the
following sum of increments,

( )∑ε ε̅ = ̅ ̇ Δ Δ ( )=

= ^
p p, , 15p

X
j

j N
p j

X
j

X
1 1, 2,

where ( )ε ̅ ̇ Δ Δp p,p j
X

j
X

1, 2, is the 2 parameter function of the strain

increments of the form given by Eq. (14), replacing the strain rate
variables ( )̇ ̇p p,1 2 with the strain increment variables ( )Δ Δp p,j

X
j

X
1, 2, .

The next step is to calculate the stress state at the end point of
the NLSP. The magnitude of the yield function is obtained simply
by substituting the numerical value for εp̅

X obtained by solving Eq.
(15) into the hardening law (such as Eq. (3), for example). How-
ever, to determine the stress condition at the end of forming, we
need to employ the flow rule to the yield function (Eq. (11)) to
derive the relation between the ratio of the principal stresses,
α= σ

σ
2

1
, and the ratio of the rate of change of the principal plastic

strains β=
̇
̇

p

p
2

1
. For the quadratic yield function, this relation is given

by



Fig. 7. Stresses calculated on the Outer (O), Middle (M), and Inner (I) surfaces at the
onset of localized necking for the (a) Nakazima-4 (N4) and (b) Nakazima-2 (N2)
Tests, compared with the stresses calculated for the Marciniak Test (M). The higher
limit stresses in the Nakazima Tests compared to the Marciniak Test are expected
from the suppression of localized necking caused by the compressive stress
through the sheet thickness that exists on the Inner and Middle surfaces of the
Nakazima Tests.
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Then, the ratio of the principal stresses on the three layers at
the onset of localized necking are given by,

( )
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where ( )Δ Δ^ ^p p,
N

X
N

X
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is the last increment of plastic strain before

onset of localized necking, i.e., the last pair of strain increments
specified by Eq. (10).

Then, combining Eqs. (3), (11), (15), and (17), the principal
stresses at the onset of localized necking along the plastic strain
path given by Eq. (10) is
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where ( )σ α̅ 1,y
X is the 2-parameter function of the form given by

Eq. (11), replacing the principal stresses σ σ( ),1 2 with the following

variables ( )α1, X that represent the relative size of the two prin-
cipal stresses.

Up to this point, no distinction has been made in the analysis of
strain data obtained from the Marciniak, Nakazima-4, and Naka-
zima-2 tests. In principal, accounting for curvature effects is re-
quired in all three tests. This is because there can be a small crown
on the sheet deformed by the Marciniak test, depending on ma-
terial and specimen geometry, that warrants consideration of what
is happening on the different layers though the sheet thickness.
However, because the crown is so small, the differences in total
strain, strain increments, and stresses between the layers for the
Marciniak test might be considered negligible. While analysis of
the conditions on different layers through the sheet thickness was
complete to confirm that the differences in forming conditions on
these layers were negligible, for the purpose of this paper, only the
strains and stresses on the Outer Surface will be reported for the
Marciniak tests to compare to the same calculations on all three
layers in the two Nakazima tests.

Fig. 7(a) compares the results of the stress calculations from Eq.
(18) on all three surfaces for the Nakazima-4 test to the results of
the Outer Surface for the Marciniak test. The data for the three
layers in the Nakazima-4 test are distinguished by the symbols
associated with labels, N4-O, N4-M, and N4-I. It is noted that the
lower bound of these stress conditions on all three layers is cal-
culated to be about 30 MPa higher than the stress limits for the
Marciniak test, and this lower bound is observed on the Inner
Surface for all specimen widths. Fig. 7(b) shows the same results
for the Nakazima-2 test, with the critical stress conditions dis-
tinguished by the symbols associated with labels, N2-O, N2-M, and
N2-I. In this case, the critical stress conditions are even higher
above the Marciniak critical stresses, by nearly 50 MPa for tests
closer to equal-biaxial tension, and this lower bound is observed
on the Middle Surface of nearly all specimen widths.

Before the cause of these different stress limits is explained, it
is helpful to see what the differences mean for strain limits under
perfectly linear strain paths. For this purpose, we can calculate the
strain limit by assuming a linear strain path to reach the critical
stress conditions defined by Eq. (18). The mathematics of this
calculation are actually even less complicated than the derivation
of Eq. (18), because in calculating the strain limits for linear strain
paths, the dependence on the hardening law is removed. The
equations defining the strain limits ( )p p,X X

1 2, for a perfectly linear
strain path consistent with the stress limit defined by Eq. (18) is
given by the following,
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where the numerator on the right hand side is the solution of Eq.
(15) and the denominator is the function defined by Eq. (14)

evaluated at the last strain increment ( )Δ Δ^ ^p p,
N

X
N

X
1, 2,

leading to the

onset of localized necking.
The results of the strain calculations using Eq. (19) are com-

pared in Fig. 8 to the measured (non-corrected) net strains at the
onset of localized necking for the a) Marciniak, b) Nakazima-4, and
c) Nakazima-2 tests, taking into account NLSP effects, and in the
case of the Nakazima tests, also showing the results for the Middle
and Inner layers. As noted previously, negligible differences in
strain limits were found on the Middle and Inner layers of the
Marciniak tests, so only the condition on the Outer layer is shown
for the Marciniak test in Fig. 8(a). It may also be noted that there is
almost no change to the strain limits for the Marciniak test after
correction for NLSP. These results reflect the facts that the radius of
curvature of the crown on the surface of the sheet in the area of
the neck is more than three orders of magnitude larger than the
sheet thickness, and the strain paths in these tests are nearly lin-
ear, as seen in Fig. 4(a). On the other hand, the corrections to data
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Fig. 8. Comparisons of the limit strains before and after corrections for the effects
of curvature and NLSP in (a) the Marciniak Test, (b) the Nakazima-4 Test and (c) the
Nakazima-2 Test.
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from the two Nakazima tests are significant. As seen in Fig. 8(b),
the primary effects of the strain-path corrections to the Nakazima-
4 test is to move the minimum in the strain limit for these tests
from a small positive value to zero minor strain, and to lower the
limit strain on left side in the vertical direction by about 2% strain,
and finally to raise the limit strain on the right side of the plane
strain stress condition by about 3% strain in the vertical direction.
Fig. 8(c) shows the same results for the Nakazima-2 test, where
the changes appear to have almost doubled those seen in the
Nakazima-4 test. The minimum of the forming limit is moved from
an almost doubled positive value to zero minor strain; the lower
bound limit strain on the left hand side appears to have been
lowered about 4% strain; finally, the strain on the right hand side
of plane strain appears to be raised by slightly more than 6%.

