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a b s t r a c t

This paper deals with vibro-acoustic optimization of laminated composite plates. The vibration of the
laminated plate is excited by time-harmonic external mechanical loading with prescribed frequency
and amplitude, and the design objective is to minimize the total sound power radiated from the surface
of the laminated plate to the surrounding acoustic medium. Instead of solving the Helmholtz equation for
evaluation of the sound power, advantage is taken of the fact that the surface of the laminated plate is
flat, which implies that Rayleigh’s integral approximation can be used to evaluate the sound power radi-
ated from the surface of the plate. The novel Discrete Material Optimization (DMO) formulation has been
applied to achieve the design optimization of fiber angles, stacking sequence and selection of material for
laminated composite plates. Several numerical examples are presented in order to illustrate this
approach.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials like fiber reinforced polymers (FRPs) are
being used increasingly in aerospace vehicles, maritime carriers,
wind turbine blades, and various mechanical equipment where
high strength, high stiffness and low weight are important proper-
ties. In such applications, the FRPs are usually stacked in a number
of layers, each consisting of strong fibers bonded together by a re-
sin, to form a laminate. In addition, laminated sandwich structures
may also consist of layers made of foam material. When these com-
posite structures are used in dynamic environments, vibration con-
trol and noise reduction become of great technical significance. In
the present paper, this design objective will be considered in the
form of minimizing the sound radiation from a laminated compos-
ite plate. This is accomplished by optimizing simultaneously the
laminates in terms of proper choice of material, stacking sequence
and fiber orientation. Such advanced optimization of laminates has
only recently become possible via development of optimization ap-
proaches such as the method of Discrete Material Optimization
(DMO) in the papers (Stegmann and Lund, 2005; Lund and Steg-
mann, 2005), and practically feasible via new developments in
the manufacture of composite materials and structures.

Excellent textbooks on optimization for passive design of struc-
tural–acoustic systems against vibration and noise (Koopmann and
Fahnline, 1997; Kollmann, 2000), and the proceedings of an IUTAM
ll rights reserved.
Symposium on design for quietness (Munjal, 2002), were already
published about 10 years ago. These publications as well as papers
like (Pedersen, 1982; Olhoff and Parbery, 1984; Bendsøe and Olh-
off, 1985; Christensen et al., 1998a,b; Sorokin et al., 2006; Bös,
2006) did not specially address composite structure applications,
but provide an overview and contain references to the area of de-
sign optimization with respect to acoustic criteria in general.

However, as mentioned above, structural–acoustic optimization
of composite structures has received increasing attention with the
extensive application of composite materials in recent years, and in
terms of optimization of composite structures with respect to
acoustic criteria, we may refer the reader to the review article
(Denli and Sun, 2007) and the bibliography (Mackerle, 2003), and
a large number of papers cited therein. As examples of various
types of problems of optimum structural–acoustic design with
composite materials, we may refer to (Hufenbach et al., 2001;
Thamburaj and Sun, 2002; Chen et al., 2005; Yamamoto et al.,
2008; Jensen, 2009).

Relative to sizing or shape optimization, structural topology
optimization generally yields a more efficient conceptional/config-
urational design at the stage of initial design. In 1988, Bendsøe and
Kikuchi (1988) implemented the topology optimization of contin-
uum structures via a homogenization method and laid the founda-
tion of modern structural topology optimization, and this type of
optimization has been an extremely active area of research since
then. For the state-of-the-art in topology optimization the reader
is referred to the review article (Eschenauer and Olhoff, 2001),
the exhaustive textbook (Bendsøe and Sigmund, 2003), the paper
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(Bendsøe et al., 2005), and the proceedings from an IUTAM Sympo-
sium (Bendsøe et al., 2006).

Up to now, the method of topology optimization has been
mainly applied to three classes of problems within the area of
structural–acoustic design, however with no particular focus on
composite structure applications. The first class of problems
encompasses maximization of intrinsic properties of the structures
like fundamental and higher order eigenfrequencies, gaps between
two consecutive eigenfrequencies, and phononic band gaps, see,
e.g. (Dias and Kikuchi, 1992; Bendsøe and Diaz, 1994; Ma et al.,
1995; Kosaka and Swan, 1999; Krog and Olhoff, 1999; Pedersen,
2000; Sigmund, 2001; Tcherniak, 2002; Jensen, 2003; Sigmund
and Jensen, 2003; Olhoff and Du, 2005; Diaz et al., 2005; Jensen
and Pedersen, 2006; Halkjær et al., 2006; Du and Olhoff, 2007b;
Mendonca et al., 2009; Akl et al., 2009). The second class of prob-
lems comprises minimization of the dynamic compliance, i.e.,
maximization of the dynamic stiffness, of structures subjected to
forced vibration by time-harmonic external mechanical loading
of given frequency (or frequency range), see, e.g. (Min et al.,
1999; Jog, 2002a,b; Calvel and Mongeau, 2005; Jensen, 2007; Olh-
off and Du, 2010). Finally, the third class of structural–acoustic
topology design problems includes minimization of the acoustic
power radiated from the structural surface(s) into a surrounding
or interior acoustic medium like air, when the structure is sub-
jected to forced vibration by time-harmonic external mechanical
loading of given frequency or frequency range, see, e.g., the papers
(Luo and Gea, 2003; Wadbro and Berggren, 2006; Yoon et al., 2007;
Du and Olhoff, 2007a, 2010; Dühring et al., 2008; Olhoff and Du,
2008).

It is worth noting (Olhoff and Du, 2008) that the design objec-
tives of the above-mentioned three classes of structural–acoustic
topological design optimization problems generally have the same
mechanical effect. This effect consists in driving the nearest reso-
nance frequencies of the structure as far away as possible from a
given external excitation frequency, or a band of excitation fre-
quencies; this way structural resonance phenomena with high
vibration and noise emission levels are avoided by the
optimization.

Through structural topology optimization, composite structures
can be tailored to optimally achieve certain objectives. In the pres-
ent paper, the objective is to minimize the acoustic power radiated
from vibrating composite structures. An efficient and reliable
numerical design tool is very important in order to realize the
topology optimization of vibrating laminated composite plates,
and the novel Discrete Material Optimization (DMO) formulation
proposed in Stegmann and Lund (2005) and Lund and Stegmann
(2005) has been applied to achieve this goal.

The optimization of fiber orientation in composite laminates
was first considered by Rasmussen (1979), see Niordson and Olhoff
(1979). Several other methods have already been proposed to real-
ize optimum fiber orientation problems for orthotropic materials:
optimality criteria for orientational design (Pedersen, 1989, 1991;
Cheng and Pedersen, 1997), parameterization based on lamination
parameters (Miki and Sugiyama, 1993), a general approach of forc-
ing convexity of ply angle optimization based on lamination
parameters (Foldager et al., 1998), and an energy based method
(Luo and Gea, 1998) for the optimum orientation problem. The
optimization of fiber orientation and concentration of one or two
fiber fields in composite laminates is dealt with in Thomsen and
Olhoff (1990), Thomsen (1991), where cross-ply fiber reinforce-
ment is allowed for. As opposed to these methods of optimization
of fiber orientation, DMO is based on ideas from multiphase topol-
ogy optimization (Sigmund and Torquato, 1997) to achieve a
parameterization. Thus, DMO lends itself to the methodology of
topology optimization, and the method has proven to reduce the
risk of obtaining local optimum solutions for fiber orientations,
and to be able to solve simultaneously the optimization of materi-
als, stacking sequence and fiber orientations, using a predefined set
of discrete candidate materials and fiber angles as design variables
at element level.

It is assumed in this paper that air is the acoustic medium and
that a feedback coupling between the acoustic medium and the
structure can be neglected. Rayleigh’s integral is used for computa-
tion of the sound power radiated from the structural surface in-
stead of solving the Helmholtz integral equation. This implies
that the computational cost of the structural–acoustic analysis
can be considerably reduced, which is very efficient for the design
optimization. It has been proved that Rayleigh’s integral provides a
very good approximation of the sound pressure distribution along
a relatively flat structural surface, see Lax and Feshbach (1947),
Herrin et al. (2003), and Du and Olhoff (2007a).

