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1. Introduction

1.1. The local theory of blocks of finite groups was proposed originally by J. Alp
and M. Broué in [1], and developed by L. Puig [12], where the source algebra of a bl
introduced as the smallest algebra which carries the local information of the block. O
the classical applications of the theory is the research onnilpotent blocks(see [2,9]). Re-
cently, understanding thefusionsof local pointed groups, L. Puig in [7] and [8] introduc
the hyperfocal subalgebrain the source algebra of a block, and proves its existence
uniqueness up to conjugation. The local information of nilpotent blocks are the sim
case, and the structure theorem of their source algebras in [9] is the simplest case
Puig’s work on hyperfocal subalgebras.

Noting that Puig obtains his results in large enough coefficient fields, in this pap
make a research on the hyperfocal subalgebras ofsource algebrasof blocks over smal
ground-fields.

1.2. Let G always be a finite group. Letp be a prime number, andO be a complete
discrete valuation ring with a fraction fieldK of characteristic zero and a perfect resid
field k =O/J (O) of characteristicp. All O-algebras considered in this paper are asso
tive and unitary, andO-free of finite rank; but subalgebras of an algebra are not neces
unitary, i.e., the identity element of a subalgebra may be different from the identity ele
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of the algebra. For an algebraA, we denote byJ (A), Z(A) andA∗ the Jacobson radica
of A, the center ofA and the set of all invertible elements ofA respectively. AG-algebra
means an algebraA with a group homomorphismG → Aut(A), where the latter denote
the automorphism group of the algebraA. An interiorG-algebra means an algebraA with
a group homomorphismG → A∗.

For aG-algebraA and a subgroupP of G, by AP we denote the unitary subalgebra
A consisting of theP -fixed elements ofA; and denote

A(P) = k ⊗O

(
AP

/ ∑
Q�P

AP
Q

)
,

whereQ runs on the set of the proper subgroups ofP andAP
Q denotes the image of th

relative trace mapTrPQ :AQ → AP ; and we call the canonical surjective homomorph

BrAP :AP → A(P) theBrauer homomorphismassociated withP . By the way, we remark
that for anyOG-moduleM, theO-submoduleMG, the trace map TrPQ :MQ → MP , and

MP
Q , M(P) and the Brauer map BrM

P :MP → M(P), are defined similarly.

1.3. Recall that apointed groupHα on aG-algebraA means a pair(H,α), whereH

is a subgroup ofG andα is a conjugate class of primitive idempotents of the algebraAH ;
a pointed groupKβ is said to becontainedin Hα , denoted byKβ � Hα , if K � H and
there existi ∈ α andj ∈ β such thatij = j = j i. A pointed groupPγ is said to belocal
if BrA

P (γ ) �= {0}. Then all the maximal local pointed groupsPγ which are contained in
pointed groupHα form exactly oneH -conjugate class; and they are calleddefect pointed
groupsof Hα . Thus the stabilizerNH(Pγ ) in H of the defect pointed groupPγ of Hα is
unique up to conjugation. We setEH(Pγ ) = NH (Pγ )/PCH (P ). And, for i ∈ γ , we set
Aγ = iAi, and call it asource algebraof Hα , see [12].

1.4. In the following, letA = OG be the group algebra overO of the finite groupG.
Obviously, the conjugate action ofG induces aG-algebra structure onA. Let G{b} be a
pointed group onA; thenb is called anO-blockof G. Let Pγ be a defect pointed group o
G{b} andi ∈ γ , and setAγ = iAi, which admits an obviousOP -interior algebra structure
Since BrAP (γ ) is a point ofA(P) ∼= kCG(P ), it determines a unique block̄bγ of kCG(P )

such thatb̄γ BrAP (γ ) �= 0. Further, the surjective homomorphismOCG(P) → kCG(P ) in-
duces a surjective homomorphismZ(OCG(P)) → Z(kCG(P )), henceb̄γ can be lifted to
a unique central primitive idempotentbγ of OCG(P). SetC̄G(P ) = CG(P)/Z(P ), and let
¯̄bγ be the image ofbγ in OC̄G(P ). By [6, 4.3], we have that

Ô = Z
(
OC̄G(P ) ¯̄bγ

)
(1.4.1)

is anunramified Galois extensionof O, that is, the fraction field̂K of Ô is a Galois exten
sion ofK and the residue filed̂k of Ô is a separable Galois extension ofk, and they have th
same Galois groupΓ = Gal(K̂/K) = Gal(Ô/O) = Gal(k̂/k), which is in fact cyclic (see

[4, 2.2.2]). Moreover, by [6, 4.3] again,OC̄G(P ) ¯̄bγ is a full matrix algebra over̂O. Since
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Aγ is embedded intoOG as interiorP -algebras and the embedding is compatible w

Brauer homomorphisms, we have thatAP
γ /J (AP

γ ) is embedded intok ⊗O OC̄G(P ) ¯̄bγ ,

thusAP
γ /J (AP

γ ) ∼= k̂.

1.5. Let Â = ÔG = Ô⊗O A andPγ̂ be a pointed group of̂A such that there existŝi ∈
γ̂ such thatiî = î = îi. ThenPγ̂ determines a uniquêO-block b̂ of Â such thatbb̂ = b̂ and

we setÂγ̂ = îÂî; since the Brauer homomorphisms BrA
P and BrÂP induce an isomorphism

k̂ ⊗k A(P ) ∼= Â(P ), it is easily checked thatPγ̂ is a defect pointed group ofG{b̂}. Because

Âγ̂ is embedded intôO ⊗O Aγ asÔP -interior algebras and

(
Ô ⊗O AP

γ

)/
J
(
Ô ⊗O AP

γ

))∼= Ô ⊗O
(
AP

γ

/
J
(
AP

γ

)) ∼= Ô ⊗O k̂ ∼= k̂|Γ |

is a direct sum of|Γ | copies of k̂; henceÂP
γ̂
/J (ÂP

γ̂
) is isomorphic tok̂. Similarly,

Z(Âb̂)/J (Z(Âb̂)) is isomorphic tok̂. That is,î andb̂ are absolutely primitive inÂP and
in Z(Â) respectively.

Let k̃ be an algebraic closure ofk̂ and Õ be an unramified extension of̂O with the
residue fieldk̃. Then from [6, 2.13], we can conclude thatb̃ = b̂ is anÕ-block of G and
γ̂ is contained in a point̃γ of P on ÕG; moreoverPγ̃ is a defect pointed group of th
block b̃.

