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1. Introduction

1.1. The local theory of blocks of finite groups was proposed originally by J. Alperin
and M. Broué in [1], and developed by L. Puig [12], where the source algebra of a block is
introduced as the smallest algebra which carries the local information of the block. One of
the classical applications of the theory is the researchilpotent blockgsee [2,9]). Re-
cently, understanding tifasionsof local pointed groups, L. Puig in [7] and [8] introduces
the hyperfocal subalgebrén the source algebra of a block, and proves its existence and
unigueness up to conjugation. The local information of nilpotent blocks are the simplest
case, and the structure theorem of their source algebras in [9] is the simplest case of the
Puig’s work on hyperfocal subalgebras.

Noting that Puig obtains his results in large enough coefficient fields, in this paper we
make a research on the hyperfocal subalgebramofce algebra®f blocks over small
ground-fields.

1.2. Let G always be a finite group. Lgi be a prime number, an@ be a complete
discrete valuation ring with a fraction field of characteristic zero and a perfect residue
field k = O/J(O) of characteristip. All O-algebras considered in this paper are associa-
tive and unitary, and-free of finite rank; but subalgebras of an algebra are not necessarily
unitary, i.e., the identity element of a subalgebra may be different from the identity element
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of the algebra. For an algebrg we denote by (A), Z(A) and A* the Jacobson radical
of A, the center ofA and the set of all invertible elements afrespectively. AG-algebra
means an algebra with a group homomorphisr&@ — Aut(A), where the latter denotes
the automorphism group of the algebtaAn interior G-algebra means an algebtawith
a group homomorphisiy — A*.

For aG-algebraA and a subgroup of G, by A” we denote the unitary subalgebra of
A consisting of theP-fixed elements ofi; and denote

AP) =k ®0 (AP/ 3 AS),

osep

where Q runs on the set of the proper subgroups"oandAg denotes the image of the
relative trace maplr),: A¢ — A”; and we call the canonical surjective homomorphism
Brf, : AP — A(P) the Brauer homomorphisrassociated withP. By the way, we remark
that for anyOG-moduleM, the O-submoduleV @, the trace map §: M2 — M*, and
M’Q’, M (P) and the Brauer map Br: M? — M(P), are defined similarly.

1.3. Recall that gpointed groupH, on aG-algebraA means a paitH, «), whereH
is a subgroup ofF andw is a conjugate class of primitive idempotents of the algetifa
a pointed groupK is said to becontainedin H,, denoted byKg < Hy, if K < H and
there exist € « andj € g such thatj = j = ji. A pointed groupP, is said to bdocal
if Br4(y) # {0}. Then all the maximal local pointed groups which are contained in a
pointed groupH, form exactly oneH -conjugate class; and they are caltkafect pointed
groupsof Hy. Thus the stabilizeNy (P,) in H of the defect pointed group, of H, is
unique up to conjugation. We sé&ly (P,) = Ny (P,)/PCn(P). And, fori € y, we set
A, =iAi, and call it asource algebraf H,, see [12].

1.4. In the following, letA = OG be the group algebra ovér of the finite groupG.
Obviously, the conjugate action @f induces aG-algebra structure oA. Let Gy be a
pointed group om; thenb is called anO-blockof G. Let P, be a defect pointed group of
Gy andi € y, and setd,, =i Ai, which admits an obviou® P-interior algebra structure.
Since Bri(y) is a point ofA(P) = kCg (P), it determines a unique blodk, of kCg (P)
such that, Br4(y) # 0. Further, the surjective homomorphi€d€¢ (P) — kCg (P) in-
duces a surjective homomorphistidOCg (P)) — Z(kCg(P)), henceéy can be lifted to
a unique central primitive idempoteit of OCg (P). SetCg (P) = Cg(P)/Z(P), and let

b, be the image ob, in OC(P). By [6, 4.3], we have that
O =27(0Cs(P)by) (1.4.1)

is anunramified Galois extensiaof O, that is, the fraction field of O is a Galois exten-
sion of  and the residue fileklof O is a separable Galois extensiorkofind they have the
same Galois group’ = Gal()C/K) = Gal(O/0O) = Gal(k/ k), which is in fact cyclic (see

[4, 2.2.2]). Moreover, by [6, 4.3] agaidC¢ (P)b, is a full matrix algebra ove®. Since
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A, is embedded int@G as interior P-algebras and the embedding is compatible with
Brauer homomorphisms, we have th%j’/](A)’f) is embedded intd ®» OCq(P)b,,
thusAl /J(AD) =k

1.5. LetA=0G =0®p A andP; be a pointed group of such that there exisise
y suchthaii =i =ii. ThenP; determines a uniqu@-blockb of A such thabb = b and
we setd; =iAi; since the Brauer homomorphisms/Band Br} induce an isomorphism
k®r A(P) = A(P), itis easily checked thak; is a defect pointed group aﬂ{,;}. Because
A, is embedded intd ®» A, asO P-interior algebras and

~

(680 A2)/1(O 80 AL)= O o (AL /1(AL)) = g k=M

is a direct sum of/I"| copies ofk; henceA)f/J(A)f) is isomorphic tok. Similarly,
Z(Ab)/J(Z(Ab)) is isomorphic tok. That is,i andb are absolutely primitive il and
in Z(A) respectively.