Even more enlightening is comparing the lower bound of the
path-corrected strain limits on all surfaces of the Nakazima-2 and
Nakazima-4, which for these corrections corresponds to the Mid-
dle Surface, with the path-corrected limit strains obtained from
the Marciniak test. The least critical surface was selected to re-
present the conditions for the onset of localized necking in the
Nakazima tests based on the observations reported in Section 2.2.
It is seen in Fig. 9 that the shape of these path-corrected limit
strains for all three tests are similar in shape. However, the Na-
kazima-2 test limit is shifted to significantly higher strain limits
than the Marciniak test limits, and the Nakazima-4 test results are
midway between these two limits. Despite these different limit
strains at this point in the correction procedure, the similarity of
the shape suggests a simple explanation and solution to account
for and eliminate the remaining differences between these three
tests. To account for these differences, it is necessary to return to
the representation of the forming limits defined in terms of the
stresses.

The final step to determine the stress-based forming limit is to
account for the pressure effect using the procedure described in
Section 2.3. There is no correction to the stresses calculated by Eq.
(18) in the case of the Marciniak test because the area of localized
0
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Fig. 9. Strain limits calculated under perfectly linear strain paths to reach the stress
limits for the Marciniak Test, and the lower bound strain limits found on the Middle
Surfaces of the Nakazima-4 and Nakazima-2 Tests. The equations for these calcu-
lations are defined by Eq. (19), which have not yet taken into account the effect of
contact pressure. The higher strain limits in the Nakazima Tests are expected from
the suppression of necking caused by the through-thickness compressive stress
arising from contact with the punch.
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Fig. 10. Stresses (σ X
1 vs. σ X

2 ) calculated on Middle (M) and Inner (I) surfaces at the
onset of localized necking for the (a) Nakazima-4 (N4) and (b) Nakazima-2 (N2)
Tests, after compensation for the through-thickness stress on these surfaces using
the data in Table 4.

Table 4
Contact pressure data (P) in the Nakazima tests at the onset of localized necking,
based on the calculation procedure detailed in the Appendix.

Nakazima-4 Widths
[mm]

40 50 60 80 100 120 135 140 145

specimens P [MPa] 31.1 32.8 35.8 39.9 40.6 40.2 39.5 36.0 34.1
Nakazima-2
specimens

Widths
[mm]

20 40 50 75 100 120 140

P [MPa] 62.1 73.4 77.2 79.9 79.7 73.9 65.7
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necking is not in contact with the punch, so there is no through-
thickness pressure effect. There is also no correction to the stresses
calculated on the Outer Surface ( )=X O for either of the two Na-
kazima tests because the pressure is zero on this surface. However,
there is pressure on the Middle and Inner Surfaces, and as ex-
plained in Section 2.3, this compressive stress is expected from
necking theory to suppress localized necking in a prescribed way.
What this pressure-induced suppression of necking means is that
the calculated in-plane principal stresses on these layers will be
higher than the principal stress values for localized necking in-
stability under purely in-plane stretching conditions by the mag-
nitude of the pressure on that layer. Representing the contact
pressure P as a positive value reflecting a negative through
thickness stress on the Inner surface by an amount σ = − P3 , the
compensated critical stresses on all three layers for the Nakazima
test that apply for in-plane stretching conditions are respectively
given by,
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The equation for calculating P in the Nakazima test is derived in
the Appendix based on the constraints of force equilibrium be-
tween the in-plane stresses and the pressure applied on one side
of a doubly curved sheet. Note that Eqs. (20a)–(20c) applies for
both the Nakazima-4 and Nakazima-2 tests, with the difference
being that the pressure P in the Nakazima-2 test is approximately
twice as high as the pressure in the Nakazima-4 test. Eqs. (20a)–
(20c) also formally applies to the Marciniak test with the under-
standing that in this case, the pressure P is zero.

Using the formula described in the Appendix to calculate the
contact pressure, the compensated stress conditions correspond-
ing to in-plane loading conditions at the onset of localized necking
are shown for the Nakazima-4 and Nakazima-2 tests in Fig. 10
(a) and (b), respectively. Note that the Nakazima data for the Outer
Surface is unchanged from those test results computed and pre-
viously shown in Fig. 7. However, as shown in Fig. 10(a) and (b),
the stress limit on the Middle and Inner Surfaces are translated
from the stress conditions shown in Fig. 7 in the diagonal direction
down and to the left along a vector of length P / 2k and P2 k,
respectively, where Pk is the computed contact pressure at the
onset of localized necking for the test specimen k, as computed
and tabulated in Table 4. It is seen that the least critical surface in
both the Nakazima-4 and Nakazima-2 tests is no longer the Mid-
dle Surface, but is now the Inner Surface, where the pressure
correction is largest. Based on the discussion in Section 2.2, this is
the data that is to be interpreted to represent the critical stress
condition of onset of localized necking under plane-stress
conditions.

The significance of these compensations is shown in Fig. 11,
where for different specimen widths, there is no discernable dif-
ference in the stress limits obtained between the Marciniak, Na-
kazima-4, and Nakazima-2 tests. To have a better handle on the
significance of these differences, the stress limits shown in Fig. 11
are converted into corresponding strain limits under the
assumption of linear strain path. In this case, Eq. (19) cannot be
used because the corrected stress conditions defined by Eqs.
(20a)–(20c) include compensations for the pressure. Nevertheless,
by inverting Eq. (16) to solve for β ,
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using the ratio of the pressure-corrected principal stresses defined
by Eqs. (20a)–(20c) to define the ratio, α σ σ= /2 1, the following
simple equation for this material model applies to the transfor-
mation of the stress limit defined by principal stresses (σ1, σ2), to a
corresponding point on the strain limit for a linear strain path, (p1,
p2)
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Fig. 11. Consistent forming limits ( σ σ−1 3 vs. σ σ−2 3) from the Marciniak, Naka-
zima-4 and Nakazima-2 Tests after corrections for the effects of curvature, NLSP
and contact pressure.
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where the 2-parameter function ( )ε β̅ ̇ 1,p in the denominator is

defined by Eq. (14), and the effective plastic strain εp̅
X is obtained

by inverting the right hand side of the following relation,

( )σ σ σ σ ε̅ ( ) = ̅ ( ), 22by Y p1 2

where the left hand side is defined by Eq. (11), and the right hand
side is given by the hardening law selected from the options in
Eqs. (12a) and (12b), or in this example, Eq. (3). The results of this
transformation are shown in Fig. 12, where it is observed that the
compensated strain limits for in-plane linear strain paths obtained
from these three tests are now effectively identical.