1.6. Recall that aself-centralizingpointed groupQδ̃ on ÕG is a local pointed group
on ÕG such thatZ(Q) is a defect group of the blockbδ̃ of ÕCG(Q) determined bỹδ (i.e.,
bδ̃ BrQ(δ̃) �= {0}); and, anessentialpointed groupRε̃ on ÕG is a self-centralizing pointe
group onÕG such that the quotientEG(Rε̃) contains a proper subgroupM satisfying that
p divides|M| but does not divide|M ∩ Mx | for anyx ∈ EG(Rε̃) − M. And recall that the
hyperfocal subgroup̃Q of Pγ̃ (see [8, 1.3] or [7, 13.2]) is generated by the commuta
[K,R], whereRε̃ � Pγ̃ is either essential or equal toPγ̃ andK runs over the set ofp′-
subgroups ofNG(Rε̃).

1.7. Let Q be the normal subgroup ofP generated bỹQ and the commutators[K,Q̃]
whereK runs over thep′-subgroups ofNG(Pγ ).

Our main result is as follows, whereD is called ahyperfocal subalgebraof the O-
blockb.

Theorem 1.8. With notation as above, and assume thatEG(Pγ ) is a p′-group. Then there
exists aP -stable unitaryO-subalgebraD of Aγ such that

D ∩ Pi = Qi and Aγ =
⊕

u

Du, (1.8.1)

whereu runs on a set of representatives forP/Q in P ; and all such subalgebras ofAγ are
conjugate to each other by1+ J (AP

γ ).
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Remark 1.9. The idempotenti is the identity element ofAγ ; andP ∼= Pi ⊂ (Aγ )∗ because
OG is a projectiveOP -module. The subalgebraD described in (1.8.1) inherits anOQ-
interior P -algebrastructure from the interiorP -algebraAγ , so the second equality mea
that Aγ is a crossed productof P/Q by D. More precisely,Aγ

∼= D ⊗OQ OP asOP -
interior algebras, whereD ⊗OQ OP is endowed with multiplication

(d ⊗ x)
(
d ′ ⊗ x ′) = d

(
d ′x−1) ⊗ xx ′, ∀d, d ′ ∈ D, x,x ′ ∈ P ;

we denoteD ⊗Q P = D ⊗OQ OP , and call ittwistedQ-group algebra ofP overD. Thus
(1.8.1) can be restated as

D ∩ Pi = Qi and Aγ
∼= D ⊗Q P. (1.9.1)

For details, please see [6, 1.6].

In Section 2 we prove the theorem for the case thatÔ =O; note thatEG(Pγ ) is always
a p′-group if Ô = O (see [6, 4.4.2]). In Section 3 we show some general propertie
hyperfocal subalgebras of a block; then we prove the theorem for the case thatO < Ô in
Section 4.

2. Hyperfocal subalgebras in the case that Ô = O

2.1. First we mention two general facts; then from 2.3 on we turn to our objects.
Let X be a group andY be a normal subgroup ofX such thatX/Y ∼= G, i.e.,X is an

extensionof G by Y . The conjugation of elements ofX induces a group homomorphis
G → Ãut(Y ) whereÃut(Y ) denotes the outer automorphism group ofY . Such a groupY
which is endowed with a group homomorphismG → Ãut(Y ) is called aG-acted group.
Recall that aG-acted groupY is said to beuniquely splitif any extension ofG by Y splits
and all the splittings are pairwise conjugate. Let{Yn}n∈N be anormal filtration of Y , i.e.,
a family of normal subgroups ofY indexed by the setN of the natural numbers such th
Y0 = Y andYn+1 ⊂ Yn for anyn ∈ N; then we have a canonical group homomorphisc
fromY to the projective limit lim←− {Y/Yn}n∈N. We say that{Yn}n∈N is a completing filtration
of Y if c is an isomorphism. A normal filtration{Yn}n∈N of Y is called interior if for
anyn ∈ N the image ofY in Aut(Yn/Yn+1) coincides with the inner automorphism gro
Int(Yn/Yn+1) of Yn/Yn+1. Please see [6, §3] for details.

Lemma 2.2. Let k̃ be an algebraic closure ofk (recall that k is perfect), and Õ be an
unramified extension ofO such thatÕ/J (Õ) = k̃. If Ã is a G-algebra overÕ and B̃ is a
G-stable subalgebra of̃A, then there are an̄O ⊂ Õ which is a finite Galois extension ov
O and aG-algebraĀ overŌ and aG-stable subalgebrāB of Ā such thatÃ = Õ ⊗Ō Ā

andB̃ = Õ ⊗Ō B̄.

Proof. Let K̃ be a fraction field ofÕ. Let {a1, a2, . . . , an} be anÕ-basis of Ã, and
{d1, d2, . . . , dm} be anÕ-basis ofB̃. Assume that
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λijkak, di =
n∑

k=1

µikak,

didj =
m∑

k=1

ζijkdk, dx
i =

m∑
k=1

ηx,ikdk, x ∈ G,

where allλijk,µik, ζijk, ηx,ik ∈ Õ are algebraic overO. Let K̄ be the normal closure of th
extension ofK generated by all theλijk ,µik, ζijk, ηx,ik ; and letŌ be the integral closur
of O in K̄. ThenK̄ andŌ are finite Galois extensions ofK andO respectively, and̄A =∑n

i=1 Ōai andB̄ = ∑m
i=1 Ōdi are desired algebras.�

Remark. It is clear that the conclusion still holds for finitely many subalgebras ofÃ.

2.3. From now on to the end of this section we keep the notation in 1.2, 1.4, 1.5
1.7, and always assume thatÔ =O; note that in this caseEG(Pγ ) is always ap′-group (see
[6, 4.4.2]). Then for any extensionO ⊆ Ō ⊆ Õ, we have thatb = b̂ is a block idempoten
of ŌG, andi = î is a primitive idempotent in(ŌG)P , andĀγ̄ = iŌGi is a source algebr
of theŌ-blockb, wherePγ̄ is a pointed group on̄OG such thati ∈ γ̄ .

Lemma 2.4. With notation as above, assume thatŌ is a finite extension ofO and thatD̄ is
a P -stableŌ-subalgebra ofĀγ = Ō ⊗O Aγ fulfilling that D̄ ∩ Pi = Qi andD̄ ⊗Q P =
Āγ . ThenN1+J (ĀP

γ )(D̄) = (1+ J (Z(Āγ )))(1+ J (D̄P )).

