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Current literature highlights

Traceless solid-phase synthesis of trisubstituted quinazolines

Quinazolines, whether naturally occurring or synthetic, have
long been known to have important pharmacological activities,
with proven insecticidal, antibacterial, antiviral and anticancer
properties. In particular, several commercial antitumour drugs
such as Iressa, Tarceva and Caprelsa are potent tyrosine kinase
inhibitors based on the quinazoline structure. Quinazolines when
condensed with other heterocycles have also been shown to act
as antitumour DNA ligands that target DNA topoisomerase.

Many reports have demonstrated efficient synthetic routes to
quinazolines, but very few have addressed an efficient synthesis
of 4-keto derivatives. A recent publication has described a traceless
solid-phase supported method for the synthesis of 4-ketoquinazo-
lines which is an attractive route as cleavage of products from the
solid support leaves no visible functionality where the compound
was covalently bound to the support [1].

The synthesis commenced with immobilisation of Fmoc-
protected a-amino acids onto Wang resin support through an
ester bond. Following deprotection of the amines, reaction with
4-substituted 2-nosyl chlorides gave intermediates 1. The nosyl
group activates the amine to alkylation with various substituted
a-bromoketones under basic conditions to give intermediates 2.
These sulfonamides could now be reacted with DBU, and in a
sequence of events that involved base-catalysed tandem C–C bond
formation, cyclisation to indazole oxides, and rearrangement, the
quinazolines 3 were generated. Cleavage from the resin solid
support could be readily achieved by treatment with 50% trifluo-
roacetic acid to give 4. At this stage there was no sign of loss of
the carboxylic acid, but purification by reverse-phase HPLC in
aqueous ammonium acetate buffer with acetonitrile resulted in
spontaneous decarboxylation to give the final compounds 5. The
decarboxylation was monitored by LC/MS and it was found, not
unexpectedly, that the rate of loss was highly dependent on the
nature of substituents on the heterocyclic system.
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Final products were purified by semi-preparative HPLC and isolated
following freeze-drying. A number of different derivatives were
prepared and crude purities were found to be in the range 52–70%.
Total yields were in the range 8–56%, which were reasonable given
the 7 step overall synthesis. In conclusion, this new solid-phase
route provides an efficient approach to this important group of
heterocyclic products.
A summary of the papers in this month’s issue

Polymer supported synthesis

Polymyxin B and E are used as a ‘last line’ therapy for infections
caused by serious Gram-negative bacteria due to their highly effi-
cient antibacterial activity and nephrotoxicity. Much research has
been focused on designing polymyxin analogues by chemical syn-
thesis in order to decrease the nephrotoxicity and simultaneously
increase antibacterial activity. In a recent study, a new strategy
for the solid phase total synthesis of polymyxins and their

https://core.ac.uk/display/82175218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.comche.2015.09.001
mailto:nterrett@ensembletx.com
http://dx.doi.org/10.1016/j.comche.2015.09.001
http://www.sciencedirect.com/science/journal/14643383
http://www.elsevier.com/locate/comche


40 N.K. Terrett / Combinatorial Chemistry - An Online Journal 17 (2015) 39–42
analogues has been described. This method was achieved by
anchoring the amine side chain of Dab9 on resin followed by
on-resin cyclisation. This method is more convenient and efficient,
and thus maybe a good replacement for current chemical synthetic
method in designing polymyxin analogues [2].

Solution-phase synthesis

A parallel and advantageous multi-component one pot reaction
has been developed utilising a domino Aldol condensation–Michael
addition–Suzuki coupling approach for a variety of 2,3-disubsti-
tuted highly functionalised quinolines. The domino reactions of
2-chloro-3-formylquinolines, acetophenones, and distinctive
boronic acids, were carried out using PdCl2(PPh3)2/tripotassium
phosphate/ethanol–water system. At 80 �C they gave diversified
functionalised quinolines in good yields [3].

Scaffolds and synthons for combinatorial libraries

No papers this month.