Let k be an algebraic closure @fand ® be an unramified extension @ with the
residue fieldk. Then from [6, 2.13], we can conclude that b is an@-block of G and
y is contained in a poing of P on OG; moreoverpP; is a defect pointed group of the
blockb.

1.6. Recall that aself-centralizingoointed groupQ; on OG is a local pointed group
onOG such thatZ (Q) is a defect group of the blodk of OC (Q) determined by (i.e.,
b BrQ(S) # {0}); and, aressentiapointed groupk; on OG is a self-centralizing pointed
group ondG such that the quotiertf; (R;) contains a proper subgroup satisfying that
p divides|M | but does not dividéM N M*| for anyx € Eg(R;) — M. And recall that the
hyperfocal subgroug of P; (see [8, 1.3] or [7, 13.2]) is generated by the commutators
[K, R], whereR; < P; is either essential or equal #®; and K runs over the set op’-
subgroups oiNg (R;).

1.7. Let Q be the normal subgroup @f generated by) and the commutatof, Q]
wherek runs over they’-subgroups oNg (P,).

Our main result is as follows, wher® is called ahyperfocal subalgebraf the O-
blockb.

Theorem 1.8. With notation as above, and assume that(P, ) is a p’-group. Then there
exists aP-stable unitaryO-subalgebraD of A,, such that

DNPi=Qi and A, =P Du, (1.8.1)
u

wherex runs on a set of representatives By Q in P; and all such subalgebras df, are
conjugate to each other ky+ J(A)’,’).
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Remark 1.9. The idempotentis the identity elementod,; andP = Pi C (A,)* because
OG is a projectiveO P-module. The subalgebr@ described in (1.8.1) inherits af Q-
interior P-algebrastructure from the interioP-algebraA, , so the second equality means
that A, is acrossed producof P/Q by D. More preciselyA, =D ®pg OP asOP-
interior algebras, wher® ® oo OP is endowed with multiplication

d®x)(d ®x)=d(d” )@xx, Vd,d €D, x,x € P;

we denoteD ® o P = D ®p o OP, and call ittwistedQ-group algebra ofP overD. Thus
(1.8.1) can be restated as

DNPi=Qi and A, =D®g P. (1.9.1)
For details, please see [6, 1.6].

In Section 2 we prove the theorem for the case hat O; note thatE (P, ) is always

a p’-group if 0=0 (see [6, 4.4.2]). In Section 3 we show some general properties of
hyperfocal subalgebras of a block; then we prove the theorem for the case thal in
Section 4.

2. Hyperfocal subalgebrasin the casethat O = ©

2.1. First we mention two general facts; then from 2.3 on we turn to our objects.
Let X be a group and be a normal subgroup of such thatX/Y = G, i.e., X is an
extensiorof G by Y. The conjugation of elements &f induces a group homomorphism

G — Aut(Y) whereAut(Y) denotes the outer automorphism grougrofSuch a group
which is endowed with a group homomorphigm— Aut(Y) is called aG-acted group
Recall that aG-acted groufy is said to bauniquely splitif any extension ol by ¥ splits
and all the splittings are pairwise conjugate. LEt},cn be anormal filtration of Y, i.e.,

a family of normal subgroups df indexed by the sé¥ of the natural numbers such that
Yo=Y andY, ;1 C Y, for anyn € N; then we have a canonical group homomorphism
from Y to the projective limit lim{Y / Y.}, cy. We say thatY, },en is @ completing filtration
of Y if ¢ is an isomorphism. A normal filtratiofiY,, },en Of Y is calledinterior if for
anyn € N the image ofY in Aut(Y,,/Y,+1) coincides with the inner automorphism group
Int(Y,,/Y,+1) of Y¥,,/Y,+1. Please see [6, §3] for details.

Lemma 2.2. Letk be an algebraic closure of (recall thatk is perfec}, and O be an
unramified extension @ such thatO/J(O) k.If A is a G-algebra over® and B is a
G-stable subalgebra of, then there are a® c @ which is a finite Galois extension over
O and aG-algebraA over® and aG-stable subalgebra of A such thatd = O ®p A

andB=0®, B

Proof. Let K be a fraction field ofO. Let {a1,az,...,a,} be anO-basis of A, and
{d1,d>, ...,d,)} be anO-basis ofB. Assume that
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n n
ajaj = Z)»ijkak, di = Z Wik,
k=1 k=1

m m
didj = Z Cijkdr, d’ = Z Nx.ikdx, X €G,
=1

where alli;jk, ik, Sijk, Nx,ik € O are algebraic oved. Let K be the normal closure of the
extension oflC generated by all the; ik, wik, &ijk, 1x,ik; and let® be the integral closure
of O in K. ThenK andO are finite Galois extensions & and© respectively, andi =
Y7 1 Oa; andB =3"" | Od; are desired algebras

Remark. Itis clear that the conclusion still holds for finitely many subalgebras.of

2.3. From now on to the end of this section we keep the notation in 1.2, 1.4, 1.5, and
1.7, and always assume tiat= O; note thatin this casEg(P,) is always g’-group (see
[6, 4.4.2]). Then for any extensiafl < O < O, we have thab = b is a block idempotent
of OG, andi = is a primitive idempotent uQOG)P andA; = iOGi is a source algebra
of the O-block b, whereP; is a pointed group oG such thai € y.