The organization of the remainder of this paper is as follows. In
Section 2, the problem of structural topology optimization of lam-
inated composite plates subject to given amounts of the constitu-
ents is formulated for the objective of minimizing the sound
power radiated from the vibrating structural surface into the
acoustic medium. Then Rayleigh’s integral is introduced to calcu-
late the sound power flow from the structural surface, which leads
to a simplified optimization formulation of the current problem.
Section 3 introduces the parameterization for Discrete Material
Optimization (DMO) and discusses penalty functions for DMO. Sec-
tion 4 presents a DMO convergence measure. Section 5 deals with
the sensitivity analysis required for the numerical optimization
algorithm. Section 6 outlines several numerical examples with dif-
ferent excitation frequencies in order to validate the proposed
method, including single-layer, multi-layer laminated composite
plates, and laminated sandwich plates consisting of layers made
of FRPs and foam material. In Section 7, two isotropic materials
are introduced together with unidirectional fiber material as candi-
date materials in single-layer plate design. Finally, a section with
conclusions closes the paper.
2. Minimization of sound power radiation for laminated
composite plate using Discrete Material Optimization (DMO)

We consider design optimization of vibrating laminated com-
posite plates with the objective of minimizing the total sound
power (energy flux) P radiated from the structural surface S into
a surrounding acoustic medium. The same objective has been ap-
plied in Du and Olhoff (2007a) for a vibrating isotropic bi-material
elastic plate. The present work aims to realize this objective for a
laminated composite plate by design optimization of stacking se-
quence, fiber orientations, and selection of layer materials. This
problem is solved by using the so-called Discrete Material Optimi-
zation (DMO) approach in the sense that the structural constitu-
ents are chosen from among a given set of different candidate
materials (Stegmann and Lund, 2005), which may be regarded as
an extension of classical topology optimization (see, e.g., Bendsøe
and Sigmund, 2003; Rozvany et al., 1992) with a constraint on
the total volume of material.

The mathematical formulation of the problem is as follows.

min
x

P ¼
Z

S
In dS ¼

Z
S

1
2

Reðpf v�nÞdS
� �

s:t: ðK�x2
pMÞU ¼ Pþ LPf

CaPf ¼ GU�HPf

XNe

e¼1

XNl

l¼1

Xnl

i¼1

ðneliuiÞtl

 !
Ae 6 R

0 < xmin 6 xj 6 xmax < 1; j ¼ 1;Ndv

ð1Þ
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In the expression for the total radiated sound power P in (1), the
symbols pf and v�n represent the acoustic pressure and the complex
conjugate of the normal velocity of the structural surface, and Pf de-
notes the corresponding vector of amplitudes of the acoustic pres-
sure on the structural surface S. The symbol L represents the
fluid–structural coupling matrix. The matrices G, H and Ca can be
generated by the discretized Helmholtz integral and calculation of
the spatial angle along the structural surface (see, e.g., Christensen
et al., 1998a,b), and P denotes the vector of amplitudes of a given
external time-harmonic mechanical loading vector pðtÞ ¼ Peixpt

with the prescribed excitation frequency xp. The symbols K and
M represent the global structural stiffness and mass matrices, U de-
notes the vector of magnitudes of the corresponding structural dis-
placement response vector aðtÞ ¼ Ueixpt , and Kd ¼ ðK�x2

pMÞ is
defined as the global dynamic stiffness matrix. Here, M depends
on the mass density ci of each of the candidate materials,
i = 1,2, . . . , and it is assumed that damping can be neglected.

Since laminated composite plates are considered, more design
parameters need to be introduced as compared to single material
solid plates. Thus, l denotes ‘‘layer”, e denotes ‘‘element”, Nl is the
number of layers, Ne is the number of elements, and nl is the number
of candidate materials (design variables) per layer for each element;
the number of element design variables ne for multi-layered ele-
ments (with Nl layers) is the sum of the number of design variables
per layer, nl, over all Nl layers, such that ne ¼

PNl

k¼1nl
k, and the total

number of design variables in the problem is therefore
Ndv ¼

PNe

i¼1ne
i . It is emphasized that the ‘‘classical” topology optimi-

zation formulation has one design variable per element by setting
ne = 1 for single material 0/1 design. For single-layer plates, the num-
ber of candidate materials is also the number of element design vari-
ables. Here we consider a more general condition with multiple
layers, where the number of design variables must be summed over
all layers for this element. The symbol tl and Ae represent the thick-
ness of the l-th layer and area of the e-th element, respectively. In the
DMO approach, the variable xi (i = 1,2, . . . ,nl) per layer for each
element can be seen as a local density variable that indicates possi-
ble selection of the i-th material, i.e., with xi = xmax meaning that the
i-th material is chosen and xi = xmin meaning that the i-th material is
not chosen. The design variables x for all layers in all elements are
denoted as

x ¼fxj j j ¼ e� l� i; where e ¼ 1;2; . . . ;Ne; l ¼ 1;2; . . . ;Nl;

i ¼ 1;2; . . . ; nlg ð2Þ

Thus, in comparison with classical topology optimization of a single
material structure, an extended parameterization is invoked in the
DMO approach which enables penalization of intermediate values
of the design variables such that a distinct choice of candidate
material may be made. The symbol neli denotes the weighting func-
tion of the i-th candidate material in the l-th layer of the e-th ele-
ment in the parameterization of the Discrete Material
Optimization (DMO) formulation, see the subsequent section for a
detailed definition. For the sake of brevity, we use subsequently
in Sections 3–5 the symbol ni instead of neli to denote the weighting
functions in a certain layer of a certain element without special
statements. More discussion on weighting functions of DMO can
be found in Stegmann and Lund (2005).

The symbol R in (1) denotes the given resource, which enforces
an upper bound for the total cost or mass of the structure. The
symbol ui is defined as a so-called ‘‘unit cost factor” of the i-th
candidate material. Accordingly, for a cost or a mass constrained
problem, ui represents the cost ci or the mass ci per unit volume
of the i-th candidate material in this paper. For the problem of pure
fiber angle optimization, the resource constraint may be left out
entirely when the unit cost factors for all unidirectional fiber mate-
rials are assumed equal, because a change in fiber angle does not
influence the total cost or mass. However, this constraint on re-
source needs to be considered when multiple material optimiza-
tion is implemented, e.g., foam material introduced as candidate
material together with unidirectional fiber material. The notion
of unit cost factors has been used earlier in the context of other
structural optimization problems; see, for example, Taylor
(1975), Mroz and Rozvany (1975), Prager (1977a,b), Olhoff and
Taylor (1978), and Olhoff and Taylor (1979).

In the problem formulation (1), the structural–acoustic cou-
pling occurs due to the appearance of the acoustic surface pressure
vector Pf and the structural displacement response vector U in both
the first and second constraint equation in (1), i.e., the equation for
forced structural vibration without damping and the discretized
Helmholtz integral equation for the acoustic medium. Now, direct
solution of the Helmholtz integral equation implies large computa-
tional cost, and the equation has to be solved together with the
structural equation in each iterative step of the optimization pro-
cess. Therefore, for simplification, Rayleigh’s integral approxima-
tion is adopted for determining the acoustic pressure distribution
and sound power radiation.

The conditions for this are that the structure is flat, which is
clearly met by the laminated plates considered, and that the pre-
scribed excitation frequency xp is sufficiently high or the observa-
tion points are sufficiently far away from the laminated plate, such
that the product kr is much larger than 1, where k = xp/c is the
wave number, c the speed of sound in the acoustic medium, and
r is the distance between a source point on the structural surface
and an observation point in the acoustic domain, cf. Herrin et al.
(2003). Following (Du and Olhoff, 2007a), assuming a sufficiently
high value of the structural vibration frequency xp, the radiation
impedance pf/vn at the structural surface will be approximately
equal to the characteristic impedance cf/c of the acoustic medium
(Lax and Feshbach, 1947). Thus, the acoustic pressure pf and the
normal velocity vn of the structural surface are approximatively re-
lated by the simplified equation

pf ¼ cf cvn ð3Þ

where cf is the mass density and c the sound speed in the acoustic
medium. The accuracy of the approximation is discussed in the pa-
pers (Du and Olhoff, 2007a) and Herrin et al. (2003).