Proof. The proof is inspired by [7]. Let̃k be an algebraic closure ofk andÕ be a cor-
responding unramified extension ofO such thatÕ/J (Õ) = k̃. Then, by in [6, 2.13.5]
Pγ determines a defect pointed groupPγ̃ of theÕ-blockb; then by [14, 38.10],(Ãγ̃ )(P ) ∼=
k̃Z(P ), and further we have that(Āγ )(P ) ∼= k̄Z(P ), where k̄ = Ō/J (Ō). Moreover,
D̄(P ) is a direct summand of(Āγ )(P ) as k̄CQ(P )-modules, and for anyu ∈ Z(P),
we have(D̄u)(P ) ∼= D̄(P ); consequentlyD̄(P ) ∼= k̄CQ(P ). Let U be a set of repre
sentatives ofP/Q in P . For anya ∈ N1+J (ĀP

γ )(D̄), we can writea = ∑
u∈U au, where

au ∈ D̄u; then
∑

u∈U∩QZ(P) BrP (au) ∈ BrP (i)+ J ((Āγ )(P )), and thus there exists a su

ablez ∈ U ∩QZ(P) such that BrP (az) is not contained inJ ((Āγ )(P )). In particular, there
existsλ ∈ Ō∗ such thatλazz

−1 ∈ i + J (D̄P ).
Set c = λ−1z(az)

−1a; then c ∈ N1+J (ĀP
γ )(D̄). Write c = i + ∑

u∈U−Q cu, where

cu ∈ D̄u; for any d̄ ∈ D̄, there exists̄d ′ ∈ D̄ such that

(
d̄ ⊗ 1

)(
i +

∑
u∈U−Q

cu

)
=

(
i +

∑
u∈U−Q

cu

)(
d̄ ′ ⊗ 1

)
,

thusd̄ = d̄ ′ and further we have(d̄ ⊗ 1)cu = cu(d̄ ⊗ 1) for anyu ∈ U − Q. In conclusion,
c ∈ i + J (Z(Āγ )). �
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Lemma 2.5. With notation as above, assume thatŌ is a unramified Galois extension
O with the Galois groupΓ̄ and thatD̄ is a P -stableŌ-subalgebra ofĀγ = Ō ⊗O Aγ

fulfilling that D̄ ∩ Pi = Qi and D̄ ⊗Q P = Āγ . ThenN1+J (Āγ )(D̄) is a uniquely split

Γ̄ -acted group.

Proof. In fact, the family{1 + J (D̄P )n+1}n∈N is clearly an interior completing filtratio
of 1+ J (D̄P ), and for anyn � 1 the mapr 
→ 1+ r induces a group isomorphism

J
(
D̄P

)n/
J
(
D̄P

)n+1 ∼= (
1+ J

(
D̄P

)n)/(
1+ J

(
D̄P

)n+1)
,

by [6, 3.8], 1+ J (D̄P ) is a uniquely splitΓ̄ -acted group. Applying [6, Theorem 3.11]
the case thatY = N1+J (Āγ )(D̄) andX = N1+J (Āγ )(D̄) � Γ̄ andG = Γ̄ and Ō-algebra

D̄P andM = J (Z(Āγ )) andN = J (Z(D)P ), we have that(1+M)/(1+N) is a uniquely
split Γ̄ -acted group. By Lemma 2.4 and [6, Corollary 3.6], we conclude thatN1+J (Āγ )(D̄)

is a uniquely splitΓ̄ -acted group. �
2.6. A proof of the existence of Theorem 1.8

SetÃ = ÕG = Õ⊗O A, and consider the source algebraÃγ̃ = iÕGi of the blockÕGb

with a defect pointed groupPγ̃ wherei ∈ γ̃ . By [7, Theorem 15.10] or [8, Theorem 1.8
there exists aP -stableÕ-subalgebraD̃ of Ãγ̃ such thatD̃ ∩ Pi = Qi andÃγ̃ = ⊕

u D̃u

with u running on a set of representatives forP/Q in P . By Lemma 2.2, there are a
Ō ⊆ Õ which is an unramified finite Galois extension ofO and aP -stable subalgebrāD
of Ō ⊗O Aγ such thatD̃ = Õ ⊗Ō D̄. In particular, we also have that

D̄ ∩ Pi = Qi and Ō ⊗O Aγ =
⊕

u

D̄u

with u running on a set of representatives forP/Q in P . Let Γ̄ be the Galois group of̄O
overO; thenΓ̄ acts onŌ ⊗O Aγ in a natural way, andD = D̄Γ̄ is the desiredP -stable
O-subalgebra ofAγ .

2.7. A proof of the uniqueness of Theorem 1.8

With notation as above, assume that bothD andD′ are twoP -stableO-subalgebras o
Aγ fulfilling (1.8.1). Then (1.8.1) also holds iñAγ̃ for bothÕ ⊗O D andÕ ⊗O D′, i.e.,

(
Õ ⊗O D

) ∩ Pi = Qi and Ãγ̃ = (
Õ ⊗O D

) ⊗Q P ;(
Õ ⊗O D′) ∩ Pi = Qi and Ãγ̃ = (

Õ ⊗O D′) ⊗Q P.

By [7, 14.7] or [8, 1.8], there is aña ∈ 1+ J (ÃP
γ̃
) such that(Õ⊗O D)ã = (Õ⊗O D′). By

Lemma 2.2, there are an̄O ⊆ Õ which is an unramified finite Galois extension ofO and
an ā ∈ i + J ((Ō ⊗O Aγ )P ) such that(Ō ⊗O D)ā = Ō ⊗O D′. Considering the action o
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Ō ⊗O Aγ of the Galois groupΓ̄ of Ō overO, for any t ∈ Γ̄ we have(Ō ⊗O D)t(ā) =
Ō ⊗O D′.

Set Āγ = Ō ⊗O Aγ , D̄ = Ō ⊗O D, and D̄′ = Ō ⊗O D′, and letS be the set of
all the elements̄a of 1 + J (ĀP

γ ) such thatD̄ā = D̄′. Then it is easily checked that th

groupN1+J (Āγ )(D̄) � Γ̄ acts on the setS andN1+J (Āγ )(D̄) acts regularly onS. Since

N1+J (Āγ )(D̄) acts regularly onS, the stabilizer of any element ofS in N1+J (Āγ )(D̄) � Γ̄

is isomorphic toΓ̄ ; then, by Lemma 2.5 and [6, 3.3],SΓ̄ is non-empty; moreover, ther
existsa ∈ (1+ J (ĀP

γ ))Γ̄ = 1 + J (AP
γ ) such thatD̄a = D̄′; consequently,Da = (D̄a)Γ̄ =

(D̄′)Γ̄ = D′.