4.3. Correction of forming limit for anisotropic metals

The compensation procedure for NLSP, curvature, and contact
pressure are extended in this section to generally anisotropic
metals, including materials with combined isotropic-kinematic
hardening, or more generally anisotropic hardening. The analysis
will also simultaneously consider both associated and non-asso-
ciated flow rules, and fully account for elastic strains, even possibly
including an anisotropic elasticity model, if desired or necessary.
This will all be done without actually going into any further details
of the material model. The way this is possible is simply by starting
with the fully calibrated “user material model,” or UMAT, to pro-
cess experimental data obtained from DIC measurements under
plane-stress conditions for the same metal for which the FLC data
is to be processed. The UMAT is used in this application as a
standalone code to process the FLC data. Presumably, the material
model implemented in the UMAT is the one that best describes the
behavior of the metal in question. However, it is recognized that in
practice, engineers may need to employ less than the best material
model in their FEM simulations of a given metal forming appli-
cation, perhaps because sufficient data is unavailable to calibrate
more accurate models. In this case it is important to note that the
procedure described in this work can be applied using any mate-
rial model that the engineer choses or is restricted to use. While
one should expect this choice might introduce errors in the cor-
rections to the FLC, these errors are no more serious than the er-
rors introduced in FEM simulations using these inferior material
models.

The material parameters of this UMAT are assumed to be cali-
brated from material tests, such as hydraulic bulge tests, and
uniaxial tension tests along the rolling, transverse, and diagonal
directions with respect to the sheet coil, but may also include
other tests, such as tension-compression tests, if a kinematic
hardening model is required to characterize the material for its
intended application. The practical, as well as heuristic, value of
starting with this calibrated UMAT, is that it already contains all
the mechanical relations required to calculate the change in stress
( σΔ 11, σ σΔ Δ,22 12) and the decomposition of the total strain incre-
ments ( εΔ 11, ε εΔ Δ,22 12) into increments of the elastic
(Δe11,Δ Δe e,22 12) and plastic (Δp11,Δ Δp p,22 12) tensor components.
This calculation can be represented symbolically by the following
simple functional relationship,

( ) ( )σ ε ε σ εΔ Δ Δ Δ ̅ = ̅ Δ ( )p e P, , , UMAT , , , 23ij ij ij p i p ij ij

where Pi abstractly represents all the parameters of the material
model, εp̅ is the current effective plastic strain, and σij is the current
stress tensor. The Δ symbol in front of the other tensor quantities
in the output of the UMAT representing the stress and total, elastic,
and plastic strain, and the scalar effective plastic strain, denotes
the finite increment of these quantities associated with the total
strain increment specified in the input of the UMAT. The UMAT is
also coded to define the increments to each back-stress tensor
component and other state variables, as may be required by the
material model, although these are not explicitly referenced in the
input and outputs of the UMAT function given above. The point of
this representation is, for the purpose of FEA simulation, which is
the purpose for which one requires the FLC, all the constitutive
equations needed to correct the FLC, for both Marciniak and Na-
kazima tests, are already defined and available in the same UMAT
function that will be used in simulation of deformation processes
by FEM analysis.

In the traditional FEM application, the stress and strain tensor
increments outputted from the UMAT are integrated to update the
stress and strain decompositions in preparation for the next in-
crement in the FEM simulation. But with a few required additional
clarifications, this same UMAT may also be employed to process
any set of strain increments, including those obtained directly
from DIC measurement, and in particular, those representing the
strain history up to the onset of localized necking in FLD tests, such
as the strain increments defined by Eq. (8). It should be empha-
sized that some data filtering may be necessary, but only that
necessary to minimize the effect of measurement uncertainty in
the strain measurement from one frame to the next. The effect of
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the measurement uncertainty was eliminated in the previous
analysis by ensuring that the strain increments exceeded a
threshold defined in Eqs. (9a) and (9b). However, the main reason
that tolerance was introduced was to reduce the impact of ignor-
ing the elastic component of the strain. In this more general case,
the elastic strain increments will be explicitly calculated and taken
into account. Nevertheless, the filtering is recommended to ensure
that artificial plastic strain is not introduced by strain measure-
ment uncertainty. This unmistakable sign that measurement un-
certainty is affecting the analysis may be determined through in-
spection of the calculated stress conditions that are determined to
be necessary to drive the experimentally measured strain paths. If
the calculated stress history in the FLD testing involves repetitive
tension-compression cycles, then these can be interpreted to be
the result of strain measurement scatter from frame to frame,
which can be eliminated using the procedure defined by Eq. (9a)
and (9b).

The first clarification in the application of the UMAT for dealing
with general anisotropic materials, concerns the fact that like
other material behaviors, such as the in-plane variation of the
uniaxial tension yield stress or Lankford coefficients ( r-values),
strain forming limits are generally not isotropic in the plane of the
sheet. For example, Graf and Hosford [3] reported significantly
different FLCs along the rolling and transverse directions of alu-
minum alloys. Although it is rarely studied, one would also expect
most sheet metals to exhibit differences in necking limits along
the direction diagonal to the sheet coil, with as strong anisotropy
as is often exhibited in yield stress and Lankford coefficients
(r-values) along the diagonal direction compared to the rolling and
transverse directions. This issue was avoided in the previous sec-
tion by using a material model with in-plane isotropy and im-
plicitly using test data for one material orientation as though there
was no anisotropy in necking limits.