Lemma 2.4._V\ﬁth notation as abov_e, assume tidats a finit(_a extension aP ang thatD is
a P-stableO-subalgebra oA, = O ®o A, fulfilling that D N Pi = Qi andD ®¢ P =
A,. Theanﬂ(Af)(D) =1+ J(ZA)))A+ J(DPY).

Proof. The proof is inspired by [7]. Lek be an algebraic closure afand O be a cor-
responding unramified extension 6f such that®/J(0) = k. Then, by in [6, 2.13.5],
P, determines a defect pointed grop of the O-block ; then by [14, 38.10)(A; ) (P) =
kZ(P), and further we have thatd,)(P) = kZ(P), wherek = O/J(O). Moreover,
D(P) is a direct summand o(Ay)(P) as kCQ(P) -modules, and for any € Z(P),
we have(Du)(P) = D(P); consequentlyD(P) = kCo(P). Let U be a set of repre-
sentatives ofP/Q in P. For anya e N1+J(A5)(D) we can writea =), ., a,, Where

ay € Du;thenY", cynozcp) Breaw) € Brp(i)+J((A,)(P)), and thus there exists a suit-

ablez € UN QZ(P) such that Bp (a;) is not contained inl((A,,)(P)). In particular, there
existsh € O* such thata.z"tei + J(DF).
Setc = A7Yz(a;)7a; thenc € Nyyycap) (D). Write ¢ =i + Y,y g cu, Where

cu € Du; foranyd € D, there existgl’ € D such that

(cz®1)(i+ ) cu)z(i—i— > cu)(ml),

ueU—-Q uelU—-Q

thusd = d’ and further we havéd ® 1)c, = c,(d ® 1) for anyu € U — Q. In conclusion,
cei+J(Z(A). O
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Lemma 2.5. With notatior_1 as abovel assume tieatis a unramified quois e3<tension of
O with the Galois group/” and thatD is a P-stable O-subalgebra ofA, = O ®¢ A,
fulfilling that D N Pi = Qi and D ®g P = A,. ThenN,,; ,(D) is a uniquely split

I"-acted group.

Proof. In fact, the family{1 + J(DPy™1y, .y is clearly an interior completing filtration
of 14+ J(DF), and for anyz > 1 the map — 1+ r induces a group isomorphism

1(O"Y (D7) (14 2 (B7)) (14 1 (D).

by [6, 3.8], 1+ J(D") is a uniquely split”-acted group. Applying [6, Theorem 3.11] to
the case that = Ny ;; ,(D) andX = Ny ;; ,(D) x I andG = I" and O-algebra

D” andM = J(Z(A,)) andN = J(Z(D)"), we have thatl+ M)/(1+ N) is a uniquely
split I"-acted group. By Lemma 2.4 and [6, Corollary 3.6], we concludeMigy(Ay)(D)

is a uniquely split”-acted group. O
2.6. A proof of the existence of Theorem 1.8

SetA = OG = O®0p A, and consider the source algelra= i OGi of the blockOGb
with a defect pointed group; wherei € y. By [7, Theorem 15.10] or [8, Theorem 1.8],

there exists &-stableO-subalgebra of A; such thatD N Pi = Qi andA; = @, Du
with u running on a set of representatives #yQ in P. By Lemma 2.2, there are an
O < O which is an unramified finite Galois extension®fand aP-stable subalgebr®
of O ®0p A, such thatD = O ® 5 D. In particular, we also have that

DNPi=Qi and O®p A, =P Du
u

with « running on a set of representatives #®fQ in P. Let I” be the Galois group ab
over©; thenI” acts onO ®o 4, in a natural way, and> = D is the desiredP-stable
O-subalgebra of, .

2.7. A proof of the uniqueness of Theorem 1.8

With notation as above, assume that btland D’ are two P-stableO-subalgebras of
A, fulfilling (1.8.1). Then (1.8.1) also holds in;; for bothO ®» D andO ®o D', i.e.,
(O®oD)NPi=Qi and A;=(0®0 D)®g P;
(O®p D')NPi=Qi and A; =(0®p D) ®g P.

By [7,14.7]or [8, 1.8], thereis afne 1+ J(Ag) such that® ®p D)* = (O ®p D). By

Lemma 2.2, tr]ere areaf c O which_is an un_ramijied finite Galois extension@fand
anaci+ J(O®p Ay)P) such that O ® » D)* = O ®» D’. Considering the action on
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O ®o A, of the Galois group™ of O over O, for anyt € I we have(O ®» D)'@ =
O X0 D’.

