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a b s t r a c t

Themain goal of the current study is to take advantage of advancednumerical and intelligent tools topredict
the speed of a vehicle using time series. It is clear that the uncertainty caused by temporal behavior of the
driver aswell as various external disturbances on the roadwill affect the vehicle speed, and thus, the vehicle
power demands. The prediction of upcoming power demands can be employed by the vehicle powertrain
control systems to improve significantly the fuel economy and emission performance. Therefore, it is
important to systems design engineers and automotive industrialists to develop efficient numerical tools to
overcome the risk of unpredictability associated with the vehicle speed profile on roads. In this study, the
authorspropose an intelligent tool called evolutionary least learningmachine (E-LLM) to forecast thevehicle
speed sequence. To have a practical evaluation regarding the efficacy of E-LLM, the authors use the driving
data collected on the San Francisco urban roads by a private Honda Insight vehicle. The concept of sliding
window time series (SWTS) analysis is used to prepare the database for the speed forecasting process. To
evaluate the performance of the proposed technique, a number of well-known approaches, such as auto
regressive (AR)method, back-propagation neural network (BPNN), evolutionary extreme learningmachine
(E-ELM), extreme learning machine (ELM), and radial basis function neural network (RBFNN), are consid-
ered. The performances of the rival methods are then compared in terms of the mean square error (MSE),
root mean square error (RMSE), mean absolute percentage error (MAPE), median absolute percentage error
(MDAPE), and absolute fraction of variances (R2) metrics. Through an exhaustive comparative study, the
authors observed that E-LLM is a powerful tool for predicting the vehicle speed profiles. The outcomes of the
current study can be of use for the engineers of automotive industry who have been seeking fast, accurate,
and inexpensive tools capable of predicting vehicle speeds up to a given point ahead of time, known as
prediction horizon (HP), which can be used for designing efficient predictive powertrain controllers.
© 2014 Karabuk University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Automotive companies are under extreme economic and soci-
etal pressures to improve the fuel economy and emission perfor-
mance of their products. Therefore, they need to develop and apply
significant technological advancements continuously to meet to-
day's increasingly tight emission and fuel standards and regula-
tions. Recently, the development of route-based or predictive
powertrain control systems has received significant attention from
).
ersity.

d hosting by Elsevier B.V. This is a
the automotive industry to achieve these objectives. These pre-
dictive controllers use the prediction of vehicle's upcoming power
demands, which is strongly a function of the future speed profile, to
improve the powertrain performance. For instance, the vehicle
speed prediction has been used to develop a predictive automatic
gear shift controller to optimize the gear shifting to increase the
fuel economy [1]. Another example is the use of predicted up-
coming speed profiles to develop predictive power management
controllers for hybrid electric vehicles (HEVs). An HEV powertrain
system consists of a combustion engine and an electric motor to
propel the vehicle. To improve the HEV's fuel economy, a power
management controller is needed to optimally divide the vehicle
power demand between its two propulsion systems. Researchers
have indicated that additional fuel savings up to 4% can be obtained
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for each HEV equipped with a route-based power management
controller [2]. Broad implementation of predictive powertrain
control systems for power management, gear shift scheduling, and
so on would have a huge impact, saving millions of gallons of
gasoline annually, and also, leading to significant emission
reductions.

Accurate short-range speed profiles are critical for real-time
implementations of these predictive powertrain control systems;
therefore, future vehicle speed trajectory should be predicted in
small time horizons. Data required to comprehensively describe
future driving speeds may be collected using advanced communi-
cation systems and radar sensor technologies. In this regard, the
emerging field of intelligent transportation system (ITS) has
attracted an increasing attention of industrialists, and in particular,
automotive engineers [3]. ITS is an advanced concept in the field of
communication technologies which is based on the fact that it is a
reasonable policy to develop driving condition prediction devices
for improving the vehicle performance characteristics. So far,
different technologies, e.g. vehicle telematics (VTs), have been
created and used to gather beneficial information regarding the
short-term and long-range traffic speed profiles, which can be
employed by the predictive powertrain controllers to improve the
fuel economy and emission performance. Unfortunately, most of
the existing technologies which serve as the VT for ITS-based ve-
hicles require an expensive infrastructure. These expensive in-
frastructures cannot be found in all regions, and thus, ITS
technologies, for instance vehicle-to-infrastructure communication
systems, cannot be used globally. Moreover, many cars are still built
without the on-board sensors necessary to access ITS information,
for example vehicle-to-vehicle communication systems. A near-
term (and cost-effective) solution is to use historical driving data
as well as currently available information from factory-made
vehicle sensors to predict online the vehicle's driving cycle for
near future.

The aforementioned flaws have instigated the researchers of
automotive engineering and systems sciences to take advantage of
computationally efficient numerical methods as well as intelligent
tools to predict the vehicle speeds while driving over a given drive
cycle. In this context, the concept of time series analysis is taken
into account to analyze the history of vehicle's motion and develop
a predictive tool capable of forecasting the vehicle or traffic speed
along the road.

So far, intelligent time series forecasting has successfully been
utilized for a wide range of applications. A comprehensive review
on the progress and development of such techniques can be found
in Ref. [27]. In particular, time series forecasting models can be
implemented in a state-space representation form. Hyndman et al.
[28] proposed an exponential smoothing method to develop a
state-space framework for automatic forecasting tasks. Later in
2005, Hyndman et al. [29] conducted a comprehensive simulation
and demonstrated that the time series forecasting with state-space
representation can be easily used as a model for controllers. George
et al. [30] comprehensively studied the applicability of time series
for forecasting and control tasks. The results demonstrated that
time series predictors are best suited to be used in controlling
schemes for a wide spectrum of engineering applications. This
point has been substantially indicated by many other researchers
working in different fields.

Performing time series analysis and employing intelligent tools
such as artificial neural networks (ANNs) has been proven to be
efficient tools for accurate forecasting of vehicle speed, power de-
mands, etc. which then can be used for designing more efficient
and cost-effective predictive automotive controllers. In a research
paper by Abdulhai et al. [4] a neuro-genetic predictive tool was
proposed for forecasting the short-term traffic flow on roads. The
proposed model was validated using the actual traffic flow data
acquired from ATMS test bed in Orange Country, California. Three
years later, Vlahogianni et al. [5] utilized genetic algorithm (GA) for
the both optimization and evolving of ANN architectures for short-
term traffic flow prediction. The simulations demonstrated that the
proposed forecasting tool can yield satisfactory results formodeling
both univariate and multivariate traffic databases. Jiang et al. [6]
proposed the application of dynamic wavelet neural networks for
forecasting the traffic flow, and vehicle speed trajectories. By
considering a comprehensive database, the authors have been
enabled to come up with a dynamic recurrent intelligent tool
capable of forecasting the long-term and short-term traffic flow
and vehicles speeds. They concluded that their model is able to be
used by traffic engineers and highway agencies to create effective
traffic management plans to alleviate freeway congestions. Zheng
et al. [7] proposed an integrated Bayesian network with a neural
network for accurate short-term traffic flow prediction. The nu-
merical simulations proved the authenticity of the proposed tool
for prediction of the traffic flow. Chan et al. [8] developed an ANN
based on an exponential smoothing method to come up with an
accurate intelligent tool for forecasting the traffic flow. The pro-
posed study firstly applied the exponential smoothing method to
handle the non-smooth and discontinuous features of a database
collected from the traffic conditions on a section of a freeway in
Western Australia. Thereafter, ANN was utilized to forecast the
traffic flow on the considered road. The authors observed that the
proposed method is accurate and can be used for real-time
implementations. Later, Chan et al. [9] verified the authenticity of
their technique by repeating the same simulations using a Lev-
enbergeMarquardt ANN (LM-ANN). The simulations demonstrated
that LM-ANN can even improve the prediction accuracy of standard
back-propagation ANN in terms of the robustness and accuracy.