3. The local structure of hyperfocal subalgebras

3.1. Keep the notation in 1.2 throughout this section. First we recall a general notation
then turn to show some general properties of hyperfocal subalgebras.

Let H be a normal subgroup ofG. Assume thatA is anH -interiorG-algebra, i.e.,A is
aG-algebra with an interiorH -algebra structure compatible with theG-action, cf. [6, 1.6].
Let Kγ andLδ be pointed groups onA, and assume thatK ⊂ HL. Recall that a group ex
omorphism fromK to L is an orbit on the set of the injective group homomorphisms f
K to L under the natural action of the product Int(K) × Int(L) of the inner automorphism
groups Int(K) and Int(L) of K and ofL respectively. We say that a group exomorphi
determined by an injective group homomorphismφ :K → L, fulfilling φ(y) ∈ yH for all
y ∈ K, is anA-fusionfrom Kγ to Lδ if, for somei ∈ γ and somej ∈ δ, there existsa ∈ A∗
such thatiAi ⊂ (jAj)a and

(ai)y = (
y−1φ(y)

)
ai and

(
ia−1)y = ia−1(y−1φ(y)

)−1
, ∀y ∈ K. (3.1.1)

By FA(Kγ ,Lδ) we denote the set of theA-fusions fromKγ to Lδ , and writeFA(Kγ )

instead ofFA(Kγ ,Kγ ). Further, supposeφ(K) = L and let∆φ(K) = {(φ(x), x)}x∈K

be a subgroup ofL × K; then jAi admits anO∆φ(K)-module structure defined b
(φ(x), x)a = φ(x)ax−1 for any x ∈ K anda ∈ jAi. Note that, ifφ(K) = L, φ−1 also
determines anA-fusion fromLδ to Kγ .

Lemma 3.2. With notation as above, a group isomorphismφ :K ∼= L such thatφ(x) ∈ xH

for all x ∈ K determines anA-fusion fromKγ to Lδ if and only if

(iAj)
∆

φ−1(L)
(jAi)∆φ(K) = iAKi. (3.2.1)

Proof. The essential materials of the proof are from [7]. In any case, it is easily checke
that the left side of the equality is contained in the right one and it is a two-sided
of the right one. Ifφ̃ ∈ FA(Kγ ,Lδ) anda ∈ A∗ fulfills equality (3.1.1), thenai andia−1

belong to(jAi)∆φ(K) and(iAj)
∆

φ−1(L) respectively, thus the equality (3.2.1) holds. Co
versely, sinceiAKi is a local algebra, the equality (3.2.1) implies that we can choos
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c ∈ (iAj)
∆

φ−1(L) andd ∈ (jAi)∆φ(K) such thatcd is invertible in iAKi; modifying our
choice, we may assume thatcd = i; thendc is a non-zero idempotent ofjALj , hence
dc = j . In particular,i andj are conjugate inA, i.e., i = jb for a b ∈ A∗. We claim that
a = d + (1 − j)b(1− i) is invertible inA and fulfills equality (3.1.1); indeed, it is easi
checked thatc + (1− i)b−1(1− j) is the inverse ofa, and, sinceai = d andia−1 = c, the
equality follows from the fact that∆φ(K) fixesai and∆φ−1(L) fixesia−1. �

3.3. From now on we turn to the notation 1.4, 1.5, and 1.7, and always assume tD

is aP -stable unitary subalgebra ofAγ fulfilling (1.8.1). ThenAγ is an interiorP -algebra,
while D is anOQ-interior P -algebra. Note thatγ ∩ Aγ = γ ∩ D = {i}, soP{i} is a local
pointed group on bothAγ andD; we denote the both byPγ again for convenience. Furthe
we identifyPi ⊆ Aγ with P , and identifyui ∈ Pi with u ∈ P for convenience.

Let φ :P → P determine aD-fusion ofPγ , i.e., φ̃ ∈ FD(Pγ ), and assume thata ∈ D

makes (3.1.1) holds; then inAγ (not in D) (3.1.1) is rewritten asa−1ya = φ(y), ∀ y ∈ P .
In other words,

FD(Pγ ) = ND∗(P )
/(

ND∗(P ) ∩ (
AP

γ

)∗
P

)
, (3.3.1)

whereND∗(P ) = {a ∈ D∗ | Pa = P }. On the other hand, it is known from [11, 2.13 a
3.1] that

FAγ (Pγ ) = NAγ
∗(P )

/((
AP

γ

)∗
P

) = EG(Pγ ). (3.3.2)

Since it is shown in the end of 1.4 that(AP
γ )∗/(i + J (AP

γ )) ∼= k̂, by [13, Chapter II, Propo
sition 8] we get (

AP
γ

)∗ ∼= (
i + J

(
AP

γ

))
� k̂∗; (3.3.3)

with a suitable identification we regardk̂∗ ⊆ (AP
γ )∗ and(AP

γ )∗ = (i + J (AP
γ )) � k̂∗. And

ÊG(Pγ )◦ = NAγ
∗(P )

/((
i + J

(
AP

γ

))
P

)
(3.3.4)

is an extension ofEG(Pγ ) by k̂∗, we call it ak̂∗-groupwith k̂∗-quotientEG(Pγ ).

Lemma 3.4. Notation as above. ThenFD(Pγ ) = FAγ (Pγ ).

Proof. The essential materials of the proof come from [7]. It is clear thatFD(Pγ ) ⊆
FAγ (Pγ ). Let φ̃ ∈ FAγ (Pγ ) andφ be a suitable representative of theAγ -fusion. It follows
from Lemma 3.2 that

A
∆φ(P )
γ A

∆
φ−1(P )

γ = AP
γ ,

sincePγ is local, this equality implies that thek-linear map

(Aγ )
(
∆φ(P)

) ⊗k (Aγ )
(
∆φ−1(P )

) → (Aγ )(P )
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induced by the multiplication inAγ is surjective. LetT be a set of representatives forP/Q

in P, andU be the set oft ∈ T such thatφ(y)t−1y−1 ∈ Qt−1 for anyy ∈ P , we have

(Aγ )
(
∆φ(P)

) =
⊕
u∈U

(
D ⊗ u−1)(∆φ(P)

)
and

(Aγ )(∆φ−1(P )) =
⊕
u∈U

(D ⊗ u)
(
∆φ−1(P )

)
.