Setd, =0 ®0 Ay, D=0 ®p D, andD' = O ®p D', and letS be the set of
all the elements: of 1+ J(A)f) such thatD? = D’. Then it is easily checked that the
group Ny ;4 (D) x I" acts on the se and Ny, ,; ,(D) acts regularly orS. Since
Ny4 (4, (D) acts regularly or, the stabilizer of any element 6fin Ny, ;(; (D) x I’

is isomorphic tol; then, by Lemma 2.5 and [6, 3.3}‘,f is non-empty; moreover, there
existsa € (1+ J(A)f’))r =1+ J(A]) such thatD® = D’; consequentlyD? = (D%)!" =
(DHY'=D'.

3. Thelocal structure of hyperfocal subalgebras

3.1. Keep the notation in 1.2 tbughout this section. Firstewecall a general notation,
then turn to show some general properties of hyperfocal subalgebras.

Let H be a normal subgroup @f. Assume tha# is an H -interior G-algebra, i.e.A is
a G-algebra with an interioff -algebra structure compatible with tiieaction, cf. [6, 1.6].
Let K, andL; be pointed groups oA, and assume th& C H L. Recall that a group ex-
omorphism fromK to L is an orbit on the set of the injective group homomorphisms from
K to L under the natural action of the product(lkiy x Int(L) of the inner automorphism
groups IntK) and In(L) of K and of L respectively. We say that a group exomorphism
determined by an injective group homomorphigmk — L, fulfilling ¢ (y) € yH for all
y € K, is anA-fusionfrom K, to L; if, for somei € y and somg € §, there exista € A*
such that Ai c (jAj)* and

(ai)? = (y_lqb(y))ai and (ia_l)y = ia_l(y_lq)(y))_l, Vye K. (3.1.1)

By Fa(K,, Ls) we denote the set of thé-fusions fromkK, to Ls, and write F4(K,)
instead of F4 (K, , K,). Further, suppos@(K) = L and let A4 (K) = {(¢(x), X)}xek
be a subgroup of. x K; then jAi admits anOAy4(K)-module structure defined by
(p(x),x)a = ¢p(x)ax~1 for anyx € K anda € jAi. Note that, ifp(K) = L, 1 also
determines am-fusion fromL; to K, .

Lemma 3.2. With notation as above, a group isomorphigmkK = L such that (x) e xH
for all x € K determines am-fusion fromk,, to L; if and only if

(A2 B (A2 K = AK, (3.2.1)

Proof. The essential materials of the prooédrom [7]. In any case, it is easily checked
that the left side of the equality is contained in the right one and it is a two-sided ideal
of the right one. Ifg € F4(K,, Ls) anda € A* fulfills equality (3.1.1), themwi andia~!
belong to(j Ai)2¢K) and(iAj)AWl(L) respectively, thus the equality (3.2.1) holds. Con-
versely, since AX; is a local algebra, the equality.@31) implies that we can choose
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ce (iAj)? ™) andd e (jAi)2+K) such thated is invertible ini AXi; modifying our
choice, we may assume thai = i; thendc is a non-zero idempotent gfA” j, hence
dc = j. In particular,i andj are conjugate im, i.e.,i = j® forab € A*. We claim that
a=d+ (1— j)b(1—i) isinvertible inA and fulfills equality (3.1.1); indeed, it is easily
checked that + (1 —i)b~1(1— j) is the inverse o, and, sinceii = d andia ! = ¢, the
equality follows from the fact that\, (K) fixesai and A ,-1(L) fixesia™l. O

3.3. From now on we turn to the notation 1.4, 1.5, and 1.7, and always assunie that
is a P-stable unitary subalgebra df, fulfilling (1.8.1). ThenA,, is an interiorP-algebra,
while D is anO Q-interior P-algebra. Note that N A, =y N D = {i}, so Py, is a local
pointed group on botA, andD; we denote the both b#, again for convenience. Further,
we identify Pi € A, with P, and identifyui € Pi with u € P for convenience.

Let¢: P — P determine aD-fusion of P, i.e.,¢ € Fp(P,), and assume thate D
makes (3.1.1) holds; then i, (notin D) (3.1.1) is rewritten a8 lya=¢(y),VyeP.
In other words,

Fp(Py)=Np+(P)/(Np-(P) N (A])"P), (3.3.2)

whereNp«(P) = {a € D* | P* = P}. On the other hand, it is known from [11, 2.13 and
3.1] that

Fa,(Py) =Ny «(P)/((A])"P) = EG(P)). (3.3.2)

Since itis shown in the end of 1.4 tk(adxf)*/(i + J(A)’,’)) =k, by [13, Chapter Il, Propo-
sition 8] we get

(AD) = (i +J(A])) x k*; (3.3.3)
with a suitable identification we regakd < (A)f’)* and(A)f’)* =@+ J(A)f’)) x k*. And

Ec(Py)°=Na,-(P)/((i + J(AD))P) (3.3.4)
is an extension o (P,) by k*, we call it ak*-groupwith k*-quotientEg (P, ).