In all of the abovementioned research studies, the traffic flow
has been predicted with respect to the positioning of the vehicle on
the road. Thus, in spite of the usefulness of the proposed intelligent
tools for traffic management, they cannot be employed to provide
the required information for the powertrain control unit of the
vehicle to improve the performance. In fact, to enhance the func-
tionality of the vehicle controller, intelligent tools should be used to
predict the future vehicle speeds with respect to the real-time
speed profile of a moving vehicle [10]. A similar approach has
been pursued by Fotouhi et al. [10] to design an efficient power
management controller for a HEV. Moreover, there are other in-
vestigations which demonstrate that intelligent tools can be used
for the prediction of vehicle speeds. Shu et al. [24] indicated that
fuzzy algorithms can be used for the prediction of parallel hybrid
electric vehicle speeds. Mahmoudabadi [25] took advantage of
artificial neural networks for estimating the average speed of a
vehicle in rural roads. Park et al. [26] used a neural network for real-
time vehicle speed predictions and indicated the validity of their
methodology. Considering the previous work, it sounds that using
intelligent tools for designing vehicle speed predictors at the heart
of a predictive powertrain controller is a reasonable option.

In this work, the authors have two main goals. From an auto-
motive engineering viewpoint, they would like to realize whether
the same concept, i.e. developing an intelligent tool for predicting
the vehicle speed in a real-time fashion, can be implemented with
an acceptable accuracy for a database collected by the movements
of a Honda Insight personal vehicle on the San Francisco urban
roads. If so, the predictive tool can then be used for designing a
computationally efficient powertrain predictive controller. From a
numerical methods' point of view, the authors aim at developing an
advanced intelligent tool, evolutionary least learning machine (E-
LLM) [11], which can be trained very fast, and also, can be effec-
tively combined with sliding window time series analysis tools. By
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implementing the numerical tool based on the state-space concept,
through an exhaustive comparative study, the capability of E-LLM
for the accurate and fast prediction of vehicle speeds over a pre-
defined prediction horizon (HP) is evaluated. If the model works
properly, it can be inferred that it has a high potential to be used for
real-time applications.

The rest of the paper is organized as follows. Section 2 is devoted
to the description of the steps required for implementing the
database in a state-space format, as well as the description of
sliding window and HP considered for this study. The structure of
the proposed evolvable E-LLM is described in Section 3. The
parameter settings and statistical metrics required for conducting
the simulations are given in Section 4. The simulation results are
presented in Section 5. Finally, the paper is concluded in Section 6.
2. Sliding window time series analysis of the collected data

2.1. Data collection

The driving data used in this study have been extracted from a
database created as part of the ChargeCar project in the Robotic
Institute at Carnegie Mellon University [12]. The database is very
comprehensive, and includes many driving cycles information
representing the traffic flow, and vehicle speed for different auto-
mobiles in several cities and states of the USA. In this study, the
authors intend to adopt a very challenging driving data which
represent the speed variations of a Honda Insight personal vehicle
on the San Francisco urban roads [13]. The data have been gathered
by contriving an advanced vehicle location (AVL) system, working
based on the Garmin global positioning system (GPS), into the
Honda Insight automobile. The Honda Insight has the frontal area of
29.28 ft2, and the weight of 3300 lbs. The total passengers' weight
was equal to 140 lbs. The total collected data comprise of 5 different
segments and each one has been collected at a different condition:
Fig. 1. The five considered urban sp
from home to work, fromwork to a restaurant for lunch, back from
restaurant to work, from work to home, and a trip from home to a
specific destination. This results in comprehensive information
regarding the possible driving cycles of a typical car on the urban
roads of San Francisco. The data have been recorded at every sec-
ond, which forms a vector including the time (sec), speed (m/s),
acceleration (m/s2), power based model (kW), and distance (m). It
is worth pointing out that the original database hosts all of the
stop-start information, and also, it considers the idling durations.
However, in this study, our main interest is to develop an intelligent
tool for predicting the vehicle speed in a real-time fashion. Thus, we
do not need to knowwhen and where the driver stops driving, and
for instance, goes for lunch. Therefore, the idling periods which
provide no additional information have been removed from the
database, and the driving data are divided into five separate seg-
ments. Consequently, 5 different trajectories representing the ve-
hicles speeds on the San Francisco urban roads are created. Fig. 1
indicates the collected speed profiles for these sub-cycles.

Obviously, each of the considered scenarios offers a completely
different speed pattern, and thus, by applying the proposedmethod
to these patterns, the reliability and efficacy of the resulting pre-
dictor can be verified.
2.2. Sliding window time series analysis

The implementation of sliding window time series (SWTS)
analysis enables us to later use the resulting predictor at the heart
of the powertrain predictive controller. To conduct SWTS, the
driving data should be presented in the state-space format. SWTS
partitions the database into a number of finite-length segments and
tries to relate z past data to the p ahead data. From a model pre-
dictive control (MPC) design perspective (which is used commonly
for predictive controllers design), it can be interpreted that SWTS
enables us to use the history of the vehicle's motions to forecast the
eed profiles of Honda Insight.
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future speeds up to a predefined prediction horizon (HP). A sche-
matic illustration of treating a time-dependent database in a sliding
window format is depicted in Fig. 2.

Assume that a given database represents the time-dependent
profile of vehicle speed (V (t)) from t ¼ 0, 1,…, T. Then, SWTS im-
plies that at each set point, e.g. t ¼ tn, the vehicle speed for t ¼ tnþ1,
tnþ2,…, tnþp can be modeled using the vehicle speed history over a
finite previous time sequence, i.e. t ¼ tn�1, tn�2,…, tn�z. It is worth
pointing out that, in real-time implementations, the resulting al-
gorithm can be updated after eacht0 seconds, where
ft02½tnþ1; tnþp�=t02ℤg.
2.3. How the proposed scheme can be used by the predictive
powertrain control unit

As it was stated before, the main goal of proposing such a
scheme is to later devise it into the predictive powertrain control
unit to improve the fuel economy and emission performance of the
vehicle. In the previous sub-section, the authors described how
SWTS enables us reform any time-dependent database into the
standard state-space format for time series-based predictions. Let's
assume that the predictive powertrain control actions should be
repeated at every 10 s during the driving cycle, which means that
t0 ¼ 10 sec. Now, two important parameters which should be
verified are the input sliding window and the output sliding win-
dow. It is well-known that the performance of an MPC-based pre-
dictive controller is highly sensitive to the size of both input sliding
window and output sliding window (HP). In fact, by taking into
account that each working point should be evaluated at every 1 s, it
is very important to determine the optimum value of HP. It is clear
that by increasing the prediction horizon of a predictive controller,
we can come up with a more reliable control strategy. However, by
increasing the output sliding window, the performance of the
intelligent machine may be undermined. Hence, in this study, the
authors consider the prediction horizons within the range of
[10,20] to extract the optimum/feasible value of HP. After designing
an efficient method capable of predicting the vehicle speeds for the
next HP states, so many HP segments representing the
Fig. 2. The sliding window ba
characteristics of the driving data can be created and used to
calculate the respective control laws for the predictive controller as
an offline look-up table. In this context, at each updating point, the
intelligent predictor, i.e. E-LLM, uses the past z (equal to 7 in this
study) previously captured temporal speed values and predict the
HP ahead time states. It is worth pointing out that to select the value
of z, a model order selection mechanism has been utilized. In this
way, the authors have considered five different values of z, namely
5, 7, 9, 11, 15, and checked the accuracy, and also, the computational
complexity of the derived prediction systems. Based on some nu-
merical experiments, it has been observed that the prediction error
of E-LLMwhen uses 7 ormore previously captured temporal speeds
is relatively the same. However, it is clear that as the considered
intelligent system will be used as an online predictor, its compu-
tational complexity is of the highest importance. Therefore, the
authors have chosen z of 7 for designing the intelligent system. It is
worth pointing out that, after K-fold training, the authors observed
that the prediction accuracy of E-LLM cannot be improved if the
intelligent system uses z > 7. After the prediction, the similarity of
the predicted speed profile with the segments used to create the
control laws is investigated by a similarity search algorithm to find
the proper control law from the look-up table for next t0 ¼ 10
seconds of the driving cycle. One of the salient assets of the
resulting predictive controller is that it does not rely on expensive
ITS infrastructures and on-board sensors to get the future vehicle
speed profile. Rather, the proposed drive cycle prediction algorithm
provides the required information. A schematic illustration of the
predictive powertrain control scheme concept based on the driving
cycle time-series prediction is depicted in Fig. 3.
3. Evolutionary least learning machine