Consequently, there existu,v ∈ U andc, d ∈ D such that∆φ(P) fixesc ⊗ u−1, ∆φ−1(P )

fixes d ⊗ v and the product(c ⊗ u−1)(d ⊗ v) is invertible in AP
γ ; thus, modifying the

choice of the second factor, we can assume thatv = u andcdu = i. In particular, we ge
φ(Q) = Q. Since∆φ(P) fixesc ⊗ u−1 and∆φ−1(P ) fixesd ⊗ v, it is easily checked tha

c ∈ D∆ψ (P ) anddu ∈ D
∆

ψ−1(P ); then, sincecdu = i, we get

D∆φ(P )D
∆

φ−1(P ) = DP .

Thus, by Lemma 3.2 again, we have thatφ̃ ∈ FD(Pγ ). �
Lemma 3.5. DP /J (DP ) ∼= AP

γ /J (AP
γ ).

Proof. Assume thatT/Q = Z(P/Q) andU is a set of the representatives ofT in P . Then

Aγ (P ) =
⊕
u∈U

(D ⊗Q u)(P ).

It is easy to check that(D ⊗Q u)(P )(D ⊗Q v)(P ) ⊂ (D ⊗Q uv)(P ) for any u,v ∈ P ;
i.e., (Aγ )(P ) is a T -gradedk-algebra. SetI = (Aγ )(P )J (D(P))(Aγ )(P ). By the com-
putation similar to the first and second paragraphs of the proof of [7, Lemma 7.3], w
have thatJ (D(P )) ⊂ J (A(P )) and thatI is aT -graded proper ideal of(Aγ )(P ) with the
t-component

It =
∑
y∈T

(
Aγ )(P )yJ (D(P )

)
(Aγ )(P )y−1t ,

thus(Aγ )(P )/I is aT -gradedk-algebra with 1-component isomorphic toDP /J (DP ). Set

T ′ = {
t ∈ T

∣∣ (
(Aγ )(P )/I

)
t

(
(Aγ )(P )/I

)
t−1 = (

(Aγ )(P )
)
1

}
,

then it is easily checked thatT ′ is a subgroup ofT (see [5, Lemma 8]), and b
[5, Lemma 9],

⊕
t∈T ′((Aγ )(P )/I)t is a crossed product and

⊕
t∈T −T ′((Aγ )(P )/I)t is a

nilpotent ideal of(Aγ )(P )/I . SinceDP /J (DP ) is a perfect field,
⊕

t∈T ′((Aγ )(P )/I)t is
isomorphic to the group algebra ofT ′ overDP /J (DP ); thusDP /J (DP ) ∼= AP

γ /J (AP
γ ).�
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Remark. By the lemma and 1.4 and [13, Chapter II, Proposition 8], we can lift it to
algebra injectionÔ → DP ; on the other hand, a choice of the subgroupk̂∗ of (AP

γ )∗ in 3.3
also determines an algebra injectionÔ → AP

γ . But by [3, Lemma 2.3], these two algeb
injections are conjugate byi + J (AP

γ ); so with a suitable choice, we can assume
they coincide with each other. So, in the following we assume that̂O ⊆ DP ; and, since
Ô∗ = (1+ J (Ô)) × k̂∗, we have(

DP
)∗ = (

i + J
(
DP

))
� k̂∗. (3.5.1)

3.6. From now on, we further always assume thatEG(Pγ ) is ap′-group.
SinceNG(Pγ ) stabilizes bothCG(P) and the blockbγ of OCG(P), we see thatEG(Pγ )

acts onÔ by the equality (1.4.1). Then the actions ofNG(Pγ ) on P andÔ determine a
group homomorphism

EG(Pγ ) → Ãut
(
Ô, ÔP

)
, (3.6.1)

where Aut(Ô, ÔP) denotes the group of thêO-semi-linear automorphisms of̂OP , and
Ãut(Ô, ÔP) denotes the quotient group of Aut(Ô, ÔP) by the inner automorphism grou
Int(ÔP) of ÔP induced by all the invertible elements ofÔP .

Because the kernel of the surjective homomorphismNG(P)/CG(P ) → EG(Pγ ) is a
p-group, we can lift it to an injective group homomorphismEG(Pγ ) → Aut(P ). Thus, the
actions ofEG(Pγ ) on bothP andÔ determine a group homomorphism

θ :EG(Pγ ) → Aut
(
Ô, ÔP

)
(3.6.2)

such thatθ(EG(Pγ )) stabilizes bothÔ and P , and for anyx̃ ∈ EG(Pγ ) there is ap′-
elements ∈ NG(Pγ ) fulfilling

θ(x̃)(u) = us, ∀u ∈ P. (3.6.3)

In the following we fix such a group homomorphismθ in (3.6.2); and note that by th
definition 1.7 ofQ and (3.6.3) we have the following conclusion:

Q is stabilized by theEG(Pγ )-action onP throughθ. (3.6.4)

We remark that the (3.6.1) can always be lifted to a unique Int(ÔP)-conjugate class o
homomorphismsEG(Pγ ) → Aut(Ô, ÔP), but the lifting which stabilizesP may not exist
if EG(Pγ ) is not ap′-group, cf [6, 1.14 and 1.15].

Proposition 3.7.

(1) There is a subgroup̂E of NA∗
γ
(P ) such thatÊ ⊇ k̂∗ (recall k̂∗ ⊆ (DP )∗ ⊂ (AP

γ )∗, see

(3.5.1))and(3.3.4)induces an isomorphism̂E ∼= ÊG(Pγ )◦; and all such subgroups o
NA∗ (P ) are conjugate byNA∗ (P × k̂∗) ∩ (i + J (AP

γ ))P .

γ γ
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(2) There is a subgroupÊ of ND∗(P ) such thatÊ ⊇ k̂∗ and (3.3.4) induces an iso-
morphism Ê ∼= ÊG(Pγ )◦; and all such subgroups ofND∗(P ) are conjugate by
ND∗(P × k̂∗) ∩ (i + J (AP

γ ))P .