Lemma 3.4. Notation as above. TheFp (Py) = Fa, (Py).

Proof. The essential materials of the proof come from [7]. It is clear #iatP,) <

Fa, (Py). Letg € F4, (Py) and¢ be a suitable representative of the-fusion. It follows
from Lemma 3.2 that

Ag(P) y A1 (P) _ p
A7 A, =A,,
sinceP, is local, this equality implies that thelinear map

(Ay)(A(P)) ®k (A))(Ag-1(P)) = (Ay)(P)
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induced by the multiplication i, is surjective. LeT be a set of representatives By Q0
in P, andU be the set of € T such thaip(y)r~1y~1t e 0t~ foranyy e P, we have

(4)(4p(P)) = P (D ®u")(44(P)) and

uel

(Ay)(Ag-10p) = EPD @ u)(A4-2(P)).

uelU

Consequently, there exigt v € U andc, d € D such thaid,(P) fixesc ® u1, Ay-1(P)

fixesd ® v and the productc ® u~1)(d ® v) is invertible in Af; thus, modifying the
choice of the second factor, we can assume that: andcd” =i. In particular, we get
¢(Q) = Q. SinceAy(P) fixesc ® ut andA,-1(P) fixesd ® v, it is easily checked that

¢ € DA andd* e D*v"): then, since:d” =i, we get
DA¢(P)DA¢71(P) — pP.
Thus, by Lemma 3.2 again, we have thhat Fp(P,). O
Lemma3.5. DY /1(DP) = Af/J(Af).
Proof. Assumethaf’'/Q = Z(P/Q) andU is a set of the representativesioin P. Then
Ay (P)=EP(D ®g u)(P).
uelU

It is easy to check thatD ®¢ u)(P)(D ®¢ v)(P) C (D ®¢ uv)(P) for anyu,v € P;
i.e., (A,)(P) is aT-gradedk-algebra. Sef = (A,)(P)J(D(P))(A,)(P). By the com-
putation similar to the first and second pguaphs of the proof of [7, Lemma 7.3], we
have that/ (D(P)) C J(A(P)) and thatl is aT-graded proper ideal af4, )(P) with the
t-component

I =Y (A))(P)y J(D(P))(A)(P), 1,

yeT
thus(A, )(P)/1 is aT-gradedk-algebra with 1-componentisomorphickd’ /J (D). Set
T'={reT | ((A)P)/1),((A)(P)/T),-1=((A4))(P)),},

then it is easily checked thdf’ is a subgroup off (see [5, Lemma 8]), and by
[5, Lemma 9],, . ((A,)(P)/I); is a crossed product arg,.,_ ((A,)(P)/I); is a
nilpotent ideal of(A, ) (P)/1. SinceD? /J(D?) is a perfect fielddD, ., (A, ) (P) /1), is
isomorphic to the group algebra &f over D” /J (D*); thusD? /J(D*) = AL /T (A).

O
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Remark. By the lemma and 1.4 and [13, Chapter II, Proposition 8], we can lift it to an
algebra injectio® — D?; on the other hand, a choice of the subgrétipf (AP)* in3.3
also determines an algebra |nject|@n—> AP But by [3, Lemma 2.3], these two algebra
injections are conjugate b+ J(A)’,’) SO W|th a suitable choice, we can assume that
they coincide with each other. Sim the following we assume thdd < DF; and, since

O* = (1+ J(O)) x k*, we have

(D))" = (i + J (D)) x k*. (35.1)

3.6. From now on, we further always assume that(P, ) is a p’-group.
SinceNg (P, ) stabilizes bottCg (P) and the bloclk, of OCg (P), we see thaEg (P))

acts on® by the equality (1.4.1). Then the actions@§ (P,) on P and® determine a
group homomorphism

A

EG(P,) — Aut(0,0P), (3.6.1)

where AutO, OP) denotes the group of thé-semi-linear automorphisms @ P, and
Aut(O OP) denotes the quotient group of AQ, OP) by the inner automorphism group
Int(OP) of OP induced by all the invertible elements ofp.

Because the kernel of the surjective homomorphiég(P)/C(P) — Eg(Py) is a
p-group, we can lift it to an injective group homomorphi&ws (P, ) — Aut(P). Thus, the

actions ofEg (P, ) on bothP andO determine a group homomorphism

A

0:Eg(Py) — Aut(O, OP) (3.6.2)

such thatd(Eg(P,)) stabilizes both® and P, and for anyx € Eg(P)) there is ap’-
elements € Ng (P,) fulfilling

0(x)u)=u®, VYueP. (3.6.3)

In the following we fix such a group homomorphighin (3.6.2); and note that by the
definition 1.7 ofQ and (3.6.3) we have the following conclusion:

Q is stabilized by th& s (P, )-action onP throughg. (3.6.4)

We remark that the (3.6.1) can always be lifted to a uniqu(éflﬂt)-conjugate class of
homomorphism&g (P, ) — Aut(O, OP), but the lifting which stabilize® may not exist
if Eg(P,) is notap’-group, cf [6, 1.14 and 1.15].