The normal velocity of the surface in (3) can be obtained as

vn ¼ n � u � ðixpÞ ð4Þ

where n is the unit normal and u the amplitude of the displace-
ments of the structural surface after interpolation based on finite
element analysis, i.e., using the finite element interpolation
u = NUe, where N is the shape function and Ue is the nodal displace-
ment vector of element e.

Thus, substituting (3) with vn given by (4) into the expression
for the sound power (objective function) P in (1), we after simple
algebra obtain the simplified expression

P ¼
Z

S

1
2
cf cx

2
pðn � uÞðn � uÞdS ð5Þ

which upon use of the discretized formulations can be written in
the matrix form

P ¼ 1
2
cf cx2

pUT SnU ð6Þ

where superscript T stands for transpose, U denotes the global dis-
placement vector of the structure, and Sn defined as

Sn ¼
XNe

e¼1

Sne ¼
XNe

e¼1

Z
Se

NT nnT NdS
� �

ð7Þ

is termed the surface normal matrix of the structure.
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Finally, in this paper we shall consider the acoustic medium to
be light, i.e., air with the mass density cf = 1.2 kg/m3 and sound
speed c = 343.4 m/s. This means that we may assume weak cou-
pling, i.e., ignore the acoustic pressure on the structure, and this
implies a further simplification of the current optimization prob-
lem. All in all, with the simplifications made, the original formula-
tion (1) of our optimization problem can be re-written in the very
convenient form

min
x

P ¼ 1
2
cf cx

2
pUT SnU

s:t: ðK�x2
pMÞU ¼ P

XNe

e¼1

XNl

l¼1

Xnl

i¼1

ðneliuiÞtl

 !
Ae 6 R

0 < xmin 6 xj 6 xmax < 1; j ¼ 1;Ndv

ð8Þ

When comparing (8) with (1), let us first note that the assump-
tion of weak coupling implies that the feedback acoustic pressure
LPf on the structure in (1) vanishes such that the first constraint
in (8) is simply the standard equation for a vibrating structure
without damping, that is subjected to the given external dynamic
loading P, only. At the same time, in (8) the Rayleigh approxima-
tion (3) has dismissed the discretized Helmholz integral equation
in the second constraint in (1) and instead taken over itself the
delivery of acoustic surface pressures to P (cf. the expression for
P in (1)), and finally substituted these pressures by surface normal
velocities converted into global structural displacements U in the
expression for P in (8). We notice that these displacements U are
simply obtained by solution of the standard equation for forced
vibration of the structure in the first constraint of (8).

We may conclude that the application of Rayleigh’s approxima-
tion and the assumption of weak coupling have furnished a formu-
lation (8) of our optimization problem that is much simpler than
the formulation in (1) based on Helmholtz’ integral equation and
full structural–acoustic coupling. Thus, problem (8) does not re-
quire a system of coupled equations (the first and second con-
straint equations in (1)) to be assembled and solved, and it must
therefore be much easier to implement, much faster to solve
numerically, and require considerably less computer resources
than problem (1). Similar advantages must be expected for the sen-
sitivity analysis of problem (8).
3. DMO parameterization model for topology optimization of
multi-layer structures

The DMO method (Stegmann and Lund, 2005; see the thesis
Stegmann, 2004 for further details) achieves a parameterization
as an extension of the ideas used in structural topology optimiza-
tion (Bendsøe and Kikuchi, 1988). Thus, instead of choosing be-
tween solid and void, the DMO method realizes the ability to
choose from among a given number of candidate materials. Here-
by, the DMO formulation extends the scope of application of mul-
tiphase topology optimization (Sigmund and Torquato, 1997) and
allows the structures to be multi-layered and made of orthotropic
materials.

The element constitutive matrix per layer is expressed as a
weighted sum of the matrices of the candidate materials. Various
parameterization schemes have been developed in Stegmann and
Lund (2005) and Stegmann (2004) for discrete material optimiza-
tion (DMO), see also Lund and Stegmann (2005) and Lund
(2009). For multi-layer structures, the interpolation method must
be implemented layer-wise for each element, i.e. for all layers in
all elements. Consequently, the interpolation scheme is written
by layer, and the constitutive relation for the l-th layer has the
form
Q l ¼
Xnl

i¼1

niQ i ¼ n1Q 1 þ n2Q 2 þ � � � þ nnl Q nl ð9Þ

where each candidate material is characterized by a constitutive
matrix Qi. The weighting functions ni must all attain values between
0 and 1 in order to be physically acceptable. Furthermore, it is found
to be necessary that the sum of the weighting functions is always
one, i.e.

Pnl

k¼1nk ¼ 1, which is important for a physical interpretation
of the designs and for correct evaluation of quantities such as the
mass, weight and cost, etc. In Eq. (9), the parameterization model
is realized element-wise for single-layers and layer-wise for multi-
ple layers for a large number of candidate materials.

In this paper, a DMO parameterization is used which enforces
unit value of the sum of the weighting functions. The weighting
functions can be expressed as

ni ¼
Xnl

i¼1

�niPnl

k¼1
�nk

ð10Þ

where

�ni ¼ ðxl
iÞ

p
Ynl

j¼1;j–i

½1� ðxl
jÞ

p� ð11Þ

Here the unity demand is realized by normalizing each weight-
ing function initially computed by Eq. (11). It has been noted that
the effect of the penalized intermediate values of the weighting
functions is slightly reduced when introducing the normalization.
The weighting functions n1 and n2 are illustrated in Fig. 1(a) and
(b) for unit value of the penalty factor p, and the sum of them is
shown in Fig. 1(c). It is found that the sum of the weighting func-
tions attains unit value for any combination of intermediate values
of design variables. For a value of the penalty factor p larger than
unity, e.g., p = 3, the weighting functions n1 and n2 are shown in
Fig. 2(a) and (b), and the sum of them again attains unit value as
indicated in Fig. 2(c). The increase of the penalty factor slightly in-
creases the size of the flat triangle-like plateau and the slope in the
center is steeper. This implies that the increase of the penalty fac-
tor will not help too much to penalize intermediate values of the
design variables. Fig. 3(a)–(c) depicts the weighting functions
n1,n2 and their sum if the penalty factor is further increased up to
the value p = 10. The differences between Figs. 1 and 3 are seen
to be more significant. We note that the two plateau domains in
Fig. 3(a) and (b) are not favourable for penalization of design vari-
ables with values located in these two domains. Due to this, the
power p is typically increased gradually from 1 to 3 only, and not
up to a higher value during the continuation process.

Similarly, the element mass density and element cost per layer,
i.e. for the l-th layer, are also expressed as a weighted sum for the
candidate materials, respectively,

cl ¼
Xnl

i¼1

nici ¼
Xnl

i¼1

�niPnl

k¼1
�nk

ci ð12Þ

cl ¼
Xnl

i¼1

nici ¼
Xnl

i¼1

�niPnl

k¼1
�nk

ci ð13Þ

where ci denotes the mass density and ci the unit cost of the i-th
candidate material. The weighting functions ni use the same inter-
polation formulae in Eq. (10).

For the resource constraint, linear interpolation is used, which
means that the penalty power p = 1. However, for the stiffness
and mass matrices, nonlinear interpolation is used, and the penalty
power p is typically increased gradually from 1 up to 3.