Proof. (1) Denote byV the centralizer of̂k∗ in J (AP
γ ); it is clear thatV is anO-submodule

of J (AP
γ ) satisfying thatV.V ⊂ V , thusi +V is a subgroup ofi +J (AP

γ ). Then, by (3.3.2)

and (3.3.3), we haveNA∗
γ
(P × k̂∗)/((i +V )× k̂∗)P ∼= EG(Pγ ), thus we have a short exa

sequence

1 → (i + V )P k̂∗/k̂∗ incl−−→ NA∗
γ

(
P × k̂∗)/k̂∗ ρ−→ EG(Pγ ) → 1, (3.7.1)

where “incl” is the inclusion map andρ is induced by (3.3.4). However,P(i + V )k̂∗/
(i + V )k̂∗ is a finitep-group andEG(Pγ ) is a finitep′-group,P(i + V )k̂∗/(i + V )k̂∗ is a
uniquely splitEG(Pγ )-acted group. On the other hand, sincei +V is equal to the subgrou
of y ∈ i + J (AP

γ ) such thatÔy = Ô, by [10, Lemma 4.10] and [6, Proposition 3.5],i + V

is a uniquely splitEG(Pγ )-acted group. Further,P and i + V centralize each other, b
[6, 3.6] we have that(i + V )P k̂∗/k̂∗ is a uniquely splitEG(Pγ )-acted group. Therefor
the sequence (3.7.1) is uniquely split, that is, there is a subgroupÊ/k̂∗ ⊆ NA∗

γ
(P × k̂∗)/k̂∗

such that the restriction mapρ|
Ê/k̂∗ : Ê/k̂∗ → EG(Pγ ) is an isomorphism; and all suc

subgroups ofNA∗
γ
(P )/k̂∗ are conjugate to each other by(i + V )P k̂∗/k̂∗.

(2) By Lemma 3.4 we haveFD(Pγ ) = EG(Pγ ), thus by (3.3.1) we have an exact s
quence

1 → (
ND∗

(
P × k̂∗) ∩ P

(
AP

γ

)∗)
/k̂∗ incl−−→ ND∗

(
P × k̂∗)/k̂∗ ρ−→ EG(Pγ ) → 1. (3.7.2)

SetW = V ∩J (DP ); then it is clear thatW is the centralizer of̂k∗ in J (DP ) and thatW is
anO-submodule ofJ (DP ) such thatW.W ⊂ W , thusi + W is a subgroup ofi + J (DP ).
Then similar to the proof below (3.7.1), we also can obtain that

ND∗
(
P × k̂∗) ∩ (

i + J
(
AP

γ

)
P

)
is a uniquely splitEG(Pγ )-acted group, (3.7.3)

thus we get the conclusions of (2).�
Remark. Recall thatD is P -stable, from the proposition we have the following conclusi

If k̂∗ ⊆ Ê ⊆ A∗
γ such that(3.3.4)induces an isomorphism̂E ∼= EG(Pγ ),

then there is ana ∈ i + J
(
AP

γ

)
such thatÊ ⊆ Da. (3.7.4)

3.8. Now we follow the idea of [6, §4] to choosêi and b̂ in 1.5 suitably. Letĵ be
the primitive idempotent ofÔ ⊗O Ô which is mapped non-zero by the homomorphi



258 Y. Fan, Y. Zhou / Journal of Algebra 281 (2004) 247–263

ary

r-

,

f

h

e-
Ô ⊗O Ô → Ô, λ ⊗ µ 
→ λµ. By [6, Proposition 4.10], there exists an injective unit
homomorphism fromÔ to Aγ , hence we have an injective homomorphism

Ô ⊗O Ô → Ô ⊗O Aγ . (3.8.1)

By [6, 4.13.2],ĵ determines a primitive idempotentî of ÂP
γ through the above homomo

phism (3.8.1), and there exists a unique local pointγ̂ of P onÔG such that̂i ∈ γ̂ . Let b̂ be
the Ô-block of G such thatbγ̂ = γ̂ ; by [6, 2.13.5],Pγ̂ is a defect pointed group ofG{b̂}.
SetÂγ̂ = îÂî; thenÂγ̂ is a source algebra of̂OGb̂.

Then, by [6, 1.19.1], the usual trace map TrΓ
1 on Ô ⊗O Aγ induces ak̂∗-group ho-

momorphismÊG(Pγ̂ )◦ → ÊG(Pγ )◦ which is a lifting of the inclusion mapEG(Pγ̂ ) ⊂
EG(Pγ ). Thus by [6, 1.20],Âγ̂ admits anÔÊG(Pγ̂ )◦-interior ÊG(Pγ )◦-algebra structure

unique up to(ÂP
γ̂
)∗-conjugation, such that the action ofÊG(Pγ )◦ stabilizes the image o

ÔP and induces the group homomorphism (3.6.2); and there exists anOP -interior algebra
isomorphism

η :Aγ
∼=−→ Âγ̂ ⊗

ÊG(Pγ̂ )◦ ÊG(Pγ )◦. (3.8.2)

Moreover, by our choice of the group homomorphism (3.6.2),ÊG(Pγ̂ )◦ stabilizesP

andÂγ̂ also admits anÔ(P � ÊG(Pγ̂ )◦)-interiorP � ÊG(Pγ )◦-algebra structure, whic

extends the usual interior̂OP -algebra structure on̂Aγ̂ ; and the isomorphism (3.8.2) b

comes anO(P � ÊG(Pγ )◦)-interior algebra isomorphism. In particular,η−1 induces an
injection

P � ÊG(Pγ )◦ → A∗
γ . (3.8.3)

Theorem 3.9. Notation as above. IfD is a hyperfocal subalgebra ofAγ (i.e.,(1.8.1)holds
for Aγ andD), then there are ana ∈ i + J ((AP

γ )), and a hyperfocal subalgebrâD of Âγ̂

(i.e.,(1.8.1)holds forÂγ̂ andD̂) which inherits fromÂγ̂ anÔÊG(Pγ̂ )◦-interior ÊG(Pγ )◦-

algebra structure, and anOQ-interior P -algebra isomorphismη′ :Da ∼=−→ D̂ ⊗
ÊG(Pγ̂ )◦

ÊG(Pγ )◦ such that the following diagram is commutative:

Aγ

∼=
η

Âγ̂ ⊗
ÊG(Pγ̂ )◦ ÊG(Pγ )◦

Da

incl

∼=
η′

D̂ ⊗
ÊG(Pγ̂ )◦ ÊG(Pγ )◦

incl⊗ id (3.9.1)

where “incl” and “ id” denote the inclusion map and the identity map, respectively.
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Proof. We trace the construction of the isomorphism (3.8.2) in [6, 4.11–4.14].
Obviously the subgroup̂k∗ of ÊG(Pγ ) determines a subgroup̂k∗ of (AP

γ )∗ through the

isomorphism (3.8.2); now we fix the later subgroupk̂∗. By [3, Lemma 2.3], we can assum
without loss of the generality thatD containsk̂∗, thus by (3.7.4), we also can assume t
D contains the image of̂EG(Pγ )◦ in Aγ and the homomorphism from̂O to Aγ induces
an injective unitary homomorphism of̂EG(Pγ )◦-algebras fromÔ to D.