Proposition 3.7.

(1) There is a subgroug of Na; (P) such thatf 2 k* (recall k* < (D)* € (AD)*, see
(3.5.1))and(3.3.4)induces an isomorphist = EG(P),)O; and all such subgroups of
N3 (P) are conjugate bV (P x kyn i+ J(AD)P.
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(2) There is a subgroup‘:" of Np=(P) such thatE D k* and (3.3.4)induces an iso-
morphism E = EG(P )°; and all such subgroups oNp+(P) are conjugate by

Np«(P x k)N (i + J(A;’))P.

Proof. (1) Denote by the centralizer of* in J(AJ’,’); itis clear thatV is anO-submodule
of J (A7) satisfying that.V c V, thusi +V is a subgroup of + J (A}). Then, by (3.3.2)

and (3.3.3), we havNA; (P x 12*)/((1‘ +V)xk*)P = Eg(Py,), thus we have a short exact
sequence

1— (i + V) Pk* /k* indl, Nas (P x k) /k* £ Eg(P,) — 1. (3.7.1)

where ‘:incl” is the inclusion map angd is induced by (3.3.4). However (i + Y)l@*/

(i + V)k* is afinite p-group andEg (P, ) is a finite p’-group,P (i + V)k*/(i + V)k* is a
uniquely splitE (P, )-acted group. On the other hand, sirieeV is equal to the subgroup
of y €i + J(AP) such tha)” = O, by [10, Lemma 4.10] ah[6, Proposition 3.5]; + V

is a uniquely splitEg (P))-acted group. Furthe®? andi 4+ V centralize each other, by
[6, 3.6] we have thati + V) Pk*/k* is a uniquely splitEg (P, )-acted group. Therefore
the sequence (3.7.1) is uniquely spl|t that is, there is a subgf¢k1bc Nas (P x k*)/k*
such that the restriction maqu/k* : E/k — Eg(Py) is an |somorph|sm and all such
subgroups oNA* (P)/k* are conjugate to each other by+ V)Pk*/k*

(2) By Lemma 3.4 we havép (P,) = Eg(Py), thus by (3.3.1) we have an exact se-
guence
1— (Np+(P x &%) 0 P(AD)")/k* 2% Npu (P x k) /k* £ Eg(P)) — 1. (3.7.2)

SetW = VN J(DF); thenitis clear thaW is the centralizer ot* in J (D) and thatw is
anO-submodule of/ (D) such thatW.W c W, thusi + W is a subgroup of + J(D?).
Then similar to the proof below (3.7.1), we also can obtain that

Np+(P x k*) N (i + J (AY) P) is a uniquely spliteg (P, )-acted group (3.7.3)
thus we get the conclusions of (2)O

Remark. Recall thatD is P-stable, from the proposition we have the following conclusion:

If k* C such that(3.3.4)induces an |somorph|sn]§ EG(Py),

then there is am € i + J(A}) such thatt € D (3.7.4)

3.8. Now we follow the idea of [6, 84] to chooseandb in 1.5 suitably. Let; be
the primitive idempotent 0 ®p O which is mapped non-zero by the homomorphism
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O®0 O — O, 1@ pr> Au. By [6, Proposition 4.10], there exists an injective unitary
homomorphism fron© to A,,, hence we have an injective homomorphism

OO0 0— 0®p Ay, (3.8.1)

By [6, 4.13.2],j determines a primitive idempotehbf A” through the above homomor-
phism (3.8.1), and there exists a unique local pgiof P on OG such thaf e y.Leth be
the O-block of G such thaty = y; by [6, 2.13.5],P; is a defect pointed group @ ;.
SetA; =iAi; thenA; is a source algebra @Gb.

Then, by [6, 1.19.1], the usual trace mag Ton O ®0 A, induces ak*-group ho-
momorphismEg (P;)° — Eg(Py)° which is a lifting of the inclusion magEq (P;) C
EG(Py). Thus by [6, 1.20]A; admits and £ (P;)°-interior £ (P, )°-algebra structure,
uAnique up to(A)é’)*-conjugation, such that the action éb(Py)° stabilizes the image of
OP and induces the group homomorphism (3.6.2); and there exigbPaimterior algebra
isomorphism

lnz

n:A, = A, B (p,)e EG(P))°. (3.8.2)
Moreover, by our choice of the group homomorphism (3.6E?<)(P);)° stabilizesP
andA; also admits atD(P x Eg(P;)°)-interior P x Eg(P,)°-algebra structure, which
extends the usual interic@P-aIgebra structure oﬁ);; and the isomorphism (3.8.2) be-

comes and(P x EG(P,,)")—interior algebra isomorphism. In particular; ! induces an
injection