In the previous section, the authors described how the database
should be treated to be prepared for the proposed time series-
based analysis. In this section, the authors explain the steps
required for implementation of the time series-based predictor. As
it was mentioned, the contribution of the intelligent predictor is to
relate a sequence of the previously captured speed signals with HP
sed time series analysis.



Fig. 3. A schematic illustration of the proposed time series prediction-based powertrain controller.
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proceeding speed signals. Let us assume that the z previously
captured speed signals form an input vector X of z arrays, and theHP

ahead signals form an output vector Yd of HP arrays, then, the
intelligent predictor (J) can be considered as a system comprising
of several mathematical formulations aim at making a map be-
tween X and Yd, as given below:

Yp ¼ JðXÞ (1)

where YP is the vector of HP proceeding signals predicted by the
intelligent predictor. The art of designing a time series-based pre-
dictor is to form the function J such that the output of the pre-
dictor YP has the lowest possible deviation from the desired ahead
sequences vector Yd.

Given the abovementioned facts, in this section, the authors
describe how they designed such an intelligent predictor. The pro-
posed E-LLM system is a hybrid bi-level machine which uses an
evolutionaryalgorithmcalledmutable smartbeealgorithm(MSBA) as
a meta-optimizer for evolving the architecture of least learning ma-
chine (LLM) so that the prediction accuracy is increased to the highest
possible degree. Inwhat follows this section, the authors describe the
architecture of E-LLM. Firstly, the steps required for implementing
LLM are explained. Thereafter, the contribution of MSBA as a meta-
optimizer for evolving the architecture of LLM is scrutinized.
3.1. Least learning machine

LLM is an extended version of extreme learning machine (ELM)
which enables us design multi-layer feed-forward neural network
architectures [11]. In contrast to ELM which has only one hidden
layer, LLM may have several hidden layers working altogether.
Indeed, such a characteristic is very suited when we would like to
design a time series-based predictor. In a study by Vafaipour et al.
[14], it was demonstrated that multi-layered feed-forward (MLFF)
architectures with more than one hidden layer can afford much
more accurate results for time series predictions. This is because, in
most of the cases, the relation between the previously captured
signals and the proceeding signals is highly nonlinear and requires
network architectures of higher order of nonlinearity (i.e. those
having several hidden layers). In this investigation, it has been
demonstrated that by integrating the concept of hidden feature
space ridge regression (HFSR) and ELM, a powerful tool can be
developed which is suited for multi-input multi-output (MIMO)
systems, and thus, is useful for the time series analysis.

The mathematical steps required for the implementation of LLM
is the same as those of ELM. However, as the architecture of LLM is
different from ELM, a number of subtle remarks should be
considered to properly implement LLM. Assume that the MIMO
database has N data points in which the input vector has Dinp ele-
ments and output vector has Dout elements. This can be mathe-
matically expressed as:

Data ¼
n�

xj; yj
����xj2RDinp ; yj2RDout ; j ¼ 1;2; :::;N

o
(2)

Assume that LLM has l¼ 1, 2,…, L hidden layers, and lth layer has
HNl hidden nodes. In this study, the activation function of each
node is set to be logsig. In LLM, three categories of structural fea-
tures should be considered: (1) those dealing with the input layer
and the first hidden layer (IeH), (2) those dealing with the inter-
action of hidden layers (HeH), and (3) those dealing with the last
hidden layer and the output layer (H-O). Let us indicate the synaptic
weights connecting (1) input layer to the first hidden layer with
(WIH), (2) lth hidden layer to l0th hidden layer with (Wl�l0

HH ), and (3) the
last hidden layer to the output layer with (WHO). Just like ELM, LLM
works based on the algebraic multiplication of the synaptic weights
with their respective regression matrices. As ELM has only one
hidden layer, it has only one regression matrix, known as the hid-
den layer output matrix (H) [15]. However, based on the description
provided before, LLM requires two different types of regression
matrices: (1) one HIH matrix, and (2) a number of Hl�l0

HH matrices. HIH

is formed based on the multiplication of WIH with the nodes of the
first hidden layer and Hl�l0

HH is formed bymultiplication ofWl�l0
HH with

the hidden nodes of l0th hidden layer. The value of H matrices de-
pends on the characteristics of H matrices for all of the previous
layers. Except the synaptic weights of the last layer, the weights of
the previous layers can be randomly set. To calculate the synaptic
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weights connecting the last hidden layer to the output layer, the
pseudo-inverse least square method (LSM) is used. Before pro-
ceeding with this approach, we need to explain how the regression
matrices can be determined.

Calculation of HIH: This matrix is formed by concatenation of the
firing signals of each hidden nodewith respect to all of the arrays of
WIH. Assume that the logsig activation function of each node is
indicatedwith g and each node has an external bias (b). Then, based
on the standard inference of any neural system, the matrix can be
defined as:

HIH¼

2
664

g
�
WIH

1 ,x1þb1
�

«

g
�
WIH

1 ,xDinp
þb1

� /
1
/

g
�
WIH

HN1
,x1þbHN1

�
«

g
�
WIH

HN1
,xDinp

þbHN1

�
3
775
Dinp�HN1

(3)

Now, imagine that we want to proceed with the next layer, i.e.
forming the matrix H which represents the regressors of the first
hidden layers. Obviously, this matrix (H1�2

HH ) is formed by concate-
nation of the firing signals of each hidden node in the second
hidden layer with respect to all of the arrays of HIH. Again, by
considering the logsig activation function for each node and a bias,
H1�2
HH can be formed as given below [16]:
H1�2
HH ¼

2
6666664

g

 
WHH1�2

1 ,

 XDinp

u¼1

HIHðu;1Þ
!

þ b1

!
«

g

 
WHH1�2

1 ,

 XDinp

u¼1

HIHðu;HN1Þ
!

þ b1

!
/
1
/

g

 
WHH1�2

HN2
,x1

 XDinp

u¼1

HIHðu;1Þ
!

þ bHN2

!
«

g

 
WHH1�2

HN2
,

 XDinp

u¼1

HIHðu;HN1Þ
!

þ bHN2

!