To handle anisotropic forming limits, Stoughton and Yoon [24]
proposed the concept of a forming limit surface constructed from
FLC's measured and defined along the rolling (R), diagonal (D), and
transverse (T) directions of the sheet. This and other solutions to
handle anisotropy in forming limits are most easily implemented
from the transformation of DIC measurements of FLD tests with
specimens orientated at different angles to the rolling direction
using the UMAT approach to data processing. However, in order to
account for this anisotropy, a full set of tests must be done along
each direction (R,D,T) relative to the sheet coil and analyzed se-
parately. Once this data is collected for one of these directions, and
represented in terms of principal strain increments as defined by
Eq. (8), these principal strain increments for ( )=j N1, must be
transformed to tensor components, as follows

( ) ( )ε ε θ ε θΔ = Δ + Δ ( )cos sin 24aj
X

j
X

j
X

11, 1,
2

2,
2

( ) ( )ε ε θ ε θΔ = Δ + Δ ( )sin cos 24bj
X

j
X

j
X

22, 1,
2

2,
2

( ) ( ) ( )ε ε ε θ θΔ = Δ − Δ ( )2 sin cos 24cj
X

j
X

j
X

12, 1, 2,

where ( )θ= 0,45,90 for tests along the (R,D,T) directions, respec-
tively. Note that the factor of 2 in Eq. (24c) is introduced to convert
that tensor component into a shear strain, which is used in UMAT
codes to ensure symmetry of the stiffness matrix. It is interesting
to note that the DIC measurement systems actually report strain
tensor components so that one could directly calculate these strain
tensor components on the Outer Surface of the sheet if the co-
ordinate system was intentionally aligned with the 1-axis parallel
to the rolling direction of the sheet. However, using a common
alignment of the coordinate system with the material axis com-
plicates the computational effort described in Section 2.1 in the
procedure to compute the strain paths in the Middle and Inner
Surfaces, which require the principal strain and principal curva-
ture values on the Outer Surface. Consequently, it is more con-
venient to align the DIC coordinate system with the principal axis
of the specimen geometry and to use Eqs. (24a)–(24c) to transform
these principal strains to the material coordinate system aligned
with the rolling direction of the sheet. However, if the DIC strain
tensor components were directly used, one would need to take
care to double the εΔ j

X
12, values in the calls to the UMAT to account

for its use of shear strains.
The second clarification concerns the fact that the UMAT must

employ an advanced numerical integration scheme to handle the
nonlinearities of the constitutive model and how this deals with
finite increments to the total strain tensor input and finite incre-
ments of the output variables. This is necessary also in FEM ana-
lysis, but approximation schemes are normally introduced in
commercial FEM software to efficiently handle analyses with
hundreds of thousands of time steps and up to or more than a
million elements with as many as 7 integration points. In contrast
to the shortcuts required to use a UMAT in FEM analysis, which
may require on the order of 1012 calls to the UMAT, the number of
calls required for complete FLD analysis of up to 7 specimen
widths, 500 DIC frames, and 3 orientations for characterization of
the necking limit of an anisotropic method is only on the order of
104. As a result, it is possible to maintain strict error controls on
the UMAT, utilizing high order Runge-Kutta integration schemes
that may not be considered practical for FEM simulation, and to
ensure precise handling of the elastic-plastic transition, particu-
larly to avoid discontinuities in the constitutive laws that under-
mine the error control features of the higher order schemes.

The simple procedure for calculating the stress tensor compo-
nents σij n

X
, and effective plastic strain εp̅ n

X
, , for any DIC frame

( )=n N1, up to the onset of necking at frame N , follows these
iterative integrations,

∑σ σ= Δ ( )=

=
, 25aij n

X
k

k n
ij k
X

, 1 ,

and

∑ε ε̅ = Δ ̅ ( )=

=
, 25bp n

X
k

k n
p k
X

, 1 ,

where the increments of the stress tensor components σΔ ij k
X
, and

effective plastic strain εΔ ̅ p k
X
, for each frame are calculated from the

UMAT as follows:

( ) ( )σ ε ε σ εΔ Δ ̅ Δ = ̅ Δ ( )− −p P, , UMAT , , , , 25cij k
X

p k
X

ij k
X

i p k
X

ij k
X

ij k
X

, , , , 1 , 1 ,

and the total strain increments for each frame εΔ ij k
X
, are defined

from the experimental data as described by Eq. (8) after trans-
forming the strains to a material coordinate system aligned with
the rolling direction of the sheet coil. The stress tensor compo-
nents σij

X
,0 and effective plastic strain εp̅

X
,0 used as input to Eq. (25c)

for the first DIC frame are initialized to zero. Note also that al-
though Eq. (25c) also calls out the increment of the plastic strain
tensor Δpij k

X
, , the output is not used in the integrations (Eqs. (25a)

and (25b)). However, the ability of the UMAT to define the relative
magnitude of the plastic strain increment at the onset of necking
will be used later in the transformation of the stress limits to strain
limits.

At this point in the calculation, the stress tensor components
have been calculated for the last frame defined to be the condition
at the onset of necking, σij N

X
, . To account for the pressure effect in

the Nakazima-4 and Nakazima-2 tests, the critical stresses ap-
plicable for plane-stress conditions are
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where the pressure P is zero for the Marciniak test and also zero
for the Nakazima tests in the rare cases when the neck does not
occur in the area of contact with the punch. For the more general
case in the Nakazima tests, the pressure is calculated from this
representation of Eq. (A5) that is derived in the Appendix:

( )κ κ= + Σ ( )P t t1 0. 5 27a
I I

where Σ is the average of the in-plane first invariant of the stress
tensor:
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The next step is to transform the pressure corrected stress
tensor on each layer and convert these back to limits on the plastic
strain tensor in the material coordinate system. The equations for
this transformation are embedded in the code of the UMAT, but
are not directly accessible through the UMAT function to enable
such a simple description of the calculation procedure as given by
Eqs. (25a)–(25c). A critical component of this transformation is to
determine the effective plastic strain εp̅ N

X
, associated with the

current pressure-corrected stress tensor σij
X using the following

generalization of Eq. (22b) for an anisotropic yield function,

( ) ( )σ σ σ σ σ ε̅ = ̅ ( ), , 28y
X X X

Y p
X

11 22 12

Note that if the pressure P is zero, so that σ σ=ij
X

ij N
X
, in Eqs.

(26a)–(26c), then the solution for εp̅
X that solved Eq. (28) is already

determined by the integration of Eq. (25b). In other words,
ε ε̅ = ̅p

X
p N
X
, . However, in general, the effective plastic strain for the

reduced stresses on the inner layers of the Nakazima tests that
satisfies Eq. (28) is less than the effective plastic strain calculated
by integrating the increments from the UMAT. In other words, in
general, ε ε̅ ≤ ̅p

X
p N
X
, .