Furthermore, the element stiffness and mass matrices can be
obtained on the basis of first-order laminated composite plate the-
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Fig. 1. Weighting functions n1 and n2, and the sum of them for two materials with
the penalty factor p = 1.
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ory, and the global stiffness and mass matrices can be obtained by
assembling the element matrices.
4. Evaluation of convergence

A convergence measure given in Stegmann and Lund (2005) is
adopted to describe whether the optimization has converged to a
satisfactory result. This convergence measure is described briefly
here, while the reader is referred to the original paper (Stegmann
and Lund, 2005) for a detailed discussion. For each layer in each
element the inequality is evaluated for all weighting functions, ni

ni P e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
2 þ � � � þ n2

n

q
ð14Þ

where e is a tolerance level, typically 95–99.5% suggested by Steg-
mann and Lund (2005). If the inequality is satisfied for one of the
weighting functions in the layer, it is flagged as converged. The
DMO convergence measure he is defined as the ratio between the
number of converged layers Nl;tot

c in all elements and the total num-
ber of layers in all elements Nl,tot = Nl � Ne

he ¼
Nl;tot

c

Nl;tot
ð15Þ

The DMO convergence measure is denoted as h95 if the toler-
ance level is 95% and full convergence, h95 = 1, means that all layers
in all elements have a single weighting function contributing more
than 95% to the Euclidian norm of the weighting functions.

5. Design sensitivity analysis

The sensitivity of the objective function (i.e., the sound power
P) in formulation (8) with respect to the design variable xk is given
by

@P
@xk
¼
@ 1

2 cf cx2
pUT SnU

� �
@xk

ð16Þ

Since the surface normal matrix Sn is independent of the design
variables, we obtain

@P
@xk
¼ cf cx

2
pUT Sn

@ðUÞ
@xk

ð17Þ

Using the adjoint method (see, e.g. Tortorelli and Michaleris, 1994;
Du and Olhoff, 2007a), the sensitivity of the objective function can
be obtained in a more efficient manner as

@P
@xk
¼ cf cx

2
pUT Sn

@ðUÞ
@xk

¼ cf cx
2
p �UT

s
@K
@xk
�x2

p
@M
@xk

� �
U

	 

ð18Þ

Here Us is the solution to the equation

ðK�x2
pMÞUs ¼ SnU ¼ Ps ð19Þ

where Ps may be regarded as a pseudo surface load vector.
The sensitivities of the stiffness and mass matrices can be de-

rived by the DMO parameterization model introduced in the previ-
ous section.

The global resource constraint in (1) and (8) that specifies an
upper bound value R for the total cost or mass of the structure,
can be transformed into

g ¼
PNe

e¼1

PNl

l¼1

Pnl

i¼1ðneliuiÞtl

� �
Ae

R
6 1 ð20Þ

and the sensitivities of the corresponding constraint function g with
respect to the design variables are easily obtained as

@g
@xk
¼ tkAk

R

Xnl

i¼1

@ni

@xk
ui

� �
ð21Þ

It should be reiterated that linear interpolation with the penalty
factor p = 1 is adopted for the resource constraint. With these sen-
sitivity results, the design problem (8) may be solved by a mathe-
matical programming method, e.g., MMA by Svanberg (1987). A
broad account of finite element based design sensitivity analysis
and optimization is available in Lund (1994).
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Fig. 2. Weighting functions n1 and n2, and the sum of them for two materials with the penalty factor p = 3.
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Fig. 3. Weighting functions n1 and n2, and the sum of them for two materials with
the penalty factor p = 10.

Fig. 4. Quadratic laminated plate structure subjected to uniformly distributed
time-harmonic pressure loading. All four plate edges are clamped.

Table 1
Eigenfrequencies xi and resonance frequencies Xi of the initial design.

x1 x2 x3 x4 x5 x6

434 = X1 884 884 1302 1583 1591 = X2

Table 2
Eigenfrequencies xi and resonance frequencies Xi of the optimized design associated
with the excitation frequency xp = 500.

x1 x2 x3 x4 x5 x6

354 = X1 834 834 1181 1415 1492 = X2
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6. Numerical experiments of laminated composite plates:
discrete material optimization of single-layer, multi-layer and
sandwich plates

6.1. Single-layer plate

Firstly, the problem of a single-layer clamped quadratic plate
subjected to uniformly distributed time-harmonic pressure load-
ing p(t) = Pcosxpt with P = 105 is considered for minimum sound
radiation by Discrete Material Optimization (DMO). The side
lengths of the plate are 1 m and the thickness t is 0.01 m. All quan-
tities are given in SI units in this paper. Laminated Mindlin plate
elements based on first order shear deformation theory are used
in the following numerical experiments. A nine-node Mindlin lam-
inated plate element with five degrees of freedom at each node is
adopted. An element with this number of degrees of freedom per
node is chosen because in several of the examples in this paper,
the design parameterization allows for coupling between in-plane
and bending deformation, such that the B-matrix in an A–B–D
description of the laminate is non-zero. A 20 � 20 mesh discretiza-
tion is applied for the plate and it should be noted that symmetry is
not invoked in the analysis. We have tested that the finite element
mesh used yields sufficiently accurate computational results in the
frequency ranges considered. As candidate materials we use a
glass/epoxy composite with Ex = 54 GPa, Ey = Ez = 18 GPa, Gxy = -
Gyz = Gzx = 9 GPa, Poisson’s ratio vxy = 0.25 and mass density
c = 1900 kg m�3. The fiber angles are taken to be [90�, ±45�, 0�].

For all the examples in this paper, unbiased initial values of de-
sign variables were set to the value corresponding to uniform dis-
tribution of all candidate materials (in this section 0.25). The
corresponding initial design provides a convenient reference for
evaluation and discussion of the vibration and sound power radia-
tion characteristics of the designs optimized by usage of DMO in
the following. In this section the initial design corresponds to a
quasi-isotropic layup of the glass/epoxy material. We start out
computing a lower spectrum of eigenfrequencies xi of the initial
design and find the results given in Table 1, where x2 = x3 = 884.
is a bimodal (double) eigenfrequency.

In Table 1, x1 and x6 identify the first and second resonance fre-
quency, respectively, denoted as X1 and X2. Thus, it is easily shown
that the eigenfrequencies x2,x3, . . . ,x5 in both Tables 1 and 2 are
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not resonance frequencies for the forced time-harmonic vibration
problems considered in this section. We recall that the amplitudes
of the pressure loading are assumed to be the same all over the plate
domain, and when computing the scalar products PT/i for i = 2, . . . ,5,
where P is the vector of load amplitudes and /i are the vectors of the
eigenmodes associated with the eigenfrequencies xi, i = 2, . . . ,5, we
find that (within computational accuracy) the scalar product PT/i = 0
for i = 2, . . . ,5. This means that the eigenvectors /i, i = 2, . . . ,5, are
orthogonal to the vector of the load amplitude P, and implies that
these eigenmodes are not excited by the dynamic loading. Hence,
the corresponding eigenfrequencies x2, . . . ,x5 are not resonance
frequencies of the forced vibration problem, and will not affect the
sound power radiation from the structure. Both in Tables 1 and 2,
the eigenmodes corresponding to the first and sixth eigenfrequency
x1 and x6, respectively, are found not to be orthogonal to the ampli-
tudes of the dynamic loading, which means that x1 and x6 consti-
tute the first and the second resonance frequency X1 and X2,
respectively, of the forced vibration problem.

For the optimization six prescribed different loading frequen-
cies, xp = 10, 100, 200, 300, 500 and 1000 are considered, which
cover designs from the low frequency to a lower-medium fre-
quency level (note that the fundamental resonance frequency of
the initial design is X1 = 434.). The optimized designs with their fi-
ber orientations are shown in Fig. 5. The optimum design for min-
imum sound power at the low excitation frequency xp = 10
resembles the optimum design for maximum stiffness in Lund
and Stegmann (2005). The DMO convergence measures in Eq.
(15) of these six results with different excitation frequencies are
h95 = 0.82 for xp = 10, h95 = 0.82 for xp = 100, h95 = 0.80 for
xp = 200, h95 = 0.80 for xp = 300, h95 = 0.99 for xp = 500 and
h95 = 0.98 for xp =1000. The DMO convergence measure is seen
(a) (b)

(d) (e)

Fig. 5. Single-layer plate: optimized design
to be not very high for the cases with lower values of the excitation
frequency. For these cases, it is observed that the not-fully con-
verged elements are mostly located in the narrow central region
of the optimized plate. In this region, it is found that the weighting
functions associated with unidirectional fiber material oriented at
±45�, 90� and 0� are very close to each other. This issue will be ta-
ken up in Section 7. In the optimized designs in Fig. 5, the material
with the highest associated weighting function is plotted. Fig. 6
shows the iteration histories behind the optimized designs in
Fig. 5(a), (b) and (e) corresponding to the excitation frequencies
xp = 10, 100 and 500. It is seen that the three curves all exhibit ra-
pid convergence of the sound radiation.