3
7777775
HN1�HN2

(4)
As it can be seen, the values of the arrays of the new formed H
matrix depend on the value of the lastHmatrix. By proceeding with
this layer by layer procedure, thematrixH formed in the last hidden
layer (HL�1 L

HH ) can be mathematically expressed as:
HL�1 L
HH ¼

2
6666664
g

 
WHHL�1 L

1 ,

 XHNL�2

u¼1

HL�1 L�2
HH

�
u;1

�!
þ b1

!
«

g

 
WHHL�1 L

1 ,

 XHNL�2

u¼1

HIHðu;HNL�1Þ
!

þ b1

!
/
1
/

g

 
WHHL�1 L

HNL
,

 XHNL�2

u¼1

HIHðu;1Þ
!

þ bHNL

!
«

g

 
WHHL�1 L

HNL
,

 XHNL�2

u¼1

HIHðu;HNL�1Þ
!

þ bHNL

!

3
7777775
HNL�1�HNL

(5)
After the calculation of the lastHmatrix, LLM can easily map any
feature to each other, as given below:

HL�1 L
HH ,WHO

j ¼ yjP (6)

where j ¼ 1,…, Dout. This means that, by repeating the pseudo-
inverse LSM for Dout times, LLM can deal with any MIMO
database. Hence, we expect that the finalWHO be a matrix with the
following format:

WHO ¼
2
4 WHO

1;1
«

WHO
HNL;1

/
1
/

WHO
1;Dout
«

WHO
HNL;Dout

3
5
HNL;Dout

(7)

The value of WHO is calculated using the LSM method, as
follows:

WHO ¼ H
y L�1 L

HH ,YP (8)

where H
y L�1 L

HH is calculated as:

H
y L�1 L

HH ¼
 
H
T L�1 L

HH ,H

!�1

H
T

(9)

where H
T
is the transpose of matrix H.

The architecture of LLM is depicted in Fig. 4.

3.2. Mutable smart bee algorithm

In this section, the authors describe howMSBA is used to evolve
the architecture of LLM. MSBA is a relatively recent metaheuristic
technique proposed by Mozaffari et al. [17]. The main motivation
behind the development of MSBA was to improve the exploration/
exploitation capabilities of artificial bee colony (ABC) algorithm,
and also, to come up with a searching mechanism which is best
suited for constraint optimization problems. The initial simulations
proved that MSBA can outperform several state-of-the-art meta-
heuristics in constraint optimization problems. Later, MSBA has
been applied to several engineering and numerical unconstraint
optimization problems and the available reports confirm that it is a
powerful optimization approach when we are dealing with un-
constraint problems [18]. Recently, Mozaffari et al. [19] proposed an
adaptive MSBA which adapts the mutation probability over the
optimization procedure. Through an exhaustive numerical experi-
ment, it has been concluded that the adaptive version of MSBA can
even yield much more promising results as it provides a logical



Fig. 4. A schematic illustration of the LLM architecture.
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balance between the exploration and exploitation capabilities. A
comprehensive review of the chronological advances of MSBA can
be found in Mozaffari et al. [19], and for the sake of brevity, the
authors refer the interested readers to this paper. From a numerical
method's point of view, it has been demonstrated that the heuristic
agents of MSBA, known as smart bees, provide the resulting met-
aheuristic with two advantageous features compared to themost of
existing metaheuristics. Firstly, these agents are equipped with a
finite-capacity (short-term) memory which enables them to
compare their new positions with the previously detected regions
and, based on a greedy selection, they can select the fittest solution.
Secondly, the mutation operator devised in MSBA guarantees the
diversification of the search, and thus, a successful search can be
performed with even a low number of the heuristic agents. The
mentioned numerical advantages have instigated us to take
advantage of MSBA for evolving the architecture of LLM. The
pseudo-code of MSBA is presented in Fig. 5.

To evolve the architecture of LLM, we should find out which
controlling parameters have the potential of being optimized
such that the accuracy of LLM is maximized. Based on the de-
scriptions given previously, one can easily understand that there
are two main controlling parameters which have a significant
effect on the performance of LLM: (1) the number of hidden
layers (L), and (2) the number of hidden neurons in each layer of
LLM. Fortunately, the synaptic weights of LLM are verified
randomly or analytically, and thus, it is not needed to consider
them as the decision parameters of MSBA. The following steps
should be taken so that MSBA can evolve the architecture of LLM:

Step 1: Randomly, initialize the population of s smart bees. Each
of these smart bees has 9 decision variables with the following
form:

S ¼ ½ l HN1 HN2 HN3 HN4 HN5 HN6 HN7 HN8 �
(10)

where l is an integer value within the range of [1,8] and the other
decision variables are integer values within the range of [2,10]. It
should be noted that the first decision variable represents the
number of hidden layers and the other 8 variables indicate the
number of hidden nodes at each layer. Clearly, when the number of
hidden layers is less than 8, for example 5, we only consider the 2nd
to 5th decision variables and the value of the remaining decision
variables will be equal to 0. The integer programming can be easily
done in the Matlab software. To do so, we only need to initialize the
value of each variable by using the command rand, and then,
extract the corresponding integer value by using the command
round.

Step 2: After the formation of the corresponding LLM, its accu-
racy is calculated using the equation below (which is the
objective function of MSBA):

F ¼ min
1
N

XN
i¼1

XDout

j¼1

�
Yi;j
P � Yi;j

d

�2
(11)

It is clear that, as a meta-optimizer, MSBA tries to optimize the
characteristics of its heuristic agents so that the value of the
objective function is minimized. Through the above steps, the
structure of E-LLM is formed.
4. Parameter settings, rival techniques and performance
evaluation metrics

To conduct the numerical simulations, a set of parameters
should be set, and also, a number of performance evaluation
metrics should be considered. It is also important to select a set of
rival methods to endorse the applicability of the proposed time
series forecasting technique. As mentioned previously, the
considered predictor is comprised of two different levels, a meta-
optimizer and a predictor. To evaluate the performance of MSBA, a
set of the rival metaheuristics, i.e. particle swarm optimization
(PSO) [20], genetic algorithm (GA) [21], and artificial bee colony
(ABC) [22], are used. All of the metaheuristics perform the opti-
mization with a population of 20 heuristic agents, for 100 itera-
tions. Besides, all of the rival techniques conduct the optimization
with a unique initialization to make sure that the obtained results
are not biased. To capture the effects of uncertainty, the optimi-
zation is conducted for 20 independent runs with random initial
seeding, based on the Monte-Carlo simulation. For PSO, a linear
decreasing adaptive inertia weight (with initial value w0 of 1.42) is
taken into account. The values of social and cognitive coefficients
are set to be 2. For the both ABC and MSBA, the trial number of 10
and the modification rate (MR) of 0.8 are considered. For MSBA, 5
bees violating the admissible trial number are sent to the muta-
tion phase. The mutation operator is an arithmetic graphical
search (AGS) operator. It is worth noting that the mutation prob-
ability of MSBA is a linear decreasing function with the initial



Fig. 5. Pseudo-code of MSBA.
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value of 0.05. For GA, the tournament selection mechanism,
Radcliff crossover and polynomial mutation are taken into ac-
count. The crossover and mutation probabilities are set to be 0.8
and 0.04, respectively. All of the considered metaheuristics are
integrated with LLM and their performances are evaluated to
make sure that the proposed meta-optimizer is powerful. After
that, the performance E-LLM is compared against the auto
regressive (AR) method [10], back-propagation neural network
(BPNN) [14], evolutionary extreme learning machine (E-ELM) [23],
extreme learning machine (ELM) [15], adaptive neuro-fuzzy
inference system (ANFIS) [24], and radial basis function neural
network (RBFNN) [14], to indicate that the considered predictor
works properly. By performing a model order selection recom-
mended by Huang et al. [15], the authors realized that ELM should
have 12 hidden nodes in its hidden layer. To use BPNN, a sensi-
tivity analysis, as recommended by Vafaeipour et al. [14], was
performed and it was observed that BPNN should have three
hidden layers with 2e5e6 hidden nodes. E-ELM is the same as the
one proposed in Zhu et al. [23]. It is worth noting that to evade
numerical instabilities and biased results, as well as to discern the
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maximum computational potentials of the considered predictors,
the database is normalized within the range of unity, using the
following formulation:

Xi
norm ¼ Xi � Xi

min

Xi
max � Xi

min

(12)

where i ¼ 1,…, Dinp. The outputs are also normalized in the same
fashion.