Eq. (28) can be solved algebraically to determine εp̅
X for simple

hardening laws, such as those given by Eqs. (12a) and (12b), but
requires iterative methods if more complex hardening laws are
used, such as the Modified Hockett-Sherby law defined by Eq. (3)
and used in this study. Once the pressure-corrected plastic strain is
determined at the onset of localized necking under plane stress
conditions, it can be decided which of the three layers ( )∈X O M I, ,
has the lowest effective plastic strain, to account for the effects of
stress and strain gradients through the sheet thickness as dis-
cussed in Section 2.2. Let this layer of least plastic work, which
defines the critical layer for determination of the onset of localized
necking be defined by the symbol ( )∈C O M I, , , such that the fol-
lowing is satisfied,
( )ε ε ε ε̅ = ̅ ̅ ̅ ( )min , , . 29p
C

p
O

p
M

p
I

Note that as discussed in the previous section, for all the Na-
kazima-4 and Nakazima-2 tests on the MP980 steel, the critical
layer was found to be the Inner Surface, =C I . Nevertheless, Eq.
(29) is recommended to be used for identifying the least critical
layer to avoid making any assumption based on experience with
limited tests and materials.

Once the critical layer is identified, the plastic strain tensor
components for a linear strain path to the stress state defined by
the stress tensors components ( )σ σ σ, ,C C C

11 22 12 at the onset of loca-
lized necking is defined from the plastic flow rule, which can be
conveniently defined here
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where Δpij N
C
, is the last increment of the plastic strain tensor cal-

culated for the last frame on the critical layer using Eq. (25c). Fi-
nally, to convert these plastic strain components into strain limits
defined in terms of principal values (presumably these limits are
measured along specific directions relative to the sheet coil to
account for material anisotropy in the necking limits), the fol-
lowing formula are used, taking into consideration that the pC

12
component represents the plastic shear strain, and is double the
value of the actual tensor component,
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Finally, by following this procedure of calculating the stress
limits along the rolling, diagonal, and transverse directions, a
forming limit surface can be created following the procedure de-
scribed by Stoughton and Yoon [24].
5. Discussion

Since the calculated stress FLC in Fig. 11 is dependent on the
constitutive model, it cannot be directly applied to the FE analysis
when employing a different constitutive model. Material models
are often changed in practice as engineers sometimes select sim-
ple and less computationally intensive models to obtain results
quickly, or select more advanced material models for more accu-
racy. Therefore, it is of necessity to convert the stress FLC in Fig. 11
back to the conventional strain FLC, defined in principal strain
space (as presented in Fig. 12) under the assumptions of linear
strain path, in-plane stretching, and plane-stress conditions. To be
self-consistent, this conversion back into strain space must use the
same constitutive relationships that are used when calculating
stress FLC and making the corrections described in this paper. As a
result, the FLD in Fig. 12 presents the strain-based forming limits
after correcting the issues of curvature, NLSP and contact pressure.

Although results will be slightly different if other constitutive
laws are used, as first demonstrated in Stoughton [23], the first
order effects of limitations of the constitutive model to account for
the actual stress-strain relations are canceled in this conversion
back to strain space. To demonstrate this first order cancellation in
compensations of the strain limits, the procedure described in
Section 4.2 was repeated using the fully anisotropic Hill (1948)
model [35] and the Barlat (1989) model [36] with exponent m¼6,
based on experimental r-values. The Barlat 89 model generally has
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Fig. 13. Comparison of forming limits in conventional principal strain space after
corrections for the effects of curvature, NLSP, and contact pressure calculated with
three constitutive models from (a) the Nakazima-4 Test and (b) the Nakazima-2
Test.
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a lower yield in the plane strain condition and higher yield in the
equal biaxial condition, and so is expected to result in a different
contribution from the calculated pressures. However, since the
pressure corrections are proportional to the calculated stresses,
when these stress limits are converted back to strain limits using
this same model, there is almost no observed difference in the
calculated plastic strain limits, as shown in Fig. 13.

It is also important to emphasize that the FLD shown in Fig. 12
represents only the forming limits for perfectly linear strain paths
under in-plane stretching conditions and in the absence of normal
through-thickness pressure. When using the FLD in Fig. 12 in a
forming simulation that involves even slightly nonlinear strain
paths, out-of-plane deformation that leads to sheet curvature, or
through-thickness pressure, it is essential to convert this strain
limit to a compatible limit criteria that is appropriate to handle
these more general forming conditions (e.g. the stress FLD or its
equivalent) based on the identical constitutive model that will be
employed in the forming simulation. The proof of the necessity of
accounting for these three effects in how we use a strain FLC in
practice to assess formability where strain paths are even more
nonlinear, involve more strongly curved sheet, and higher contact
pressures is proven in documenting the effect of these processing
conditions between the Marciniak and Nakazima tests, and the
ability to correct for these effects so successfully, as shown in
Fig. 12.
It is also suggested that the Marciniak test is a better method to
obtain forming limit strains, since there are essentially insignif-
icant corrections for the curvature and NLSP effects, and no cor-
rection for the contact pressure effect.

While many engineers and scientists are aware of the im-
portance of NLSP on assessment of formability, the fact remains
that the strain based FLD is still widely used. It is in fact im-
plemented and treated as a static limit in analysis of complex
nonlinear deformation processes in all of the commercial codes,
leading to industry-wide error in assessment of formability issues.
In the past, one of the justifications for the use of the strain based
FLD has been the argument that strain paths in the first draw die
are almost linear. And since most of the formability problems
occur in the first draw die, it seemed reasonable to ignore these
NLSP effects. However, typically on the order of 20% of the metal
deformed in the first draw die of automotive stampings are not
sufficiently close to being effectively classified as driven along a
linear strain path. For example, draw-in from the binder in corner
areas, and areas that come into contact with a tool surface late in
the forming process to form product features always introduce
significant strain path changes, which can either be beneficial or
detrimental to the formability in those areas. These things con-
tinue to be ignored by large segments in the metal forming in-
dustry, resulting in increased costs and lead times when problems
occur in tryout. Despite knowing the solution to handle NLSP since
the work of Müschenborn and Sonne [16], many engineers con-
tinue with the conventional use of the strain base FLD, presumably
on the basis that the strain paths in the stamping process that they
are responsible for are nearly linear. But the results of this work
sheds a new light on this claim. The reason is that most of these
engineers would state that the strain paths shown in Fig. 4 are all
sufficiently close to linear to be classified as such. And in fact, these
strain paths are much more linear that what is typically observed
in stamping simulations of actual products. Yet the three tests
involved in creating these strain paths result in clearly different
necking limits, as seen in Fig. 5. If these small amounts of non-
linearity in these three types of FLD tests lead to such different
FLC's, then how can it be justified to ever use the strain based FLD
in the way it is widely used today.