Solid-phase supported reagents

A simple, efficient, and eco-friendly method has been developed
for the synthesis of 4,5-dihydropyrrolo[1,2-a]quinoxalines using
sulfamic acid (H2NSO3H), a green and recyclable catalyst in water.
The method employs readily available catalysts and is notable for
short reaction time, operational simplicity, and high yields. The
catalyst can be recovered and reused without loss of activity and
more importantly, the reaction uses water as a solvent. The synthe-
sised compounds were screened for their cytotoxic potential
against two human cancer cell lines [4].

An efficient and green approach has been developed for the syn-
thesis of 2-substituted 2,3-dihydroquinazolin-4(1H)-ones directly
from corresponding substituted aromatic and aliphatic aldehyde
and anthranilamide using recyclable polymer-supported sulfonic
acid catalyst under aqueous conditions. Environmental acceptabil-
ity, operational simplicity, low cost, excellent functional group
compatibility, and high yields are the important features of this
protocol [5].

A simple and efficient procedure for the synthesis of pyra-
zoloisoquinoline and pyrazolopyridine derivatives by one-pot
three-component condensation of aminopyrazoles, aldehydes,
and cycloketones has been reported. The process takes place in
water using carbonaceous material as a solid acid catalyst, and
offers several advantages such as simple experimental and
work-up procedures, high yield, recovery, and reusability of the
metal-free solid acid heterogeneous catalyst [6].
Novel resins, linkers and techniques

A new method compatible with 9-fluorenylmethoxycarbonyl
(Fmoc) solid phase peptide synthesis has been developed to
synthesise photocaged peptides carrying the photosensitive 4-
methoxy-7-nitroindoline (MNI) group on the side chain of aspartic
acid (Asp) and glutamic acid (Glu). The caged building blocks,
Fmoc-Asp(MNI)-OH and Fmoc-Glu(MNI)-OH, could be readily
synthesised on multi-gram scale. An important advantage of the
new method is that the MNI group prevents the formation of
aminosuccinyl side products and pyrrolidones during Fmoc SPPS
and has rapid photolysis kinetics [7].

A novel fluorous polystyrene (FPS) MR-resin has been applied to
a fluorous solid-phase (FSP) reaction. The MR-FPS resin, developed
previously, possessed excellent chemical resistance to acids and
alkalis, and a fluorous-tagged compound was homogeneously
and loosely immobilised on the resin. The synthesis of an
antitumour drug, an N-methyl-N-nitrosourea conjugated
3-amino-b-carboline derivative, has been accomplished in high
yield by using this new fluorous reaction system. Using only
filtration, the fluorous 3-amino-b-carboline derivatives immo-
bilised on the MR-FPS resin were easily recovered from the
reaction mixtures. Subsequently, a diversity synthesis of
3-amino-9-benzyl-b-carboline derivatives has been pursued by
the FSP method giving high yields [8].

Library applications

The dopamine D3 receptor (D3R) is a target of interest for a
variety of neurological disorders including schizophrenia,
Parkinson’s disease, restless leg syndrome, and drug addiction.
A common molecular template used in the development of
D3R-selective antagonists and partial agonists incorporates a buty-
lamide linker between two pharmacophores, a phenylpiperazine
moiety and an extended aryl ring system. A recent publication
describes compounds that incorporate a change to that chemical
template, replacing the amide functional group in the linker chain
with a 1,2,3-triazole group as a bioisostere. D3R-binding function-
ality of the compounds was maintained and these novel 1,2,3-
triazole-containing compounds had modestly improved metabolic
stability [9].

The various scaffolds containing a 1,4-dihydropyrimidine ring
have been designed by considering the environment of the active
site of COX-1/COX-2 and 5-LOX enzymes. A structure-based library
design approach, including the focused library design and virtual
screening was used to select the 1,4-dihydropyrimidine scaffold
for simultaneous inhibition of both enzyme pathways. Following
library enumeration and docking, ten compounds were selected
for synthesis and evaluated for their COX-1, COX-2 and 5-LOX
inhibiting activity [10].

