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In this article we combine the well-known Ptychographical Iterative Engine (PIE) with the Hybrid Input-
Output (HIO) algorithm. The important insight is that the HIO feedback function should be kept strictly
separate from the reconstructed object, which is done by introducing a separate feedback function per
probe position. We have also combined HIO with floating PIE (fPIE) and extended PIE (ePIE). Simulations
indicate that the combined algorithm performs significantly better in many situations. Although we have
limited our research to a combination with HIO, the same insight can be used to combine ptycho-
graphical algorithms with any phase retrieval algorithm that uses a feedback function.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In coherent diffractive imaging (CDI) the goal is to reconstruct
an object from intensity measurements that are obtained in the far
field. Mathematically, we want to reconstruct a complex-valued
object transmission function ( )O r by illuminating it with a probe

( )P r and measuring in the far field the intensity
Ψ| ( )| = | { ( ) ( )}|P Ok r r2 2. Here, r and k are 2D position vectors in real
space and reciprocal (Fourier) space respectively. To achieve this,
many iterative phase retrieval methods have been developed such
as the Error Reduction (ER) algorithm [1], the Hybrid Input-Output
(HIO) algorithm [2], the Solvent Flipping (SF) algorithm [3], the
Averaged Successive Reflections (ASR) algorithm [4], the Hybrid
Projection Reflection (HPR) algorithm [5], or the Relaxed Averaged
Alternating Reflectors (RAAR) algorithm [6]. These algorithms aim
to reconstruct with a single intensity measurement.

A somewhat different type of algorithm is used for ptycho-
graphy. In this case we do not take just one intensity measure-
ment, but we displace the probe by some vector R , and for mul-
tiple different ′R s we obtain the intensity patterns
Ψ| ( )| = | { ( − ) ( )}|P Ok R r R r, 2 2. The probe ( )P r and the probe posi-
tions R are chosen such that there is sufficient overlap between
the probes at different positions. This is illustrated in Fig. 1(a). The
redundant measured information due to the overlap allows for a
successful reconstruction. Non-iterative ptychographical methods
have been developed [7–9], though here we will focus on the
B.V. This is an open access article u
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iterative ptychographical reconstruction methods. The algorithm
used to reconstruct ( )O r in ptychography is usually the Ptycho-
graphical Iterative Engine (PIE) [10], although it has been ex-
panded in various ways. For example, to reconstruct simulta-
neously an unknown object ( )O r and an unknown probe ( )P r , the
Extended Ptychographical Iterative Engine (ePIE) has been devel-
oped [11], as well as a nonlinear optimization approach [12]. In
case we want to reconstruct ( )O r , but the intensity measurements
are undersampled, the Floating Ptychographical Iterative Engine
(fPIE) can be used [13].

Upon examining PIE, one could conclude that it is in a sense an
extension of the ER algorithm, because in an iteration of PIE, for
each probe position R the guessed object ( )O rg is updated only in
the region where ( )P r is non-zero, while the rest of the guessed
object remains unchanged. It has been known however that HIO
outperforms ER [14,15], so it makes sense to redesign PIE as an
extension of HIO instead of as an extension of ER. It is shown in
[14] that ER is a steepest-descent gradient search algorithm, which
is known to be the weakest gradient-based nonlinear optimization
algorithm. Indeed, phase retrieval methods other than ER have
been adapted to ptychography [16,17]. However, the precise way
in which we adapt these methods to ptychography matters sig-
nificantly, as we show in this article.

The difference between ER and HIO is the following: suppose
our object ( )O r has a known finite support S. In its complement Sc,
we know that ( ) =O r 0. In the ER scheme, the guessed object ( )O rg

is set to 0 for all ∉r S at each iteration. In the HIO scheme, the
guessed object ( )O rg is not set to 0 for all ∉r S, but rather it is set to
some feedback function. If one happens to have a non-negativity
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Fig. 1. Left: an illustration of ptychography. An object ( )O r is illuminated by a probe ( )P r that is shifted over different vectors R . For each probe position, the intensity of the
diffraction pattern Ψ| ( )| = | { ( − ) ( )}|P Ok r R r2 2 is measured. These measurements are then used to reconstruct the object ( )O r . Right: an illustration of the HIO feedback
function. For ptychography, the feedback function lies outside the support of the probe.
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constraint (which is problem dependent), then this feedback
function can also be applied in the points in S where the updated
guessed exit wave violates this constraint.

In the case of ptychography, if we assume the probe ( )P r to be a
step function for simplicity, the support S for each measurement is
defined by ( )P r . Thus, the support of the feedback is com-
plementary to the probe, and not complementary to the object as
in regular HIO (see Fig. 1(b)). One should therefore take caution
when introducing the feedback function as described in HIO:
while in normal HIO we can store a feedback function in the
complement of S, in ptychography we cannot do this since ( )O rg

already is defined there. In case the object itself has a finite sup-
port SO and some probes scan outside this support, then it may be
possible to apply a feedback function in the complement of SO.
However, in our simulation we will not consider this scenario.