In this work, we have shown how to compensate the mea-
surement of the FLC for not only NLSP effects, but also curvature
effects, and through-thickness pressure. The implication is that
this is only the first part of the story. In order to use this com-
pensated FLC effectively, we must use this knowledge in reverse
when we apply it to assess the formability in stamping simula-
tions. This means that the FLC must be represented in terms of
metrics that are independent of strain path, which means using
stress limits, or its equivalent. In addition, curvature effects must
be taken into account by classifying onset of necking in shell ele-
ments based on the condition of the least critical integration point
through the thickness of the element. The least critical integration
point is defined to be the one with the lowest value of the yield
function. Finally, for greatest accuracy, it is recommended to use
super-shell elements in which the through-thickness stress is
calculated from the curvature in equilibrium with the applied in-
plane stresses. While such considerations are often widely ignored
in industry, the fact that all three of these factors play such a
strong role in the interpretation of measurements from the Mar-
ciniak and Nakazima tests, emphasizes the importance of these
factors in the analysis of actual product manufacturing simula-
tions, where the degree of NLSP, curvatures, and pressure effects
are routinely higher by an order of magnitude.

It should also be noted that the final expression of the forming
limit given by Eq. (22a) for the example of an in-plane isotropic
model and by Eqs. (31a) and (31b) for a more general model, is
defined in terms of the plastic strains, rather than the total strain.
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This is in accord with the original concept of the FLD for use in die
tryout and stamping processes, where strains are measured on
parts after removal from the press and reflect the presence of
plastic strains after unloading. The same is true for measurement
of the FLC's using Circle Grid Analysis, where except in rare cases
of processing continuous evolution of strains through images more
akin to DIC measurement capabilities, but still using CGA software,
experimental strain FLCs also reflect the limits of plastic strain. In
contrast to this application, use of the FLD in analysis of FEA re-
sults would seem to favor strain limits defined in terms of total
strain. In this case, it might seem reasonable to use the total strain
as the metric for both the characterization of the FLC and in se-
lecting the FEM results to judge formability. However, as explained
in the previous paragraph, in order to account for NLSP in parti-
cular, it is necessary to transform the strain limits that apply for
perfectly linear strain path into a metric such as stress limits or its
equivalent, that account for the dynamic nature of strain limits.
With this objective in mind, it does not matter what metric is
chosen to represent the strain limits for linear loading, as long as
this is taken into account in the conversion to stress limits by the
FEM formability analyzer. Consequently, whether the intended
application of the strain FLC is for analysis of strains measured on a
stamped part, or for analysis of results of FEM simulation, it is
sufficient to represent these limits for linear strain paths in terms
of the plastic strain.
6. Conclusions and recommendations

Limit major strains associated with the onset of localized
necking obtained from the Nakazima tests are higher than those
from the Marciniak test, especially on the left hand side of FLD. A
smaller punch in the Nakazima test results in even higher limit
major strains. Inconsistent limit strains from different forming
limit test methods are attributed to the effects of sheet curvature,
nonlinear strain path (NLSP), and contact pressure (through-
thickness stress) in the area of the neck in the Nakazima tests.

A procedure is developed to correct for the effects of curvature,
NLSP, and contact pressure in the three sets of tooling used in this
study. After these corrections, all three tests are shown to result in
a common limit criterion defined in terms of a stress FLC. Four
important conclusions can be drawn from the result that a com-
mon limit criterion is obtained for these three tests:

) The compensation for curvature, NLSP, and contact pressure is
correctly handled,

) No other processing condition that is different between the
Marciniak and Nakazima tests plays a role in determining when
onset of localized necking will occur, other than through its
effect on the strain path of the test,

) With removal of the strain path effect, there seems to be no
reason to require that localized necking occurs at the center of
the tool geometry, as long as it occurs within the field of view of
the DIC camera system, and

) In application of the stress limit to general forming conditions,
it must be applied in a way such that onset of localized necking
is defined to occur ONLY when the stress conditions on all layers
through the sheet thickness simultaneously rise above the
stress FLC.

The latter conclusion must be implemented in FEM analysis, for
example, by requiring the stress conditions at all integration
points to be simultaneously above the stress FLC. Because necking
requires the simultaneous participation of all layers through the
thickness to enable this instability, the implementation of this
requirement in formability assessment will explain why localized
necking is rarely observed in bending, or in incremental forming
processes, where one side tends to cycle into compression or low
tension, while the other side simultaneously cycles into tension in
the area under deformation.

Forming simulations are most often done using shell elements,
where through-thickness stresses are assumed to be zero. The
necking limit is uniquely described for use in FEM analysis with
shell elements in terms of the in-plane principal stresses. To ex-
tend this necking criteria to more general stress conditions, we
first consider an extension that introduces only a non-zero
through-thickness stress caused by the sheet-to-tool contact
pressure, while the through-thickness shear stress components
are assumed to remain negligible. This case is considered to be a
good approximation in most applications, since prior to the onset
of necking, the through-thickness shear stresses arise most com-
monly from the friction between the sheet and tool. While these
through-thickness shear stresses are in fact non-zero when fric-
tion is considered, it is true that they are proportional to the
pressure by a factor much less than unity in most sheet forming
applications. Therefore, it makes sense to consider non-zero nor-
mal stress accompanied by zero through-thickness shear stresses
before considering the general stress condition, as a first approx-
imation for considering more general triaxial stress conditions.
This simplified case is also expected to be the condition of the
stress state for the two Nakazima tests, which in the case of the
25 mm radius and 1 mm sheet thickness, involves pressures that
are on the order of 4% of the in-plane stress components. Since
frictional effects are intentionally minimized in these tests and
expected to be an order of magnitude smaller than the contact
pressure in typical manufacturing processes, where the friction
coefficient is on the order of 0.1, the maximum through-thickness
shear stresses would be expected to be on the order of 0.4% of the
in-plane stress components.