Let Γ be the Galois group of̂O overO. We can regardÔ ⊗O D as anÔÊG(Pγ )◦-
interiorΓ × ÊG(Pγ )◦-algebra (cf. [6, 1.6]). The formula (3.8.1) can be rewritten as

Ô ⊗O Ô → Ô ⊗O D ⊂ Ô ⊗O Aγ , (3.9.2)

which is a homomorphism ofΓ × ÊG(Pγ )◦-algebras over̂O.
Let Ĵ be the set of primitive idempotents ofÔ ⊗O Ô, andĵ be the element of̂J which

does not vanish through the product mapÔ ⊗O Ô → Ô. Through (3.9.2), bŷI and î we
denote the image of̂J and ĵ in Ô ⊗O AP

γ respectively. Since the groupΓ × ÊG(Pγ )◦

stabilizes onÎ , it also stabilizesĴ . And both ĵ and î have the same stabilizer, denot
by Ĥ , in Γ × ÊG(Pγ )◦. SinceΓ acts regularly on̂I andĴ , the second projection map

Γ × ÊG(Pγ )◦ → ÊG(Pγ )◦

induces a group homomorphism

ϕ : Ĥ
∼=−→ ÊG(Pγ )◦. (3.9.3)

Thus there is a suitable group homomorphismτ̂ : ÊG(Pγ )◦ → Γ such that

Ĥ = {(
τ̂ (x̂), x̂

)}
x̂∈ÊG(Pγ )◦ .

It is easily checked that in̂O ⊗O Ô the action ofEG(Pγ ) on Ô induced byτ̂ coincides
with the action ofEG(Pγ ) in (3.8.2) (cf. [6, 4.12]), so the stabilizer ofĵ andî in ÊG(Pγ )◦
(identified with 1× ÊG(Pγ )◦) coincides with the converse imagêK ⊆ ÊG(Pγ )◦ of the
kernelK of the homomorphismEG(Pγ ) → AutO(Ô).

Considering the corresponding action ofΓ onÔG = Ô⊗OOG, by [6, 4.13.2], we have
that î belongs to a local point̂γ of P on ÔG, andγ̂ σ �= γ̂ for any nontrivial elementσ of
Γ . In particular,EG(Pγ̂ ) = K. Let α̂ = {b̂} be the point ofG on ÔG such thatPγ̂ ⊂ Gα̂ ;
similarly to [6, 4.13.4], we have

The stabilizerΓ α̂ of α̂ in Γ coincides with the image ofEG(Pγ ) in Γ,

and TrΓ
α̂

1 (î) belongs toZ(Ô ⊗O D)P . (3.9.4)
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It is similar to [6, 4.14] thatD̂ = î(Ô ⊗O D)î inherits fromÔ ⊗O D the ÔK̂-interior
Ĥ -algebra structure, and̂O ⊗O Db̂ inherits theÔÊG(Pγ )◦-interior Γ α̂ × ÊG(Pγ )◦-
algebra structure. Hence the characterization [6, 2.7.4] applies toÔ ⊗O Db̂ in Ô ⊗O D;
whereas, sincêEG(Pγ )◦ is transitive on{îσ }σ∈Γ α̂ by (3.9.4), the characterization [6, 2.6.
applies toD̂ in Ô ⊗O Db̂. Similar to the isomorphism [6, 4.14.1] which is written asζ

in the first row of diagram (3.9.5) below, we get anÔÊG(Pγ )◦-interior Γ × ÔÊG(Pγ )◦-
algebra isomorphismζ ′ shown in the second row of the diagram

Ô ⊗O Aγ

∼=
ζ

Ô
(
Γ × ÊG(Pγ )◦

) ⊗Ô(Γ α̂×ÊG(Pγ )◦) Ind
ÊG(Pγ )◦

K̂
(Âγ̂ )

Ô ⊗O D
∼=
ζ ′

incl

Ô
(
Γ × ÊG(Pγ )◦

) ⊗Ô(Γ α̂×ÊG(Pγ )◦) Ind
ÊG(Pγ )◦

K̂
(D̂)

id⊗ incl (3.9.5)

andζ ′(d̂) = 1 ⊗ (1 ⊗ d̂ ⊗ 1) for d̂ ∈ D̂ = î(Ô ⊗O D)î ⊆ Ô ⊗O D. Comparing with [6,
4.14], we see that the diagram (3.9.5) is commutative.

Since(Ô ⊗O Aγ )Γ = Aγ and (Ô ⊗O D)Γ = D, by [6, 2.8 and 2.10] we have th
following isomorphism (ϕ is the isomorphism (3.9.3)):

Resϕ(Aγ ) ∼= Âγ̂ ⊗
K̂

Ĥ and Resϕ(D) ∼= D̂ ⊗
K̂

Ĥ

where the first one is just [6, 4.14.2] and the second one is compatible with the firs
In addition, it is not difficult to check that̂D = î(Ô⊗O D)î is aP -stableÔ-subalgebra o
Âγ̂ satisfying that

D̂ ⊗Q P = Âγ̂ and D̂ ∩ Pi = Qi.

In a word, taking theΓ -fixed algebras of the terms of the diagram (3.9.5), we get
desired commutative diagram (3.9.1).�

4. Hyperfocal subalgebras in the case that O < Ô

4.1. Throughout this section we keep the notation in 1.4, 1.5 and 1.7, and alwa
sume thatEG(Pγ ) is a p′-group, and fix the choice ofθ in (3.6.2) andî, b̂ in 3.8. In
particular, in (3.8.2) we have the isomorphism

η :Aγ
∼=−→ Âγ̂ ⊗

ÊG(Pγ̂ )◦ ÊG(Pγ )◦. (4.1.1)

Lemma 4.2. Notation as above. Then there is aP � ÊG(Pγ )-stable subalgebrâD of Âγ̂

such that

D̂ ∩ P î = Qî and D̂ ⊗Q P = Âγ̂ , (4.2.1)
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and any two such subalgebras are conjugate byî + J (ÂP
γ̂
)EG(Pγ ). Moreover, such a sub

algebraD̂ contains the image of̂EG(Pγ̂ )◦ in Âγ̂ .