Furthermore, it is important to consider a set of the perfor-
mance evaluation techniques to compare the accuracy of the
considered predictors. In this study, the mean square error (MSE),
root mean square error (RMSE), mean absolute percentage error
(MAPE), median absolute percentage error (MDAPE), and absolute
fraction of variances (R2) metrics are utilized to accurately
compare the capabilities of the considered predictors. The math-
ematical formulations of the considered predictors are given
below:

MSE ¼ 1
N

XN
i¼1

XDout

j¼1

�
Yi; j
P � Yi; j

d

�2
(13)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
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XDout
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�
Yi; j
P � Yi; j

d

�2vuut (14)

MAPE ¼ 1
N

XN
i¼1

XDout

j¼1

���Yi; j
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d

���
Yi;j
d

� 100 (15)

MDAPE ¼
XDout

j¼1

median

 �����Y
j
P � Yj

d

Yj
d

������ 100

!
(16)
Fig. 6. The convergence behavior of
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To make sure that the identifiers are trained based on their
prediction power (namely, the potential of forecasting upcoming
speeds), and also, they are able to capture the effects of biased
training, all of the identification scenarios are conducted based on a
10-fold cross-validation. This means that the datasets are divided
into 10 subgroups and the training is performed at 10 different
stages. In this context, 9 subgroups are used for the training, and
then, the prediction performance is evaluated by the 1 remaining
unseen dataset. Such a procedure is transacted so that we make
sure all of the 10 subgroups have been considered as the unseen
data. Finally, the average values of each of the 10 folds are again
averaged and the final value is reported. As mentioned previously,
10-fold training/testing is repeated for 20 independent runs to
provide statistical feedback regarding the performance of the rival
identifiers. All of the simulations are performed in the Matlab
environment with Microsoft Windows 7 operating system on a PC
with a Pentium IV, Intel Dual core 2.2 GHz and 2 GBs RAM.
5. Simulation results

5.1. Evaluating the performance of meta-optimizers

At the first step of the experiments, the authors would like to
understand whether the MSBA meta-optimizer selected for
evolving the architecture of LLM can afford acceptable outcomes.
Fig. 6 depicts the mean real-time convergence behavior of MSBA,
PSO, GA and ABC for evolving the architecture of LLM. To verify the
prominent performance of MSBA, the authors depict all of the
the considered meta-optimizer.



Table 1
The statistical results yielded by meta-optimizers for 20 independent runs.

Methods Mean Std. Min Max

1st speed profile
ABC-LLM 0.0508343 3.22e0-4 0.0502261 0.0509921
MSBA-LLM 0.0501197 4.36e0-5 0.0501031 0.0501516
PSO-LLM 0.0508546 6.32e0-4 0.0502162 0.0509317
GA-LLM 0.0512877 1.56e0-3 0.0497417 0.0521522
2nd speed profile
ABC-LLM 0.0322939 1.51e0-4 0.0320831 0.0323152
MSBA-LLM 0.0322461 2.57e0-5 0.0322197 0.0322636
PSO-LLM 0.0323027 3.66e0-5 0.0322841 0.0323552
GA-LLM 0.0331316 4.77e0-3 0.0324621 0.0363381
3rd speed profile
ABC-LLM 0.0308893 4.42e0-5 0.0308263 0.0309153
MSBA-LLM 0.0308362 9.57e0-7 0.0308125 0.0308731
PSO-LLM 0.0310872 4.41e0-7 0.0310015 0.0311251
GA-LLM 0.0313186 1.89e0-4 0.0311031 0.0314436
4th speed profile
ABC-LLM 0.1130143 6.34e0-3 0.1116721 0.1155351
MSBA-LLM 0.1112692 1.17e0-3 0.1108994 0.1136735
PSO-LLM 0.1117513 4.49e0-3 0.1106893 0.1123215
GA-LLM 0.1130989 6.63e0-2 0.1121553 0.1155435
5th speed profile
ABC-LLM 0.0337523 8.53e0-4 0.0335521 0.0339492
MSBA-LLM 0.0335239 1.33e0-5 0.0334931 0.0335392
PSO-LLM 0.0335624 2.02e0-5 0.0335443 0.0335846
GA-LLM 0.0338298 3.11e0-4 0.0336732 0.0341536

Table 3
Comparison of the performance of the rival predictors.

Predictors MSE RMSE MAPE MDAPE R2

1st speed profile
E-LLM 0.0501 0.2238 10.2574 54.9487 0.9468
E-ELM 0.0509 0.2245 10.5287 55.4298 0.9462
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optimization scenarios, namely for the entire speed profiles. It can
be seen that the performance of MSBA is clearly superior to the
other techniques for the first speed profile. For the other optimi-
zation scenarios, the performances of PSO and ABC are also com-
parable to those of MSBA. However, the main point is, for all of
those optimization scenarios, MSBA is among the two best opti-
mizers (and in fact, it yields the best results for all of those
Table 2
Analysis of the effect of layers and nodes on the performance of LLM.

LLM features MSE RMSE MAPE MDAPE R2

1st speed profile
4e2e3 0.0515 0.2269 10.5533 57.3862 0.9426
2e2e5 0.0524 0.2290 10.7352 57.6316 0.9422
3e4e4 0.0502 0.2241 10.4790 56.7873 0.9453
3e5 0.0501 0.2238 10.2574 54.9487 0.9468
2e5e2e4 0.0508 0.2253 10.5282 55.4233 0.9440
2nd speed profile
4e2e3 0.0334 0.1828 5.8215 26.8463 0.9437
2e2e5 0.0339 0.1840 5.8779 27.0362 0.9435
3e4e4 0.0328 0.1812 5.7931 26.6044 0.9456
3e5 0.0322 0.1798 5.6949 26.3141 0.9472
2e5e2e4 0.0325 0.1802 5.6944 25.9646 0.9465
3rd speed profile
4e2e3 0.0315 0.1774 8.6273 38.9877 0.9792
2e2e5 0.0323 0.1798 8.7926 41.6610 0.9788
3e4e4 0.0312 0.1765 8.7085 37.6601 0.9793
3e5 0.0308 0.1758 8.6830 38.4777 0.9797
2e5e2e4 0.0316 0.1778 8.7794 39.4638 0.9792
4th speed profile
4e2e3 0.1132 0.3340 15.3006 173.9580 0.7774
2e2e5 0.1124 0.3365 14.9605 170.2491 0.7807
3e4e4 0.1115 0.3353 14.9710 170.2070 0.7852
3e5 0.1113 0.3258 14.6646 163.0288 0.7938
2e5e2e4 0.1119 0.3345 14.4705 165.2509 0.7884
5th speed profile
4e2e3 0.0344 0.1855 6.6994 31.9600 0.9577
2e2e5 0.0354 0.1880 6.7836 32.7133 0.9558
3e4e4 0.0340 0.1845 6.6812 31.4183 0.9581
3e5 0.0336 0.1833 6.5609 31.2470 0.9593
2e5e2e4 0.0340 0.1844 6.6918 32.7278 0.9586