The optimum designs in Fig. 5 are observed to be similar to each
other for the excitation frequencies 10, 100, 200 and 300, which are
all below the first resonance frequency X1 of the initial design as
well as the resulting optimized designs. However, different topol-
ogies are found when higher excitation frequencies are considered.
The sound power radiation has generally been decreased quite
substantially for the optimized design relative to the initial design
in all the examples, see Table 3.

As is seen in Table 3, the largest decrease (75.66%) of the sound
power emission P relative to that of the initial design, is obtained
for the optimized design in Fig. 5(e) with the prescribed external
excitation frequency xp = 500. The reason for this large decrease
of P is that xp = 500 is quite close to (slightly larger than) the first
resonance frequency x1 = 434 of the initial design (as is also re-
flected by the high value of the sound power radiation P0 from
the initial design at xp = 500 in Table 3). Thus, taking the opti-
mized design with xp = 500 in Fig. 5(e) to be given, we have com-
puted its six lowest eigenfrequencies and obtained the results
shown in Table 2.
(c)

(f)

s for different excitation frequencies.
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(b)

(c)

Fig. 6. Iteration histories of the minimum sound radiation designs in Fig. 5(a), (b)
and (e): (a) Iteration history for the case of xp = 10, (b) for xp = 100 and (c) for
xp = 500.

Table 3
Single-layer plate: comparison of the total sound power radiation from the initial
design and the designs optimized for different excitation frequencies xp.

Excitation frequency,
xp

Initial design Optimized design Relative
decrease

Sound power,
P0

Sound power,
P

Fig. jP �P0j/P0

10 15.61 7.69 5(a) 50.77%
100 1738 830 5(b) 52.24%
200 10,023 4263 5(c) 57.47%
300 51,001 15,846 5(d) 68.93%
500 375,728 91,434 5(e) 75.66%

1000 9310 7844 5(f) 15.77%
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By comparison of results in Tables 1 and 2, we see that the opti-
mization with the excitation frequency prescribed as xp = 500 has
decreased quite significantly the nearest (first) resonance fre-
quency X1 from the value 434 for the initial design to the value
354 for the optimized design. This implies that large displacement
amplitudes have been considerably reduced at the excitation fre-
quency xp = 500 by the discrete material optimization, and ex-
plains the substantial reduction of the sound radiation by 75.66%.
At the same time, the second resonance frequency X2 is slightly
decreased by the optimization for the case of xp = 500, see Tables
1 and 2, but it is so much larger than the excitation frequency
xp = 500 that it has only marginally affected the sound power radi-
ation at xp.

Hence, for the case of xp = 500, the mechanical cause of the sub-
stantial reduction of the sound power radiation achieved by the
optimization is that the optimization has driven the nearest (first)
resonance frequency as far away as possible (i.e., downward) from
the prescribed excitation frequency xp.

Let us then consider the case of optimization for xp = 1000,
where the excitation frequency xp is roughly located in the middle
of the interval between the first and second resonance frequencies
X1 = 434 and X6 = 1591 of the initial design, see Table 1. This is
generally a favourable location of the excitation frequency for a gi-
ven design, and is also seen to lead to relatively low sound radia-
tion with a comparatively small difference between the values of
the initial and the optimized design (cf. Table 3). With xp = 1000,
we find that the optimization yields a design (shown in Fig. 5(f)),
where the first resonance frequency is decreased from 434 to
398 and the second resonance frequency is increased from 1591
to 1756.

Hence, in this case with xp = 1000, the mechanical cause of the
reduction of the sound radiation obtained by the optimization (see
Table 3) is that both of the neighbouring resonance frequencies
have been driven away from the excitation frequency xp, and
thereby created an enlarged gap between these two resonance fre-
quencies with a reduced level of sound radiation at xp and in its
vicinity.

6.2. Multi-layer plate

A four-layer laminated plate with equal layer thicknesses and
the same uniformly distributed, time-harmonic pressure loading
as in Section 6.1 is considered for xp = 100, xp = 500 and
xp = 1000. These examples aim to demonstrate that the approach
can be also used for multi-layer laminated composite plate struc-
tures, see Fig. 4. The geometry and boundary conditions of the
plate are the same as in Section 6.1, and the glass/epoxy material
with the same moduli of elasticity as in Section 6.1 is used. When
a 20 � 20 mesh discretization is applied, the total number of de-
sign variables for this four-layer plate is 6400. The layers are num-
bered from bottom to top, i.e. layer 4 is the upper layer of the plate.

The optimized plates subject to xp = 100, 500 and 1000 are
shown in Fig. 7(a)–(c), but only by their upper layer (4) as the fiber
angles in general are similar for all layers. The total power flow P
from the optimized plates is reduced from 1738 to 830 for
xp = 100, from 375,728 to 91,434 for xp = 500 and from 9310 to
7844 for xp = 1000. Thus, for the given excitation frequencies
xp = 100, 500 and 1000, the same values of the objective function
P are obtained by optimization of the multi-layer laminated plates
considered here and the single-layer plates in Section 6.1 with the
same boundary conditions and structural dimensions, cf. the re-
sults given in Table 3. For the two higher values of the excitation
frequency, xp = 500 and xp = 1000, the fiber orientations in the
layers of each of the optimized multi-layer plates are found to be
the same as in the upper layers shown in Fig. 7(b) and (c), respec-
tively, and these fiber orientations correspond precisely to those in
the optimized single-layer plates associated with the same excita-
tion frequencies, see Fig. 5(e) and (f). For the lower excitation fre-
quency xp = 100, some very few differences can be observed in the
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Fig. 7. Multi-layer plate: optimized designs of the upper layer for different excitation frequencies.
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fiber orientations when comparing the upper layer depicted in
Fig. 7(a) with the other (non-shown) layers of the optimized mul-
ti-layer plate and with the corresponding optimized single-layer
plate in Fig. 5(b). These very few differences are found in the nar-
row central region of the plates where some weighting functions
for unidirectional fiber material oriented at [90�, ±45�, 0�] appear
to be very close to each other. In agreement with the preceding dis-
cussion of the plate designs obtained, the DMO convergence mea-
sures (see Section 4) for the optimized multi-layer plate designs
with xp = 100, 500 and 1000 are found to be h95 = 0.83, h95 = 0.99
and h95 = 0.98, where the value of the convergence measure asso-
ciated with xp = 100 is somewhat smaller than the very high val-
ues associated with xp = 500 and 1000.

6.3. Laminated sandwich structure

Here and in the following Section 6.4, we consider discrete
material optimization for the given excitation frequency xp = 100
and 1000 of a laminated structure with the same size and bound-
ary conditions as in the preceding section, but now consisting of
eight layers made of glass/epoxy composite and foam material that
enable creation of a sandwich structure. The same orthotropic
glass/epoxy composite with permissible fiber angles [90�, ±45�,
0�] is used as before, but in addition an isotropic polymeric foam
material with Young’s modulus E = 125 MPa, Poisson’s ratio
v = 0.3 and mass density c = 100 kg m�3 is assumed to be available
for the structure.

In this and the subsequent Section 6.4, we choose the given glo-
bal resource constraint value R to represent the total mass of the
structural material. Accordingly, we define the unit cost factors
u1 and u2 (see Section 2) of the unidirectional fiber composite
material and the isotropic foam material, respectively, as the mass
densities c1 and c2 of these two materials, and take them to be
u1 = c1 = 1900 and u2 = c2 = 100 in (8). The allowable total material
mass resource constraint value is taken to be R ¼ 10:0. In view of
the data given, this means that the foam must constitute at least
50% of the total volume.