The formation of a series of analogues containing a pyridine
moiety in place of the natural thiazole heterocycle, found in the
potent, naturally occurring HDAC inhibitor Largazole has been
described. The synthetic strategy was designed modularly to
access multiple inhibitors with different aryl functionalities
containing both the natural depsipeptide and peptide isostere
variant of the macrocycle [11].

The association of two pharmacophoric entities generates ‘twin
drug’ or dimer derivatives, an approach recently applied for the
design of a small compound library for the interaction with
a4b2⁄ nicotinic acetylcholine receptors (nAChRs). The nAChR
ligand N,N-dimethyl-2-(pyridin-3-yloxy)ethan-1-amine served as
one pharmacological entity and was initially kept constant as one
part of the ‘twin’ compound. The ‘twin drug’ approach proved to
provide compounds with high affinity and subtype selectivity for
a4b2⁄ nAChRs [12].

Human DNA topoisomerase IIa (htIIa) is a validated target for
the development of novel anticancer agents. Starting from
previously described 4-amino-1,3,5-triazine inhibitors of htIIa, a
library of 2,4,6-trisubstituted-1,3,5-triazines was investigated to
find novel inhibitors that bind to the htIIa ATP binding site. One
compound was found to inhibit htIIa decatenation in a superior
fashion to etoposide. 4,6-Disubstituted-1,3,5-triazin-2(1H)-ones
represent the first validated monocyclic class of catalytic inhibitors
that bind to the to the htIIa ATPase domain [13].

The synthesis of 2,3,5-trisubstituted 7-azaindoles as well as 2,5-
disubstituted 7-azaindoles from 3,5-dihalogenated 2-aminopyridi-
nes has been outlined in a recent paper. Expertise gained in the
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synthesis of azaindoles was used to assemble a few small libraries
of substituted azaindoles, and some of these azaindole derivatives
showed very promising biological activity against the gastroin-
testinal protozoal parasite Giardia duodenalis [14].

A facile method has been applied to the synthesis of a 15-mem-
bered library of regio- and stereoselective oxazolones-grafted
spirooxindole-pyrrolidine, pyrrolizidines and pyrrolothiazoles.
After screening for cytotoxic activities against a spectrum of
cell-lines, one compound was identified as potent antitumour
agent that induced apoptosis [15].

To develop more effective antitumour steroidal drugs a library
that included twenty-two novel cytotoxic 2-alkyloxyl substituted
(25R)-spirostan-1,4,6-triene-3-ones was generated. The corre-
sponding 1,2,3-triazoles were also obtained through an abnormal
monoepoxide ring-opening/elimination and ‘click’ reactions. After
cytotoxic evaluations against HepG2, Caski and HeLa cell lines,
three steroidal triazoles in this library were found to possess
potent anti-proliferative effects against Caski cells with IC50 values
between 9.4 and 11.8 lM [16].

The synthesis and evaluation of a library of variably-linked
ciprofloxacin dimers has been described. These structures unify
and expand on the widespread use of fluoroquinolones as probes
in the antibiotic literature. A dimeric analogue showed enhanced
inhibition of its intracellular target (DNA gyrase), and translation
to antibacterial activity in whole cells was demonstrated. A princi-
pal component analysis demonstrated that the dimers occupy a
unique and privileged region of chemical space most similar to
the macrolide class of antibiotics [17].

Exploring the affinity-pocket binding moiety of a 2-aminothia-
zole (S)-proline-amide-urea series of selective PI3Ka inhibitors
using a parallel synthesis approach has led to the identification
of a novel 40,5-bisthiazole sub-series of compounds. The synthesis
and optimisation of both the affinity pocket and (S)-proline amide
moieties within this 40,5-bisthiazole sub-series have been
described. From this work a number of analogues were identified
as potent and selective PI3Ka inhibitor in vitro tool compounds
[18].
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