Bold numbers show the most qualified results.
problems). However, PSO and ABC cannot retain their acceptable
quality for all of the considered problems. Also, PSO shows a weak
performance for the third profile and ABC shows an inferior per-
formance in the fourth and fifth optimization scenarios. The other
important observation refers to the fast convergence behavior of
MSBA.MSBA is not only able of outperforming the other optimizers,
but also can show an acceptable exploration/exploitation behavior,
and consequently, has a fast convergence speed. It is only in the
third optimization scenario that MSBA stands in the second place
with regard to the convergence speed. Table 1 lists the statistical
results obtained by the execution of the meta-optimizers for 20
independent runs. To clearly visualize the performance of the op-
timizers, the statistical results are reported in terms of the standard
deviation (std.), mean obtained value, min obtained value, and max
obtained value. As it can be seen from Table 1, the mean perfor-
mance of MSBA is better than the other algorithms. Furthermore,
the obtained std. values indicate that the both MSBA and PSO have
an acceptable robustness rate as they converge to the relatively
unique solutions over the independent optimization runs.

The results of the meta-optimization experiment reveal that
MSBA can be used as a powerful method for evolving the archi-
tecture of LLM. Hence, the considered E-LLM usesMSBA as its meta-
optimizer. The results of optimization indicate that LLM with 2
hidden nodes with 3e5 architecture can afford the best prediction
results. To make sure that the considered meta-optimization policy
ELM 0.0530 0.2302 10.7010 57.2932 0.9405
BPNN 0.0528 0.2297 10.7691 57.2123 0.9409
RBFNN 0.0527 0.2295 10.7248 57.2009 0.9410
AR 0.0571 0.2390 11.2402 62.6303 0.9340
ANFIS 0.0523 0.2287 10.5862 57.2825 0.9407
2nd speed profile
E-LLM 0.0322 0.1798 5.6949 26.3141 0.9472
E-ELM 0.0326 0.1805 5.6794 26.1174 0.9464
ELM 0.0339 0.1840 5.8664 27.4541 0.9430
BPNN 0.0339 0.1841 5.9238 26.3134 0.9427
RBFNN 0.0335 0.1829 5.8228 26.7757 0.9438
AR 0.0344 0.1855 6.0146 26.8101 0.9412
ANFIS 0.0326 0.1804 5.7046 26.3932 0.9462
3rd speed profile
E-LLM 0.0308 0.1758 8.6830 38.4777 0.9797
E-ELM 0.0314 0.1771 8.7279 38.8436 0.9791
ELM 0.0326 0.1806 8.7629 43.2178 0.9788
BPNN 0.0323 0.1797 8.6912 41.4519 0.9789
RBFNN 0.0324 0.1801 8.6323 40.5796 0.9787
AR 0.0347 0.1862 8.9772 47.0630 0.9771
ANFIS 0.0312 0.1764 8.7039 38.6950 0.9793
4th speed profile
E-LLM 0.1113 0.3236 14.6646 163.0288 0.7938
E-ELM 0.1114 0.3338 15.2600 173.2470 0.7774
ELM 0.1131 0.3363 15.1720 169.9092 0.7759
BPNN 0.1333 0.3651 16.5251 178.2751 0.7196
RBFNN 0.1283 0.3582 15.4540 170.2315 0.7413
AR 0.1419 0.3767 17.0010 184.2615 0.6893
ANFIS 0.1116 0.3340 15.0129 167.7441 0.7839
5th speed profile
E-LLM 0.0336 0.1833 6.5609 31.2470 0.9593
E-ELM 0.0335 0.1831 6.6998 32.1198 0.9592
ELM 0.0358 0.1892 6.7926 32.7657 0.9523
BPNN 0.0364 0.1908 7.0172 33.7094 0.9536
RBFNN 0.0352 0.1876 6.8026 32.6206 0.9563
AR 0.0353 0.1878 6.9017 32.0872 0.9561
ANFIS 0.0337 0.1836 6.5660 31.8809 0.9591

Bold numbers show the most qualified results.



Fig. 7. The prediction capability of E-LLM.

Table 4
The prediction potentials of E-LLM for different prediction horizons.

E-LLM MSE RMSE MAPE MDAPE R2

1st speed profile
HP ¼ 10 0.0501 0.2238 10.2574 54.9487 0.9468
HP ¼ 12 0.0556 0.2357 10.8811 75.1463 0.9356
HP ¼ 14 0.0614 0.2477 11.3178 95.6694 0.9233
HP ¼ 16 0.0648 0.2546 11.6167 116.7796 0.9157
HP ¼ 18 0.0685 0.2617 11.8876 139.0551 0.9077
HP ¼ 20 0.0717 0.2678 12.1616 162.9350 0.9002
2nd speed profile
HP ¼ 10 0.0322 0.1798 5.6949 26.3141 0.9472
HP ¼ 12 0.0374 0.1935 6.2357 35.9852 0.9311
HP ¼ 14 0.0425 0.2060 6.8459 47.6387 0.9127
HP ¼ 16 0.0462 0.2149 7.1972 57.9305 0.8966
HP ¼ 18 0.0507 0.2252 7.6965 70.6010 0.8771
HP ¼ 20 0.0543 0.2331 8.0271 85.7020 0.8609
3rd speed profile
HP ¼ 10 0.0308 0.1758 8.6830 38.4777 0.9797
HP ¼ 12 0.0361 0.1899 8.9149 52.6572 0.9731
HP ¼ 14 0.0411 0.2027 9.3285 72.4886 0.9667
HP ¼ 16 0.0451 0.2125 9.5384 92.0856 0.9603
HP ¼ 18 0.0494 0.2223 9.8980 112.4178 0.9527
HP ¼ 20 0.0532 0.2307 10.0496 132.7884 0.9461
4th speed profile
HP ¼ 10 0.1113 0.3258 14.6646 163.0288 0.7938
HP ¼ 12 0.1222 0.3495 15.2666 219.6018 0.7388
HP ¼ 14 0.1381 0.3716 16.0476 275.1391 0.6866
HP ¼ 16 0.1495 0.3867 16.1277 335.2952 0.6500
HP ¼ 18 0.1614 0.4018 16.6770 404.1512 0.6067
HP ¼ 20 0.1716 0.4143 17.1430 450.5651 0.5577
5th speed profile
HP ¼ 10 0.0336 0.1833 6.5609 31.2470 0.9593
HP ¼ 12 0.0379 0.1947 7.0849 42.8629 0.9484
HP ¼ 14 0.0421 0.2052 7.7319 54.2151 0.9365
HP ¼ 16 0.0456 0.2135 8.1085 66.5465 0.9249
HP ¼ 18 0.0501 0.2238 8.5307 84.9255 0.9124
HP ¼ 20 0.0538 0.2319 9.0122 99.7662 0.9003

Bold numbers show the most qualified results.
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is reliable, the authors performed a sensitivity analysis and
compared the prediction power of LLM with different architectures
with that suggested by MSBA. Table 2 indicates the obtained re-
sults. For further assurance on the performance of the considered
LLM architectures, the authors compare the prediction power of the
rival LLMs in terms of all of the considered performance evaluation
metrics. The obtained results indicate that the architecture pro-
posed by MSBA is superior to the other LLMs. All to all, there are
only two cases in which the meta-optimized architecture cannot
show a superior performance; otherwise, none of the rival archi-
tectures can beat the LLM with 3e5 structural organization.
5.2. Comparing the rival predictors