In the current section, we consider the case where the upper
and the lower layers are not allowed to choose the polymeric foam,
while the inner six layers can locally consist of either the foam or
glass/epoxy composite material. This implies 38 design variables
per element, distributed as [4, 5, 5, 5, 5, 5, 5, 4] and brings the total
number of design variables for the whole plate up to 15200, when
a 20 � 20 finite element mesh is used.

The results of the optimization for xp = 100 and 1000 are pre-
sented in Figs. 8 and 9, respectively, where layer elements with fi-
bers indicate that the glass/epoxy material is selected with the
fiber orientations shown, and elements in white indicate selection
of isotropic foam material. The DMO convergence measures for the
designs with xp = 100 and 1000 are h95 = 0.93 and h95 = 0.98,
respectively. It is clearly seen from the figures that sandwich-like
plates have resulted from both cases of optimization, in particular
for the design with xp = 100 shown in Fig. 8, where almost all the
available foam material is found in the 4 innermost layers (core) of
the 8-layer plate. In the design obtained for xp = 1000 in Fig. 9, the
available foam material is almost entirely placed in the six inner-
most layers, where it surrounds a short, approximately circular cyl-
inder consisting of the composite material. This will be discussed
below. It is also interesting to note that the upper and the lower
layer of the optimized designs in both of the two cases considered
here, are very similar to the optimized designs of the single-layer
plates at the same excitation frequencies, as is seen by comparing
the designs of layers 1 and 8 in Figs. 8 and 9 with the design in
Fig. 5(b) for xp = 100 and the design in Fig. 5(f) for xp = 1000,
respectively.

As stated in Table 4, we have found that, in comparison with the
initial design, the discrete material optimization has reduced the
total power flow from 2059 to 967 for xp = 100 and from 12,808
to 7969 for xp = 1000. Table 4 also lists values of the first and sec-
ond resonance frequencies X1 and X2 which we, in a similar fash-
ion as described in Section 6.1, have computed for the initial and
the two optimized designs in Figs. 8 and 9. These results reveal, like
in Section 6.1, that the mechanical explanation for the low values
obtained for the sound radiation is that the optimization has either
driven the nearest resonance frequency as far away as possible
from the prescribed excitation frequency xp, or has increased the
gap between two neighbouring resonance frequencies as much
as possible. Thus, for the design with xp = 100 in Fig. 8, the first
resonance frequency X1 has been increased quite considerably
compared to the first resonance frequency of the initial design,
and for the design with xp = 1000 in Fig. 9, the gap between the
first and second resonance frequencies has been increased by both
decreasing the first resonance frequency and increasing the second
resonance frequency.

Let us finally discuss the quite remarkable difference between
the overall layouts of the inner layers of the optimized plates in
Figs. 8 and 9. The plate in Fig. 8 is optimized for an excitation fre-
quency xp = 100 that is substantially smaller than the first reso-
nance frequency X1 = 666 of the plate, cf. Table 4. In consistency
with minimization of the total sound radiation, the plate may
therefore with good approximation be considered to have been
subjected to integral static stiffness maximization (i.e., compliance
minimization) for a uniformly distributed static loading (corre-
sponding to xp = 0) that equals the given amplitude P of the
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Fig. 8. Sandwich plate: optimized design for the excitation frequency xp = 100 when no foam material is allowed in the lower layer 1 and upper layer 8.
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(otherwise) harmonic loading. Thus the design should be mainly
(bending) stiffness driven. This is confirmed by the design in
Fig. 8 where almost all the available stiffer composite material is
found in the outermost layers 1,2 and 7,8, while almost all the
weaker foam material is found in the inner layers 3–6.

Contrary to Fig. 8, the design in Fig. 9 with xp = 1000 has been
significantly driven by dynamics, essentially because inertia forces
are proportional to the square of the frequency of harmonic vibra-
tion of mass. Thus, as is seen, the central part of the plate in Fig. 9 is
filled-out by an approximately circular through-the-thickness cyl-
inder consisting of the stiffer composite material that has a much
higher mass density than the foam material. This local design of
the plate is very efficient in counteracting the time-harmonic
external loading that has not only a given frequency (xp = 1000)
but also a prescribed amplitude, and is found to be in anti-phase
with the central part of the forced vibration mode, whose shape
is as depicted in Fig. 12(b). Clearly, the mass assembly in the cen-
tral part of the plate yields a large inertia that very effectively re-
duces the displacement amplitudes over the central part of the
plate, and, thereby, reduces the vibration amplitudes and the den-
sity of sound power emission all over the plate.

6.4. Laminated sandwich structure without restriction on the selection
of material in the surface layers

Here, we consider the same problem as in the preceding section,
but with the exception that the upper and the lower layer are now
allowed to choose freely between the polymeric foam and the
glass/epoxy composite material like the inner 6 layers. This implies
40 design variables per element, distributed as [5, 5, 5, 5, 5, 5, 5, 5]
and bringing the total number of design variables for the whole
plate up to 16,000, when a 20 � 20 finite element mesh is used.
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Fig. 9. Sandwich plate: optimized design for the excitation frequency xp = 1000 when no foam material is allowed in the lower layer 1 and upper layer 8.

Table 4
Results for the initial and optimized designs of sandwich plates when no foam
material is allowed in the surface layers.

1st
resonance
freq., X1

2nd
resonance
freq., X2

Sound
radiation
for
xp = 100

Sound
radiation
for
xp = 1000

Initial design 449 1656 2059 12,808
Design optimized with

xp = 100, Fig. 8
666 2114 967

Design optimized with
xp = 1000, Fig. 9

369 1984 7969
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The plate designs obtained by the discrete material optimiza-
tion are presented in Fig. 10 with xp = 100 and Fig. 11 with
xp = 1000. The DMO convergence measures for the designs with
xp = 100 and xp = 1000 are h95 = 0.93 and h95 = 0.98, respectively,
and the resonance frequency and sound radiation characteristics
determined for the initial design and the optimized designs in
the same way as described earlier, are listed in Table 5. Here it is
seen, by comparison with the results given in Table 4 for the opti-
mized designs shown in Figs. 8 and 9, that the total power flow has
been slightly reduced from 967 to 952 for the design in Fig. 10 with
xp = 100, and, more significantly, from 7969 to 6952 for the design
in Fig. 11 with xp = 1000. Thus, for the same value of the excitation
frequency, the designs optimized without restriction on the selec-
tion of material in the surface layers in the current section are
‘‘more optimal” than those obtained with the restriction in the pre-
ceding Section 6.3. This is of course to be expected since the
restriction on the selection of material for the surface layers in Sec-
tion 6.3 implies that the design space is smaller. The mechanical
causes of the reductions of the sound radiations from the designs
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Fig. 10. Sandwich plate: optimized design for the excitation frequency xp = 100 and without restriction for the surface layers.
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in Figs. 10 and 11 are the same as described for the designs in Figs.
8 and 9, respectively, in Section 6.3.

By comparing the optimized designs in Figs. 10 and 11 with the
corresponding ones in Figs. 8 and 9, respectively, it appears that
the removal of the restriction against use of foam material in the
surface layers has only given rise to minor changes in the surface
layers. This is particularly the case for the design in Fig. 10 with
xp = 100, where the surface layers 1 and 8 consist of composite
material except for very small regions with foam material in the
corners. The inner layers of this design also only exhibit very small
changes. The forced vibration mode of the optimized design in
Fig. 10 excited at xp = 100 has the same phase as the uniformly
distributed dynamic loading, and is shown in Fig. 12(a).