In the cases where the through-thickness shear stresses are
negligible, the principal stresses are aligned with the local normal
of the sheet. Two of the principal stresses are in the plane of the
sheet, as is the case for plane-stress conditions and shell element
analysis. Then, the necking limit is uniquely defined in terms of
the “deviatoric” stress diagram using the in-plane components of
the principal stress. This extension is most conveniently im-
plemented by subtracting the normal stress from the in-plane
principal stresses and using the same stress FLC that applies for
plane-stress deformations. Alternatively, a unique stress limit can
be obtained by subtracting the mean stress from the two in-plane
principal stresses and using the actual in-plane deviatoric stresses
as the limits. However, this alternative would change the shape of
the stress FLC that is most convenient to use under plane-stress
conditions, but leads to equivalent assessments of formability
compared to simple subtraction of the normal stress component
from the in-plane components.

Although it is out of scope of this application to the analysis of
the Nakazima tests, because the through-thickness pressures are
relatively small, it is important to consider how to address necking
phenomenon under more general triaxial stress conditions, when
the through-thickness shear stresses are non-negligible. Un-
fortunately, there is no experimental data to verify any solution to
this more general stress condition. However, for consistency with
plane-stress and non-zero normal stress cases, it is reasonable to
suppose that necking instabilities would align with the local or-
ientations of the principal stress axes in the general case. In this
case, one would expect that if a localized neck would begin to
form, it would form in a direction parallel to the three principal
stress axes that is most closely aligned with the thickness direc-
tion. This is expected because the neck in sheet forming is geo-
metrically constrained to couple the top and bottom surface of the
sheet, i.e., the only accessible free edges of the domain of the
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metal. In that case, the grooves on the two sides of the sheet
would be expected to be displaced from each other in a direction
parallel to the plane of the sheet, since in general, the alignment of
the principal stresses is not coupled to the surface normal. In any
case, this more general treatment is not important in the appli-
cation of the triaxial stress effects on necking in Nakazima tests
because the through-thickness shear stresses are expected to be
much smaller than 0.4% of the in-plane stress components.

Although it is recommended to use a material model that best
characterizes the deformation of the metal in the compensation
for curvature, NLSP, and pressure, it is shown in Fig. 13 that the
error introduced in calculating the stress limits using a given
material model are canceled to first order when these compen-
sated stress limits are translated back to strain limits for in-plane
deformations under conditions of perfectly linear strain paths
using the same material model. These “linear” strain limits can
then be transformed to stress limits and used for handling “non-
linear” deformations using the best material model appropriate for
use in the metal forming simulation, if it is later decided to use for
advanced constitutive models. However, it is recommended to
always process experimental FLD strain paths data using the most
accurate model for the metal that is available, and to redo this
analysis when and if more accurate models become available.

Under no conditions is it appropriate to calculate stress FLCs
using one material model, and then use this stress FLC to assess
the formability in a simulation that uses a different material
model.

Using the methods described here, the compensated forming
limits obtained from the Marciniak and Nakazima tests are shown
to be equivalent, so either test may be used in practice. However,
since there is no contact pressure and insignificant contributions
from curvature and NLSP effects, the Marciniak test is re-
commended as the preferred forming limit test method to avoid
the calculation uncertainties when applying different constitutive
models in the calculation of the limit stresses or estimating and
correcting for the contact pressure in the Nakazima test. However,
evenwhen the Marciniak test can be used without any corrections,
it is nonetheless essential to use it to define the more general
forming limit criteria that apply under more general conditions
than those of the test, which requires the use of a stress FLC or its
equivalent.

Finally, it is necessary to remark on the perception that the
Nakazima test is superior because it is better able to populate the
right-hand-side of the FLD more completely than the Marciniak
test. This perception arises by ignoring the fact that the Nakazima
test shifts the necking limit as it occurs under plane-strain stress
conditions to a net strain with a positive minor strain, as is seen in
Fig. 5. So these tests appear to be telling us something about the
forming limits on the right-hand-side of the FLD, but as shown in
the corrected results in Fig. 12, these test conditions actually do
not describe the forming limit between plane-strain and equal
biaxial stress conditions. In fact all of the tests from the Nakazima
test are shifted to positive minor strain than is higher than what is
compatible with the stress conditions at the onset of necking.
Nevertheless, there is a problem with the traditional Marciniak for
wider test specimens that are required to probe the metal limits
under these biaxial stress conditions.

The problem can be best seen in Fig. 12, that shows the cor-
rected strain forming limits for linear strain paths. As can be in-
ferred from the data in Fig. 4(b), and the information in
Tables 2 and 3, the traditional Nakazima test (Nakazima-4) re-
sulted in onset of necking at minor true strains of approximately
(þ1%, þ4%, þ8%, and þ13%), as observed in Fig. 12, for specimen
widths of (120 mm, 135 mm, 140 mm, and 145 mm), respectively.
However, as explained in Section 3 and documented in Table 3,
these same sample widths resulted in premature fracture at the
punch profile radius using the traditional Marciniak test. This
premature fracture was caused by bending resistance of MP 980
coupled with frictional effects at the punch profile radius that
inhibited further stretching of the specimen about the punch face,
and caused localization to occur near the tangent of the punch
profile radius. Therefore, a modified Marciniak punch was in-
troduced with the same punch diameter but a much larger profile
radius. The punch profile radius was increased to 25 mm, sig-
nificantly larger than the traditional tool with a profile radius of
10 mm.

As described in Section 3, and documented in Table 3, the
135 mm wide specimen successfully necked using the modified
Marciniak punch at the desired location in the center of the spe-
cimen. As observed in Fig. 12, this neck is found at a minor strain of
slightly more than þ5% strain. This is to be compared to the þ4%
strain realized at the onset of necking using the traditional Na-
kazima test. Therefore, although the perception may be that the
Nakazima test is more capable of characterizing the forming limit
for conditions of positive minor strain, here is an example, where
by a simple modification of the Marciniak test, we are able to get a
comparable if not higher level of minor strain for the same spe-
cimen width.