After demonstrating the efficacy of the proposed meta-
optimization scheme and ensuring the veracity of E-LLM, now it
is the time to find out whether it can outperform the other well-
known predictors. To avoid any biased conclusions, all of the rival
predictors conduct the time series forecasting based on the concept
of SWTS. Table 3 indicates the obtained results. As it can be seen, for
the first scenario, E-LLM outperforms the other rival techniques. For
this case, the performance of E-ELM is also acceptable compared to
the other techniques. For the second and fifth speed profiles, it can
be seen that E-LLM and E-LM outperform the other techniques.
However, it can be seen that the performance of E-LLM is better
than E-ELM. To be more precise, E-ELM only outperforms E-LLM in
terms of MAPE and MDAPE for the second scenario, as well as MSE
and RMSE for the fifth scenario. For the remaining metrics, the
performance of E-LLM is superior. An interesting issue is observed
in the third prediction scenario. It seems that RBFNN outperforms
E-LLM in terms of MAPE. Also, the kernel-based feature transition
of RBFFN can be a promising strategy for the prediction of the
future speeds of the vehicle. As a general remark, it can be
expressed that ELM, BPNN and RBFNN have a relatively equal
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prediction power and the classical AR cannot show comparative
results in comparisonwith its intelligent counterparts. ANFIS which
works based on the integration of both fuzzification concept and
neural computation also has an acceptable performance. As it can
be seen, in the most of the testing scenarios, its performance is
superior to BPNN, RBFNN, ELM and AR. However, it cannot
outperform the E-LLM and E-ELM predictors.

The outcomes of the comparative study reveal that E-LLM can
serve as a promising predictor for forecasting the future speeds of
Honda Insight vehicle. In the next experiment, the authors scruti-
nize the prediction capabilities of E-LLM and evaluate its potentials
to be used in the vehicle's predictive controller.

5.3. Studying the potentials of E-LLM for applications in the
vehicle's predictive powertrain control unit

The time series prediction of E-LLM for all of the speed profiles is
depicted in Fig. 7. As it can be seen, the prediction accuracy of E-
LLM with respect to the actual vehicle speed time series is quite
acceptable. The only non-negligible flaw of the predictor refers to
the rare overshoots which take place when a significant change in
the future speed values happens (especially, for the first speed
profile). Otherwise, it can be seen that E-LLM accurately tracks the
actual speed profile. As it was mentioned, the main role of the
considered machine is to be embedded within the structure of a
predictive powertrain controller. The controller employs the entire
estimated speeds over a prediction horizon to calculate the control
action sequence. Therefore, such prediction errors at over-shoot
points won't cause a significant impact on the controller perfor-
mance. Given the functionality of the devised intelligent system to
enhance the vehicle fuel economy, and most importantly, consid-
ering its trivial cost compared to ITS-related infrastructures, and
also, the way that the predictive controller is using the estimated
speeds, its performance is acceptable.
Fig. 8. Future speed profile predictio
In all of the previous numerical experiments, all of the simu-
lations were conducted by HP of 10. After ascertaining the
acceptable performance of E-LLM, at this stage of the numerical
experiments, the authors would like to apply it for predicting
greater numbers of HP to find out its maximum potentials. As it
was mentioned, the admissible and logical range of prediction
horizon is confined within the range of [10,20]. For the sake of
comprehensive sensitivity analysis, here, the authors evaluate the
prediction performance of E-LLM for HP values of 10, 12, 14, 16, 18,
and 20. This is very critical to realize the optimum value of pre-
diction horizon as this parameter has a significant effect on the
performance of MPC-based predictive controllers. To be more
consistent, it should be tried to find the greatest possible value of
HP in which the prediction accuracy of E-LLM is not undermined.
Table 4 lists the results of sensitivity analysis. As expected, by
increasing the length of prediction horizon, the prediction accu-
racy of E-LLM is decreased. To select the maximum admissible
length of the prediction horizon, the authors confine themselves
to the criterion that the value of absolute fractions obtained by
the predictors should not be significantly less than that obtained
for the prediction horizon length of 10. The selected horizon
lengths are indicated in a bold format. It seems that the predic-
tion horizon length of 14 is an acceptable/logical choice. By
considering the other performance evaluation metrics, one can
discern that the differences of the prediction accuracy of E-LLM
for the prediction lengths of 10 and 14 are not very different.
However, from an MPC design point of view, having a predictor
which enables us to detect the vehicle speeds for the next 14 s is
very advantageous compared to the one which predicts the next
10 s.

As a final test, the authors extract the predicted values and
actual speeds of the vehicle for a random segment. Fig. 8 compares
the predicted speed profiles and themeasured one for the next 14 s.
As it can be seen, the obtained results are in a good agreement with
ns for a random 14 s segment.
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each other and demonstrate that E-LLM can be used in the pre-
dictive powertrain control unit of the Honda Insight.
6. Conclusions

In this study, a hybrid intelligent predictive approach based on
the mutable smart bee algorithm (MSBA) and the least learning
machine (LLM) was presented to predict the vehicle speeds on the
urban roads of San Francisco, California. The main objective of the
proposed predictor was to correctly aid the predictive powertrain
controller to ensure proper vehicle fuel economy and emission
performance during the drive cycle. To this aim, the authors tried to
find out whether the proposed E-LLM predictor is appropriate to be
used as a time series predictor. Also, to ensure the proposed
method is capable of being used as part of the predictive controller,
the authors took advantage of the sliding window time series
(SWTS)-based system implementation and derived a state-space
representation. Based on the simulations, it was observed that
SWTS enables us to derive an efficient time series predictor which
can use the historical information of the vehicle speed and forecast
the future vehicle speed profiles up to a predefined prediction
horizon. Moreover, the comparative numerical experiments
demonstrated that E-LLM can serve as a very powerful time series
predictor, and also, can outperform several state-of-the-art
methods with respect to the different performance evaluation
metrics. The results of the current study draw the attention of
automotive control engineers working within the realm of intelli-
gent transportation systems (ITS) towards the fact that intelligent
methods, for instance the proposed E-LLM, have good potentials to
be used instead of the expensive telematics-based technologies
used in smart vehicles.

Finally, it is worth to mention that the predicted speed profile
has the most significant impact on the future vehicle power de-
mands which should be known in advance by the powertrain
controller to achieve a better performance in terms of the fuel
economy. However, there are other pieces of route information, for
instance the road grade, weather conditions and so on, which affect
the future power demands. Certainly, having access to these addi-
tional variables, through measurements or predictions, will further
improve the performance of the powertrain controller, but this was
outside the scope of the current study. In future, the authors will
demonstrate and discuss the structure and functioning of a pre-
dictive powertrain controller integrated with the devised speed
prediction algorithm.
References

[1] M. Müller, M. Reif, M. Pandit, W. Staiger, B. Martin, Vehicle speed prediction
for driver assistance systems, SAE Tech. Pap. (2004), 2004-01-0170.

[2] J.D. Gonder, Route-based control of hybrid electric vehicles, SAE World
Congress, U. S. A. (2008).

[3] M. Vajedi, M. Chehresaz, N.L. Azad, Intelligent power management of plug-in
hybrid electric vehicles, part II: real-time route based power management, Int.
J. Electr. Hybrid Veh. 6 (1) (2014) 68e86.
[4] B. Abdulhai, H. Porwal, W. Recker, Short-term traffic flow prediction using
neuro-genetic algorithms, Intell. Transp. Syst. J. 7 (1) (2002) 3e41.