P x Eg(Py)° — A} (3.8.3)

Theorem 3.9. Notation as above. I is a hyperfocal subalgebra of, (i.e.,(1.8.1)holds
for A, and D), then there are am € i + J((A})), and a hyperfocal subalgebi of A;
(i.e.,(1.8.1)holds forA; and D) which inherits fromA; an O E (Py)°-interior E(Py)°-
algebra structure, and ai® Q-interior P-algebra isomorphismy’: D¢ = D ®I§G(Py)°
E¢ (Py)° such that the following diagram is commutative

Ay — Ap ®EA(,~(P);)° EG(Py)
incl

Tincl@id (3.9.1)

D' —= D®; 0 Ea(Py)°

/

where “incl” and “ id” denote the inclusion map and the identity map, respectively.
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Proof. We trace the construction of the isomorphism (3.8.2) in [6, 4.11-4.14].
Obviously the subgroup* of Eg(P,) determines a subgroug of (A]’f)* through the

isomorphism (3.8.2); now we fix the later sqbgrd?ﬁpBy [3, Lemma 2.3], we can assume
without loss of the generality thd containst™, thus by (3.7.4), we also can assume that
D contains the image ot (P,)° in A, and the homomorphism frof to A, induces

an injective unitary homomorphism @i ( P, )°-algebras fron© to D.
Let I" be the Galois group of) over O. We can regard® ®o D as anOEg(P,)°-
interior I x EG(P,,)O-aIgebra (cf. [6, 1.6]). The formula (3.8.1) can be rewritten as

@@@@—)@@oDC@@O Ay, (3.9.2)

which is a homomorphism af’ x EG(P},)O—aIgebras oveO.

Let J be the set of primitive idempotents ¥®» O, and; be the element of which
does not vanish through the product mM@mo O — O. Through (3.9.2), by andi we
denote the image af and;j in O ®o A? respectively. Since the group x Eg(P,)°
stabilizes on/, it also stabilizes/. And both j andi have the same stabilizer, denoted
by H,in I x Eg(P,)°. Sincel" acts regularly ol andJ, the second projection map

I x Eg(P))° — Eg(P,)°
induces a group homomorphism
¢:HS Eg(P,)°. (3.9.3)
Thus there is a suitable group homomorpht“sniG(Py)" — I' such that
H= {(f(f)’f)}feéc(mv

It is easily checked that i) ®p O the action ofEg(P,) on O induced by? coincides
with the action ofE (P, ) in (3.8.2) (cf. [6, 4.12]), so the stabilizer gfandi in Eg(P,)°

(identified with 1x Eg(P,)°) coincides with the converse imagdé C Eg(P,)° of the
kernelK of the homomorphisnks (P, ) — Auto(@).

Considering the corresponding actionobn OG = O @ OG, by [6, 4.13.2], we have
thati belongs to a local point of P on OG, andy? # p for any nontrivial element of
I'. In particular,Eg(P;) = K. Leta = {b} be the point ofG on OG such thatP; C Gg;
similarly to [6, 4.13.4], we have

The stabilizer™® of & in I coincides with the image dig(P,) in I,

and T () belongs toZ (O ®p D)* . (3.9.4)
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Itis similar to [6, 4.14] tha’rD = z((’) R0 D)i inherits fromO ®o D the (’)K interior
H- -algebra structure, and Ro Db inherits theOEG(P )e-interior I'% x EG(P )°-
algebra structure. Hence the characterization [6, 2.7.4] appliésse, Db in O ®¢ D:;
whereas, sincéG(P )° is transitive or{?‘ }oera DY (3.9.4), the characterization [6, 2.6.3]
applies toD in O ®o Db. Similar to the isomorphism [6, 4.14.1] which is written as
in the first row of diagram (3.9.5) below, we get @EG(P )°-interior I' x OEG(P )°-
algebra isomorphismy’ shown in the second row of the diagram

A = A > 0 EG(Py)
O®o Ay — = O(I x EG(Py)°) ® i jig(p,y Mg (A )
incl T id®incl (3.9.5)
A = A 5 0 EG(Py)° 1
O®0D — O(I" x EG(Py)°) ® i ig(p,) Mg (D)

andg/(cf) =1 (1® d® 1) for de b= f(@ R0 D)f - O ®o D. Comparing with [6,
4.14], we see that the diagram (3.9.5) is commutative.

Since (O ®p A,)" = A, and (O ®p D)"" = D, by [6, 2.8 and 2.10] we have the
following isomorphism ¢ is the isomorphism (3.9.3)):

Reg(A,)=A;® H and Reg(D)=D®p H
where the first one is just [6, 4.14.2] and the second one is compatible with the first one.
In addition, it is not difficult to check thab = i(O ® D)i is a P-stableO-subalgebra of
A, satisfying that
D®oP=A; and DnPi=0Qi.