Unfortunately, this modified Marciniak punch did not perform
well for wider samples, for which the major strain limit is ex-
pected to be higher. In the case of 140 mm and 145 mm wide
specimens using the modified Marciniak punch, the hole of the
carrier blank had expanded to reach the tangent of the large punch
profile radius before the specimen strains reached the necking
limit. The edge of this carrier blank under pressure from the punch
load carried on the punch profile radius, cause the specimen to
prematurely shear. One solution is to reduce the size of the hole in
the carrier blank. However, these decreases the effectiveness of
the carrier blank, because smaller holes require for energy to ex-
pand. A more general solution to this problem is to increase the
punch diameter to provide more area for the hole of the carrier
blank to expand before reaching the punch profile radius. This
solution would require more and larger tooling, perhaps a larger
press, and more material for testing, but that would be have to be
weighed against the benefits of avoiding the complexity of cor-
recting for contact pressure in the Nakazima test.
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Appendix A

Consider an infinitesimal rectangular shell element of thickness
t , with principal curvatures, kI

1 and kI
2 on the concave surface (the

Inner Surface), and in-plane average stresses σ1 and σ2, acting
normal to the respective edges of the element along the directions
of the two principal curvatures. The force in the direction normal
to edge of the element on which the stress σ1 is applied is,

⎡
⎣⎢

⎤
⎦⎥( ) ( ) θ σ= + − δ

( )
F R t R

A1a
I I

1 2
2

2
2

2 1
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where =R k1/I I
2 2 is the radius of curvature of the concave surface of

the element in the perpendicular direction, and θδ 2 is the in-
finitesimal half angle of the arc of the edge of the curved element
in this direction. The force in the direction normal to the other
edge is

⎡
⎣⎢

⎤
⎦⎥( ) ( ) θ σ= + − δ

( )
F R t R

A1b
I I

2 1
2

1
2

1 2

where =R k1/I I
1 1. The component of the force in the direction normal

to this element attributed to the above two internal forces, acting
on opposing edges of the element, is given by the following sum,

( ) ( )( ) ( ) ( )σ θ θ σ θ θ= + δ δ + + δ δ A2F tR t R tR t R4 1 0. 5 / sin 4 1 0. 5 / sinint
I I I I

1 1 2 1 2 2 2 1 2 1

The internal force is assumed to be in equilibrium with the
external force arising from an applied pressure P to the concave
surface of the infinitesimal element

( ) ( )θ θ= δ δ ( )F R R P4 sin sin A3ext
I I

1 1 2 2

Equating Eqs. (A2) and (A3), and taking the infinitesimal limits,
δθ →01 and δθ →02 , results in the following relationship between the
principal stresses, curvatures, and pressure:

⎡⎣ ⎤⎦( ) ( )σ σ= + + + ( )P t tk k tk k1 0. 5 1 0. 5 A4
I I I I
2 1 1 1 2 2

If κ= =k kI I I
1 2 , the pressure formula simplifies to

( )κ κ σ σ= + ( + ) ( )P t t1 0. 5 A5
I I

1 2

As is the case for either the Nakazima-4 test or the Nakazima-2
test in this work, all Nakazima specimens fractured within the
contact area between the specimen and the punch; therefore, κ I is

1
50.8

mm�1 for the Nakazima-4 test and is 1
25.4

mm�1 for the Na-
kazima-2 test by ignoring the effect of the lubricant (e.g. the
0.1 mm thick Teflon film) between the specimen and punch.
However, if a thick lubricant (e.g. �3 mm or thicker polyurethane
sheet) is applied in the Nakazima test, kI

1 may not be equal to kI
2.

Nevertheless, kI
1 and kI

2 can be estimated from the principal cur-
vatures (kO

1 and kO
2 ) on the convex surface (the Outer Surface) by

Eq. (A6).

=
−

=
( )

k
k

tk
i

1
, 1, 2

A6
i
I i

O

i
O

References

[1] Abspoel M, Atzema EH, Droog JMM, Khandeparkar T, Scholting ME, Schouten
FJ, Vegter H. Inherent influence of strain path in Nakazima FLC testing. In:
Guttierez D, (Ed.), Proceedings of the 8th IDDRG Conference, Mumbai. 2011.
p. 1–9.

[2] Arrieux R, Bedrin C, Boivin M. Determination of an intrinsic forming limit
stress diagram for isotropic metal sheets. In: Proceedings of the 12th biennial
congress IDDRG. 1982. 61–71.

[3] Graf AF, Hosford WF. Calculations of forming limit diagrams for changing
strain paths. Met Trans A 1993;24:2497–501.

[4] He J, Zeng D, Zhu X, Xia ZC, Li S. Effect of nonlinear strain paths on forming
limits under isotropic and anisotropic hardening. Int J Solids Struct
2014;51:402–15.

[5] Hill R. On discontinuous plastic states with special reference to localized
necking in thin sheets. J Mech Phys Solids 1952;1:19–30.
[6] Huang G, Sriram S, Yan B. Digital image correlation technique and its appli-
cation in forming limit curve determination. In: Proceedings of the IDDRG
2008 international conference. Olofstrom, Sweden; 2008, 153–162.

[7] Kleemola HJ, Pelkkikangas MT. Effect of predeformation and strain path on the
forming limits of steel, copper and brass. Sheet Met Ind 1977;63 559-591.

[8] Leppin C, Li J, Daniel D. Application of a method to correct the effect of non-
proportional strain paths on Nakazima test based forming limit curves. Nu-
misheet 2008;2008:217–21.

[9] Li J, Carsley JE, Stoughton TB, Hector Jr LG, Hu SJ. Forming limit analysis for
two-stage forming of 5182-O aluminum sheet with intermediate annealing.
Int J Plast 2013;45:21–43.

[10] Marciniak Z, Kuczynski K. Limit strains in the processes of stretch-forming
sheet metal. Int J Mech Sci 1967;9:609–20.

[11] Martínez-Donaire AJ, García-Lomas FJ, Vallellano C. New approaches to detect
the onset of localised necking in sheets under through-thickness strain gra-
dients. Mater Des 2014;57:135–45.

[12] Merklein M, Kuppert A, Geiger M. Time dependent determination of forming
limit diagrams. Ann Cirp 2010;59:295–8.

13 J. Min, T.B. Stoughton, J.E. Carsley, J. Lin. A Method of Detecting the Onset of
Localized Necking Based on Surface Geometry Measurements, Submitted for
publication.

[14] Min J, Stoughton TB, Carsley JE, Lin J. An Improved Curvature Method of De-
tecting the Onset of Localized Necking in Marciniak Tests and its Extension to
Nakazima Tests, Submitted for publication.

[15] Min J, Stoughton TB, Carsley JE, Carlson BE, Lin JP, Gao XL. Accurate Char-
acterization of biaxial stress-strain response of sheet metal from Bulge testing.
Int J Plast 2016. http://dx.doi.org/10.1016/j.ijplas.2016.02.005.

[16] W. Müschenborn, H.M. Sonne. Einfluß des Formänderungsweges auf die
Grenzformänderungen des Feinbleches, Arch Eisenhüttenwes 46(1975) 597–
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