[5] E.I. Vlahogianni, M.G. Karlaftis, J.C. Golias, Optimized and meta-optimized
neural networks for short-term traffic flow prediction: a genetic approach,
Transp. Res. Part C Emerg. Technol. 13 (3) (2005) 211e234.

[6] X. Jiang, H. Adelim, Dynamic wavelet neural network model for traffic flow
forecasting, J. Transp. Eng. 131 (10) (2005) 771e779.

[7] W. Zheng, D.H. Lee, Q. Shi, Short-term freeway traffic flow prediction:
Bayesian combined neural approach, J. Transp. Eng. 132 (2) (2006) 114e121.

[8] K.Y. Chan, T.S. Dillion, J. Singh, E. Chang, Traffic Flow Forecasting Neural
Networks Based on Exponential Smoothing Method, in: 6th IEEE Conference
on Industrial Electronics and Applications, 2011, pp. 376e381. Beijing, China.

[9] K.Y. Chan, T.S. Dillion, S. Tharam, J. Singh, E. Chang, Neural-network-based
models for short-term traffic flow forecasting using a hybrid exponential
smoothing and LevenbergeMarquardt algorithm, IEEE Trans. Intell. Transp.
Syst. 13 (2) (2012) 644e654.

[10] A. Fotouhi, M. Montazeri-Gh, M. Jannatipour, Vehicle's velocity time series
prediction using neural network, Int. J. Automot. Eng. 1 (1) (2011) 21e28.

[11] S. Wang, F.L. Chung, J. Wu, J. Wang, Least learning machine and its experi-
mental studies on regression capability, Appl. Soft Comput. 21 (2014)
677e684.

[12] H.B. Brown, I. Nourbakhsh, C. Bartley, J. Cross, P. Dille, Charge car Community
Conversions: Practical, Electric Commuter Vehicles Now!, Technical Report,
Carnegie Mellon University, 2012.

[13] ChargeCar Project Website, (2012), ‘http://www.chargecar.org/’
[14] M. Vafaeipour, O. Rahbari, M.A. Rosen, F. Fazelpour, P. Ansarirad, Application

of sliding window technique for prediction of wind velocity time series, Int. J.
Energy Environ. Eng. 5 (2014). Article ID: 105.

[15] G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: theory and ap-
plications, Neurocomputing 70 (2006) 489e501.

[16] A. Mozaffari, N.L. Azad, Optimally pruned extreme learning machine with
ensemble of regularization techniques and negative correlation penalty
applied to automotive engine coldstart hydrocarbon emission identification,
Neurocomputing 131 (2014) 143e156.

[17] A. Mozaffari, M. Gorji-Bandpy, T.B. Gorji, Optimal design of constraint engi-
neering systems: application of mutable smart bee algorithm, Int. J. Bio-
Inspired Comput. 4 (3) (2012) 167e180.

[18] Z. Cui, Y. Zhang, Swarm intelligence in bio-informatics: methods and imple-
mentations for discovering patterns of multiple sequences, J. Nanosci. Nano-
technol. 14 (2) (2014) 1746e1757.

[19] A. Mozaffari, A. Ramiar, A. Fathi, Optimal design of classic Atkinson engine
with dynamic specific heat using adaptive neuro-fuzzy inference system and
mutable smart bee algorithm, Swarm Evol. Comput. 12 (2013) 74e91.

[20] J. Kennedy, R. Eberhart, Particel swarm optimization, in: Proceedings of IEEE
International Conference on Neural Networks, 1995, pp. 1942e1948.

[21] K. Deb, Multi-objective Optimization Using Evolutionary Algorithms, Wiley,
Chichester, London, 2001.

[22] D. Karaboga, Artificial bee colony, Scholarpedia 5 (3) (2010). Article ID: 6915.
[23] Q.Y. Zhu, A.K. Qin, P.N. Suganthan, G.B. Huang, Evolutionary extreme learning

machine, Pattern Recognition 38 (10) (2005) 1759e1763.
[24] H. Shu, L. Deng, P. He, Y. Liang, Speed prediction of parallel hybrid electric

vehicles based on fuzzy theory, in: International Conference on Power and
Energy Systems, Lecture Notes in Information Technology, vol. 13, 2012.
Lecture Notes in Information Technology.

[25] A. Mahmoudabadi, Using artificial neural network to estimate average speed
of vehicles in rural roads, Int. Conf. Intell. Network Comput. (2010) 25e30.

[26] J. Park, D. Li, Y.L. Murphey, J. Kristinsson, R. McGee, M. Kuang, T. Phillips, Real
time vehicle speed prediction using a neural network traffic model, in: The
2011 International Joint Conference on Neural Networks, San Jose, 2011, pp.
2991e2996.

[27] J.G.D. Gooijer, R.J. Hyndman, 25 years of time series forecasting, Int. J. Forecast.
22 (2006) 443e473.

[28] R.J. Hyndman, A.B. Koehler, R.D. Snuder, S. Grose, A state space framework for
automatic forecasting using exponential smoothing methods, Int. J. Forecast.
18 (2002) 439e454.

[29] J. Hyndman, A.B. Koehler, J.K. Ord, R.D. Snyder, Prediction intervals for
exponential smoothing state space models, J. Forecast. 24 (2005) 17e37.

[30] E.P. George, G.M. Jenkis, G.C. Reinsel, Time Series Analysis: Forecasting and
Control, John Wiley and Sons, 2008.

http://refhub.elsevier.com/S2215-0986(14)00093-7/sref1
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref1
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref2
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref2
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref3
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref3
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref3
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref3
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref4
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref4
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref4
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref5
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref5
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref5
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref5
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref6
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref6
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref6
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref7
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref7
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref7
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref8
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref8
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref8
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref8
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref9
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref9
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref9
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref9
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref9
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref9
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref10
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref10
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref10
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref11
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref11
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref11
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref11
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref12
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref12
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref12
http://www.chargecar.org/
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref13
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref13
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref13
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref14
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref14
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref14
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref15
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref15
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref15
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref15
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref15
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref16
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref16
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref16
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref16
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref17
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref17
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref17
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref17
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref18
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref18
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref18
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref18
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref19
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref19
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref19
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref20
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref20
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref21
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref22
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref22
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref22
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref23
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref23
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref23
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref23
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref24
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref24
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref24
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref25
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref25
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref25
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref25
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref25
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref26
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref26
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref26
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref27
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref27
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref27
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref27
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref28
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref28
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref28
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref29
http://refhub.elsevier.com/S2215-0986(14)00093-7/sref29

	Vehicle speed prediction via a sliding-window time series analysis and an evolutionary least learning machine: A case study ...
	1. Introduction
	2. Sliding window time series analysis of the collected data
	2.1. Data collection
	2.2. Sliding window time series analysis
	2.3. How the proposed scheme can be used by the predictive powertrain control unit

	3. Evolutionary least learning machine
	3.1. Least learning machine
	3.2. Mutable smart bee algorithm

	4. Parameter settings, rival techniques and performance evaluation metrics
	5. Simulation results
	5.1. Evaluating the performance of meta-optimizers
	5.2. Comparing the rival predictors
	5.3. Studying the potentials of E-LLM for applications in the vehicle's predictive powertrain control unit

	6. Conclusions
	References