In a word, taking thel"-fixed algebras of the terms of the diagram (3.9.5), we get the
desired commutative diagram (3.9.1)a

4. Hyperfocal subalgebrasin the casethat © < O
4.1. Throughout this section we keep the notation in 1.4, 1.5 and 1.7, and always as-

sume thatEg(P,) is a p’-group, and fix the choice of in (3.6.2) andi, b in 3.8. In
particular, in (3.8.2) we have the isomorphism

lnz

n:Ay Ay ®EG(P;7)° EG(P)/)O. (4.1.2)

Lemma 4.2. Notation as above. Then there isPax E(P,)-stable subalgebrad of A,
such that

DNPi=Qi and Do P=A4,, (4.2.1)
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and any two such subalgebras are conjugaté byJ(A)f)EG(PV). Moreover, such a sub-
algebraD contains the image df(P;)° in A;.

Proof. Since we have proved in Section 2 that Theorem 1.8 holdsﬁg‘grthere exists
a P-stableO-subalgebraD satisfying (4.2.1), and + J(A)’;) acts transitively on the set
D of all the P-stableO-subalgebra® satisfying (4.2.1). By (3.6.4)Es(P,)° not only
stabilizesP, and stabilizeg as well; sof (P, ) also acts o). Thus(i + J(A)f))EG(P,,)
acts onD. For anyD € D, by Lemma 2.4, we have

Niysian (D) =+ 7(2(47))) (i + (D7),

which is a Eg (P, )-acted group. By [6, 4.3 and 3.1]J}J,;+J(M)(IA)) is a uniquely split
Y
Eq(Py)-acted group; moreover by [10, 4.é]+ J(A)f) is a uniquely splitEg (P, )-acted
group. So, by [6, 3.3]PEa(P) is nonempty andi + J(A)f))EG(PV) acts transitively on
’ZSEG(P)/)_
Let D be aP x Eg(P,)°-stableO-subalgebra ofd; such that (4.2.1) holds. Then

Proposition 3.7 applies to the cage= o, and we get a subgrouﬁ of D* such that
k*c Fc ND*(Pz) and F = EG(P )°. Let F be the set of all such subgroup*sof D*,

thenN . (P) N ((z + J(Ayp))P) acts by conjugation o transitively. Hencén 5. (P) N
(( + J(Ayr))P)) x Eg(Py) acts onF transitively. However, by (3.7.3)N.(P) N
(1 +J (Ayr)) P) is a uniquely splitE (P, )-acted group; hence, by [6, 3.3]F6 (") = ¢,
That is, Eg(Py) stabilizes a subgroug” of Npj.(Pi) with a group isomorphism
0 EG(P;)° = F.

For convenience, we identify the image BE (P;)° in A;; with EG(P;)°. Then it is
easily checked that the sgt()x 1| % € E“G(P);)"} is a p’-subgroup of(A)’;)*; however,
(A)f)* = k* x (i + J(Ay)) by [13, Chapter Il, Proposition 8] and+ J(A;) is a p'-
divisible group o ($)2 1 | % € Eg(P;)°} C k*. Thatis, we have proved the equality=
Eg(Py)°. O

4.3. A proof of the existence of Theorem 1.8

By Lemma 4.2, there exists B-stableO-subalgebra) of A; which satisfies (4.2.1)
and contains the image &fg (P;)° in A; and is stabilized b (P,)°. Then we have the
following P x EG(Py)°-interior algebra isomorphisms

12

Ay =4y ®EA6(P);)° Eg(Py)°

12

A; ? Opxkg(py) (P Ec(Py)°)
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12

([)@Q P) ®pxkg(Py)e (P x EG(PV)O)

(D ®0xEq(Py)e (P % Eg(Py)°)) ®pxikg(Py) (PxEg(Py)°)

12

;b®Q><1EAg(P};)° (P X EG(PV)o)
(D ®oxkg(Py)e (Q % Eg(Py)°)) ®0uigP,)e (PxEg(Py)°)

(D kg (pyye Eg(Py)°) ®¢ P.

12

12

Thus, setD to be the image im,, of the crossed produdd ® Py Eg(P,)° through
Y

the isomorphism (4.1.1); thel is a P-stable unitaryO-subalgebraD of A, and satisfies
the condition

DNPi=Qi and D®g P =A,.
4.4. A proof of the uniqueness of Theorem 1.8

Let D be as above, and assume tifi¥itis also aP-stableO-subalgebra oA, which
satisfies

D'NPi=Qi and D'®QP=Ay.

By Theorem 3.9, there are anc i + J(Af) and a hyperfocal subalgebf2 of A); such
that D" is the image in4, of D’ ®EA(;(P);)° Eg(P,)° through the isomorphism (4.1.1).
Since it is proved in Section 2 that Theorem 1.8 holds Agr, there is ana € i +
J(A)’A/J)EG(‘[’V)o such thath"’ = D: therefore, there exists’ € 1+ J(AP) such thatD"®’

is the image inA, of D ®EG(Pp)° Eg(Py)° through the isomorphism (4.1.1); that is,
D = p,
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