The surface layers of the design optimized with xp = 1000 in
Fig. 11 also predominantly consist of composite material, and the
inner layers of the plate are seen to exhibit only minor changes rel-
ative to the corresponding layers in Fig. 9. However, it is notewor-
thy that in the surface layers of the plate in Fig. 11, a thin, ring-like
shaped region consisting of foam material is found between the
large central part of each of the surface layers and the edges of
the plate. Moreover, a close inspection of all the layers of the plate
in Fig. 11 reveals that (with some small, unimportant exceptions in
the innermost layers 4 and 5), the entire plate is equipped with an
inner, through-the thickness zone of foam material that emanates
from the thin, ring-shaped regions with foam in the surface layers,
and follows these regions all the way around the large central part
of the plate. A mechanical explanation of this feature of the plate
design in Fig. 11, which is optimized for and excited by
xp = 1000, may be given by considering the corresponding forced
vibration mode in Fig. 12(b), where the outer part of the plate
along the clamped edges is found to be in-phase, and the central
part of the plate to be in anti-phase with the uniformly distributed
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Fig. 11. Sandwich plate: optimized design for the excitation frequency xp = 1000 and without restriction for the surface layers.

Table 5
Results for the initial and optimized designs of sandwich plates without restriction for
the surface layers.

1st
resonance
freq., X1

2nd
resonance
freq., X2

Sound
radiation
for
xp = 100

Sound
radiation
for
xp = 1000

Initial design 432 1594 2713 14,152
Design optimized

with xp = 100,
Fig. 10

623 2029 952

Design optimized
with xp = 1000,
Fig. 11

281 1963 6952
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harmonic dynamic loading. Guided by Fig. 12(b), we have found
that within the thin, ring-like plate region with foam material in
the surface layers, there exists a closed curve along which the
two principal bending curvatures are zero and very small, respec-
tively. This means that from the point of view of optimization, the
through-the-thickness application of the isotropic, low-stiffness
foam material is ‘‘optimal” in this region of the plate, and that it
saves composite material here for other regions where high stiff-
nesses are useful.

7. Discussion of the DMO of a single-layer plate with
unidirectional fibers and two isotropic materials

The DMO parameterization used in this paper enforces unit va-
lue of the sum of the weighting functions, see (9), which is impor-
tant for a physical interpretation of the designs and for correct
evaluation of quantities such as the mass, weight and cost, etc.
For example, a design having the sum of the weighting functions



(a)
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Fig. 12. Forced vibration modes of the plate designs (a) optimized for and excited at
xp = 100 in Fig. 10, and (b) optimized for and excited at xp = 1000 in Fig. 11.

Table 6
Elastic properties, mass densities ci and unit monetary cost factors ci for a
unidirectional fiber material and two isotropic materials.

Material #1 (unidirectional fiber
composite)

Material #2
(isotropic)

Material #3
(isotropic)

Ex = 54 GPa E = 8 GPa E = 25 GPa
Ey = 18 GPa
Ez = 18 GPa
Gxy = Gyz = Gzx = 9 GPa
vxy = 0.25 v = 0.3 v = 0.3
c1 = 1900 kg m�3 c2 = 1000 kg m�3 c3 = 1000 kg m�3

c1 = 1500 m�3 c2 = 100 m�3 c3 = 1000 m�3

Fig. 13. Optimized design for minimum sound radiation at xp = 100 from single-
layer clamped quadratic plate made of unidirectional fiber material with 12
available fiber angles [90�, ±75�, ±60�, ±45�, ±30�, ±15�, 0�].
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greater than one in the optimization process is not meaningful
from a physical point of view because more than one material
would then be selected for the same element. According to the
studies of Stegmann and Lund (2005), Stegmann (2004) and Hvej-
sel and Lund (2009), the penalization scheme with the unity con-
straint alters the effect of penalizing the design variables
compared to the similar penalization scheme without the unity
constraint. Thus, in some cases, it is less effective in driving all
the design variables to their limits.

In this paper, this behavior has been observed in some plate
sub-regions in which two candidate materials performed equally
well or where the available candidate materials may not have in-
cluded a more optimal material. Thus, in some of the examples
in Section 6 with excitation frequencies lower than the first reso-
nance frequencies of the optimized plates, the distribution of fiber
orientations is not found to be completely symmetric in the central
area because the optimization has not completely converged due
to the drawback of the interpolation function. The reason for this
may have been that an optimum choice of material has not been
possible from among the set of available candidate materials con-
sidered. As an example, see Thomsen and Olhoff (1990), for the dif-
ferent problem of a flat plate subjected to in-plane loading that
caused in-plane shear-dominated sub-regions, it was necessary
to allow for orthogonal cross-ply fiber arrangements rather than
just unidirectional fibers in order to achieve convergence of the
optimum design.

For the problem of a single-layer plate as considered in Section
6.1, in-plane shear is negligible. However, if we consider the plate
design optimized for xp = 100 in Fig. 5(b), there are some layer ele-
ments where the weighting functions associated with the fiber ori-
entations of ±45�, 90� and 0� of the given candidate materials are
very close to each other, and where deviations from symmetry oc-
cur. To study this unwanted behaviour, we first extend the set of
candidate materials by choosing the enlarged set of fiber angles
[90�, ±75�, ±60�, ±45�, ±30�, ±15�, 0�] of the same unidirectional
composite with material properties as considered in Section 6.1
(also listed as material #1 in Table 6), and solve the otherwise
self-same problem as in Fig. 5(b) with xp = 100. The optimized de-
sign resulting from this extension of the set of available fiber an-
gles from 4 to 12 is illustrated in Fig. 13.

By comparing the design optimized for xp = 100 in Fig. 13 with
the corresponding one in Fig. 5(b), the total power flow has been
reduced from 830 to 789 as is to be expected in view of the exten-
sion of the design space. However, the increase of the set of avail-
able fiber angles from 4 to 12 in each element of the plate has not
removed or reduced the occurrence of a minor number of devia-
tions from symmetry in the distribution of fiber orientations in
the plate, and in comparison with the DMO convergence measure
h95 = 0.82 determined for the design in Fig. 5(b), it is found that this
measure is only h95 = 0.75 for the design in Fig. 13.

Now, by considering the plate design in Fig. 13 and the corre-
sponding forced vibration mode which at the excitation frequency
xp = 100 is very similar to that depicted in Fig. 12(a), it is reason-
able to assume that the rotational symmetry indicated in the cen-
tral part of both the design and the vibration mode reflects a state
with equal principal bending moments in the region around the
mid-point of the plate. Moreover, it is well-known from various
studies of optimization of elastic as well as perfectly plastic plates
with respect to different design objectives that the optimum solu-
tion in such a region is a solid, isotropic plate design, see e.g., Cheng
(1981), Cheng and Olhoff (1982), Rozvany et al. (1982), Wang et al.
(1984).

Along these lines, together with the unidirectional composite
termed ‘‘material #1” in Table 6 and to be considered again with
the fiber angles [90�, ±75�, ±60�, ±45�, ±30�, ±15�, 0�], we shall
now include first a weaker and then also a stiffer isotropic elastic
material, which in Table 6 are called ‘‘material #2” and ‘‘material
#3”, respectively, as candidate materials in the DMO of the sin-
gle-layer plate for xp = 100.



Fig. 15. Optimized design of quarter of a clamped square plate for maximum
integral stiffness (Cheng and Olhoff, 1981).
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To accommodate the introduction of both isotropic and unidi-
rectional fiber materials as candidate materials in the DMO, we
in this chapter consider a total (monetary) cost constrained prob-
lem, where the unit cost factors u1, u2 and u3 (see Chapter 2) rep-
resent the monetary unit cost factors c1, c2 and c3 for the
unidirectional and the two isotropic materials. Thus, in (8) we set
u1 = c1 = 1500 for material #1, u2 = c2 = 100 for material #2, and
u3 = c3 = 1000 for material #3, cf. Table 6, where we have omitted
to state the specific currency. The allowable total cost constraint
value is chosen to be R ¼ 6:0. This value may be compared with
the value R ¼ 15 of the total cost of the optimized design in
Fig. 13 where the entire plate is made of composite material
(whose fiber angles do not affect the value of R).