Proof. Since we have proved in Section 2 that Theorem 1.8 holds forÂγ̂ , there exists

a P -stableÔ-subalgebraD̂ satisfying (4.2.1), and̂i + J (ÂP
γ̂
) acts transitively on the se

D̂ of all the P -stableÔ-subalgebraŝD satisfying (4.2.1). By (3.6.4),̂EG(Pγ )◦ not only
stabilizesP , and stabilizesQ as well; soÊG(Pγ ) also acts on̂D. Thus(î+J (ÂP

γ̂
))EG(Pγ )

acts onD̂. For anyD̂ ∈ D̂, by Lemma 2.4, we have

N
î+J (ÂP

γ̂
)

(
D̂

) = (
î + J

(
Z

(
Âγ̂

)))(
î + J

(
D̂P

))
,

which is aEG(Pγ )-acted group. By [6, 4.3 and 3.11],N
î+J (ÂP

γ̂
)
(D̂) is a uniquely split

EG(Pγ )-acted group; moreover by [10, 4.6],î + J (ÂP
γ̂
) is a uniquely splitEG(Pγ )-acted

group. So, by [6, 3.3],D̂EG(Pγ ) is nonempty and(î + J (ÂP
γ̂
))EG(Pγ ) acts transitively on

D̂EG(Pγ ).
Let D̂ be aP � ÊG(Pγ )◦-stableÔ-subalgebra ofÂγ̂ such that (4.2.1) holds. The

Proposition 3.7 applies to the caseO = Ô, and we get a subgroup̂F of D∗ such that
k̂∗ ⊆ F̂ ⊆ ND∗(P î) andF̂ ∼= ÊG(Pγ̂ )◦. Let F̂ be the set of all such subgroupsF̂ of D∗,

thenN
D̂∗(P ) ∩ ((î + J (Âγ̂ P ))P ) acts by conjugation on̂F transitively. Hence(N

D̂∗(P ) ∩
((î + J (Âγ̂ P ))P )) � EG(Pγ ) acts onF̂ transitively. However, by (3.7.3),N

D̂∗(P ) ∩
((î +J (Âγ̂ P ))P ) is a uniquely splitEG(Pγ )-acted group; hence, by [6, 3.3],F̂EG(Pγ ) �= ∅.

That is, EG(Pγ ) stabilizes a subgroupF of N
D̂∗(P î) with a group isomorphism

σ : ÊG(Pγ̂ )◦ ∼= F .

For convenience, we identify the image ofÊG(Pγ̂ )◦ in Â∗
γ̂

with ÊG(Pγ̂ )◦. Then it is

easily checked that the set{σ(x̂)x̂−1 | x̂ ∈ ÊG(Pγ̂ )◦} is ap′-subgroup of(ÂP
γ̂
)∗; however,

(ÂP
γ̂
)∗ ∼= k̂∗ × (î + J (Âγ̂ )) by [13, Chapter II, Proposition 8] and̂i + J (Âγ̂ ) is a p′-

divisible group,{σ(x̂)x̂−1 | x̂ ∈ ÊG(Pγ̂ )◦} ⊂ k̂∗. That is, we have proved the equalityF =
ÊG(Pγ̂ )◦. �
4.3. A proof of the existence of Theorem 1.8

By Lemma 4.2, there exists aP -stableÔ-subalgebraD̂ of Âγ̂ which satisfies (4.2.1

and contains the image of̂EG(Pγ̂ )◦ in Âγ̂ and is stabilized bŷEG(Pγ )◦. Then we have the

following P � ÊG(Pγ )◦-interior algebra isomorphisms

Aγ
∼= Âγ̂ ⊗

ÊG(Pγ̂ )◦ ÊG(Pγ )◦

∼= Âγ̂ ⊗ ˆ ◦
(
P � ÊG(Pγ )◦

)

P�EG(Pγ̂ )
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∼= (
D̂ ⊗Q P

) ⊗
P�ÊG(Pγ̂ )◦

(
P � ÊG(Pγ )◦

)
∼= (

D̂ ⊗
Q�ÊG(Pγ̂ )◦

(
P � ÊG(Pγ̂ )◦

)) ⊗
P�ÊG(Pγ̂ )◦

(
P � ÊG(Pγ )◦

)
∼= D̂ ⊗

Q�ÊG(Pγ̂ )◦
(
P � ÊG(Pγ )◦

)
∼= (

D̂ ⊗
Q�ÊG(Pγ̂ )◦

(
Q � ÊG(Pγ )◦

)) ⊗
Q�ÊG(Pγ )◦

(
P � ÊG(Pγ )◦

)
∼= (

D̂ ⊗
ÊG(Pγ̂ )◦ ÊG(Pγ )◦

) ⊗Q P.

Thus, setD to be the image inAγ of the crossed product̂D ⊗
ÊG(Pγ̂ )◦ ÊG(Pγ )◦ through

the isomorphism (4.1.1); thenD is aP -stable unitaryO-subalgebraD of Aγ and satisfies
the condition

D ∩ Pi = Qi and D ⊗Q P = Aγ .

4.4. A proof of the uniqueness of Theorem 1.8

Let D be as above, and assume thatD′ is also aP -stableO-subalgebra ofAγ which
satisfies

D′ ∩ Pi = Qi and D′ ⊗Q P = Aγ .

By Theorem 3.9, there are ana ∈ i + J (AP
γ ) and a hyperfocal subalgebrâD′ of Âγ̂ such

that D′a is the image inAγ of D̂′ ⊗
ÊG(Pγ̂ )◦ ÊG(Pγ )◦ through the isomorphism (4.1.1

Since it is proved in Section 2 that Theorem 1.8 holds forÂγ̂ , there is anâ ∈ î +
J (ÂP

γ̂
)ÊG(Pγ )◦ such thatD̂′ â = D̂; therefore, there existsa′ ∈ 1 + J (AP

γ ) such thatD′aa′

is the image inAγ of D̂ ⊗
ÊG(Pγ̂ )◦ ÊG(Pγ )◦ through the isomorphism (4.1.1); that

D′aa′ = D.
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