If we start out optimizing the single-layer clamped quadratic
plate by DMO for xp = 100 and R ¼ 6:0 with candidate materials
that include the unidirectional material (#1) with the different fi-
ber angles [90�, ±75�, ±60�, ±45�, ±30�, ±15�, 0�] and only the isotro-
pic material (#2) with the low Young’s modulus E = 8 GPa, cf. Table
6, we get the design illustrated in Fig. 14(a). Here, elements with
fibers indicate that the unidirectional fiber material (#1) is selected
with the fiber orientations shown, and elements in white indicate
selection of the weaker isotropic material (#2). It is observed in
Fig. 14(a) that the stiffer unidirectional fiber material is distributed
along the mid-parts of the clamped edges and in a star-shaped
mid-region of the plate, while the much weaker isotropic material
(#2) is distributed in the remainder of the plate. It is apparent that
the stiffness of the isotropic material (#2) has been too low to en-
sure placement of part of this material in the central region of the
plate, and it is seen that there are a few deviations from symmetry
in the distribution of the fiber orientations near the mid-point of
the plate. The DMO convergence measure is found to be
h95 = 0.88 for the optimized design in Fig. 14(a), and the total
sound power radiation from the plate at xp = 100 is determined
to be 1655.

Following the discussion above, we shall now solve the same
problem as the preceding one of optimizing the single-layer
clamped quadratic plate for xp = 100 and R ¼ 6:0, however with
the exception that now we also include the isotropic material #3
among the available candidate materials for the DMO. In Table 6,
the Young’s modulus of this isotropic material is seen to be about
three times that of the weaker isotropic material #2, and about 1.4
and 0.46 times the Young’s moduli in the transverse and longitudi-
nal fiber directions, respectively, of the composite material (#1)
which represents a unidirectional glass/epoxy composite. The unit
cost factor of the new, stiffer isotropic material (#3) is 10 times
(a)

Fig. 14. Optimized designs for minimum sound radiation at xp = 100 from single-layer c
R ¼ 6:0. The unidirectional fiber material has 12 available fiber angles [90�, ±75�, ±60�, ±4
total sound radiation is 1655, (b) unidirectional fiber material (#1) and isotropic materi
that of the weaker isotropic material (#2) and two thirds of the
cost factor of the composite material (#1), see Table 6. It should
be mentioned that the optimum design is very much dependent
on the elastic properties of the materials, the unit costs of these
materials, and the given upper bound value R on the resource.

The optimum design of the plate associated with the data given
in Table 6 is presented in Fig. 14(b), where elements in grey indi-
cate selection of the stronger isotropic material (#3). It is observed
that, as conjectured, the stronger isotropic material (#3) is found
and distributed in the central region of the plate instead of unidi-
rectional fiber material (#1), and it is interesting to note that the
former is partly surrounded by smaller regions of the latter. It is
also noteworthy that the design in Fig. 14(b) is found to be per-
fectly symmetric, and the DMO convergence measure is
h95 = 0.97. The total sound power radiation from the optimized de-
sign at xp = 100 in Fig. 14(b) is found to be 1567, which is clearly
smaller, and hence ‘‘more optimal” than the value 1655 of the
sound power radiation from the design in Fig. 14(a), given that
the two designs are associated with the same total cost, R ¼ 6:0.

All in all the investigation in this section indicates that the
inclusion of the stiffer isotropic material in the set of candidate
materials for the DMO problem considered has provided a perti-
nent regularization of the problem. A similar regularization may
prove to be useful for some of the other problems with a low value
of the excitation frequency xp considered in Section 6.

Finally, it is very interesting to compare the optimum plate de-
sign in Fig. 14(b) with a thickness distribution, see Fig. 15, obtained
numerically by Cheng and Olhoff (1981) for the problem of maxi-
mizing the integral stiffness (minimizing the compliance) of a
clamped, quadratic elastic plate of given material volume and plate
domain, for which a minimum and a maximum constraint are
(b)

lamped quadratic plate with unidirectional fiber and isotropic materials of total cost
5�, ±30�, ±15�, 0�]: (a) unidirectional fiber material (#1) and isotropic material (#2),
als (#2) and (#3) (cf. Table 6), with smaller total sound radiation, 1567.
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specified for the variable plate thickness. Actually, following pre-
ceding work by Olhoff (1975, 1981) and Cheng (1981), the objec-
tive of the paper by Cheng and Olhoff (1981) was to study the
formation of plate ribs (or stiffeners), and it led to the development
of a new formulation for plate optimization problems, see Cheng
and Olhoff (1982), that may be considered a forerunner for the
development of the more general method of topology optimization
as it is known today.

Now, by comparing the layout of the fibers and of the regions
with the isotropic materials with lower and higher stiffnesses,
respectively, in the optimum plate design in Fig. 14(b), this layout
is seen to be remarkably similar to the layout in Fig. 15 of the ribs,
the region with active minimum plate thickness constraint, and the
mid-region of the plate where the thickness is varying smoothly
between inactive constraints.

As was pointed out by Profs. Prager and Rozvany, see Rozvany
et al. (1995), the layout of the ribs in Fig. 15, and hence of the fibers
in Fig. 14(b), is also remarkably similar to results obtained by Rozv-
any and Adidam (1972) and Prager (1977a,b) for a quite different
problem, namely optimum layout of grillages in minimum weight
design of rectangular grillage structures against plastic collapse.

8. Conclusions

Minimum sound radiation from vibrating laminated composite
plates without damping is considered in this paper. The plates are
subjected to uniformly distributed time-harmonic pressure load-
ing with prescribed frequency and amplitude. Since the plate sur-
faces are flat, instead of solving the Helmholtz equation, Rayleigh’s
approximation is used for computing the total sound power radi-
ated from the plate into a light acoustic medium such as air. This
substantially reduces the computational cost of the structural–
acoustic analysis and design optimization. Optimization of fiber
orientations, stacking sequence and material selection is per-
formed by Discrete Material Optimization (DMO) for quadratic,
clamped single-layer, multi-layer and sandwich plates. Interesting
features of the optimized designs are observed in numerical
examples.

Numerical results for single-layer and multi-layer plates show
that the fiber orientations of the layers in each of the optimized
multi-layer plates are generally found to be the same and to corre-
spond to those in the optimized design of the corresponding sin-
gle-layer plate at the same excitation frequency. In the design of
laminated plates with polymeric foam and glass/epoxy composite
material as candidate materials, sandwich-like plates have been
obtained for the excitation frequencies considered. The influence
of a restriction on the selection of candidate materials for the sur-
face layers on the optimum topologies is discussed. For the same
type of plate structure and excitation frequency, the design opti-
mized without restriction on candidate materials for the surface
layers is consistently better than the design optimized subject to
the restriction.

The total sound power radiation from the vibrating laminated
composite plates is generally significantly decreased by the dis-
crete material optimization. To minimize the sound radiation, the
optimization has either driven the nearest resonance frequency
as far away as possible from the prescribed excitation frequency,
or has increased the gap between two neighbouring resonance fre-
quencies as much as possible. For an excitation frequency smaller
than the first resonance frequency, the design is mainly (bending)
stiffness driven, while the design is driven by dynamics for higher
values of the excitation frequency, and this furnishes quite remark-
able differences in the optimized designs.

In the end of the paper, a cost constrained single-layer plate
problem with a low excitation frequency is considered in order
to investigate the introduction of two isotropic materials in addi-
tion to unidirectional fiber materials as candidate materials in
the DMO. It is found that the stiffer of the two isotropic materials
is distributed in the central region of the plate instead of unidirec-
tional fiber material, which is then mainly distributed along the
mid-parts of the clamped edges of the plate, while the weaker iso-
tropic material is distributed in the remainder of the plate.
Remarkably similar layouts have been obtained earlier for quite
different optimization problems for elastic and perfectly plastic
structures.

There is still a need to further investigate weighting functions in
the DMO approach for the general case with a large number of can-
didate materials in order to both fulfil the unity demand and penal-
ize intermediate densities more effectively. Furthermore,
optimization with respect to a band of excitation frequencies taking
the structural damping into account may be considered in future
work.
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