While it has already been suggested to combine PIE with other
phase retrieval algorithms such as HIO and RAAR [16], they allow
the feedback function to overlap with the object estimate ( )O rg . We
propose here an alternative version of HIO combined with PIE
where the feedback function is kept strictly separated from the
object. We study how this method can be extended to HIO-fPIE
and HIO-ePIE, and compare our method to the other reconstruc-
tion algorithms.
2. Theory

In this section we describe the four different algorithms that we
will compare. Sequential PIE describes the regular PIE algorithms
where the guessed object is updated one probe position at a time
[10]. In sequential HIO-PIE, our newly proposed algorithm, we also
update the guessed object one probe position at a time, but at the
same time we have a feedback function (as in HIO) per probe
position to improve the convergence. We also describe simulta-
neous (HIO-)PIE as suggested by [16], where the guessed object is
updated for all probe positions at once.

Sequential PIE:

1. We start with the nth guessed object ( )O rg n, .
2. For a certain probe position R we calculate the guessed exit

wave ψ ( ) = ( ) ( − )O Pr R r r R,g n g n, , .
3. We calculate the guessed diffracted field

Ψ ψ( ) = { ( )}k R r R, ,g n g n, , .
4. We replace the amplitude of the guessed diffracted field

Ψ ( )k R,g n, with the measured amplitude of the diffracted field
Ψ ( )k R, , while keeping the phase of Ψ ( )k R,g n, . This gives the
corrected guessed diffracted field Ψ Ψ( ) = | ( )|

Ψ

Ψ

( )
| ( )|k R k R, ,c n

k R

k R,
,

,
g n

g n

,

,
.

5. We obtain a corrected guess for the exit wave function by
inverse Fourier transforming the corrected guess of the dif-
fracted field ψ Ψ( ) = { ( )}−r R k R, ,c n c n,

1
, .

6. We update the guess of the object in the region where the probe
( − )P r R is sufficiently strong:

⎧
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Here, α is a small parameter to prevent errors from blowing up
such where | ( − )|P r R is small. α should be chosen sufficiently
small so the entire object is covered by the update regions. Once
we have done this for all probe positions R , one iteration is
completed and we can set ( ) = ( )+O Or rg n g n, 1 , .

Sequential HIO-PIE:

1. We start with the nth guessed object ( )O rg n, , and the nth feedback
function ( )B r R,n for probe position R . The initial value of the
feedback function is ( ) =B r R, 00 .

2. For a certain probe position R we calculate the guessed exit
wave ψ ( ) = ( ) ( − )O Pr R r r R,g n g n, , .

3. We calculate the guessed diffracted field
Ψ ψ( ) = { ( ) + ( )}Bk R r R r R, , ,g n g n n, , .

4. We obtain a corrected guess for the exit wave function ψ ( )r R,c n,
as in steps 4–5 of Sequential PIE.

5. We update the feedback function in the region where the probe
is sufficiently weak:

⎪

⎪⎧⎨
⎩

α
βψ α

( ) =
| ( − )| ≥

( ) − ( ) | ( − )| < ( )
+B
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B P
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n c n
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,

β is the HIO feedback parameter which we choose to be 0.9.
6. We update the guess of the object as in Sequential PIE according

to Eq. (1).

Simultaneous PIE:

1. We have a guess for the exit wave functions ψ ( )r R,g n j, for all
probe positions Rj.

2. We calculate the corrected guess for the exit wave functions
ψ ( )r R,c n j, for all probe positions Rj using steps 3–5 of Sequential
PIE.

3. We obtain new estimates for the exit wave functions using

ψ
ψ

( ) = ( − )
∑ *( − ) ( )

∑ | ( − )| ( )
+ P

P

P
r R r R
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2
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If we want to calculate the guessed object, we calculate
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Here, α is a small parameter.
Simultaneous HIO-PIE:

1. We have a guess for the exit wave functions ψ ( )r R,g n j, for all
probe positions Rj.

2. We calculate the corrected guess for the exit wave functions
ψ ( )r R,c n j, for all probe positions Rj using steps 3–5 of Sequential
PIE.

3. We calculate the object update function

ψ
( ) = ( − )
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∑ | ( − )| ( )
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4. We calculate the feedback function

( ) = ( ) − ( − )
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where

ψ βψ( ) = ( ) − ( ) ( )b r R r R r R, , , . 7n j g n j c n j, ,

Here β is HIO feedback parameter and chosen to be 0.9.
5. We obtain new estimates for the exit wave functions using

ψ ( ) = ( ) + ( ) ( )+ U Br R r R r R, , , . 8g n j n j n j, 1

If we want to calculate the guessed object, we use Eq. (4). Notice
that from Eqs. (6) and (8) we can see that feedback information is
added to the estimated exit wave. This is where fundamentally our
method of Sequential HIO-PIE differs, since we keep the feedback
information strictly separated from the object estimate.

2.1. Extension to fPIE

These four algorithms can be straightforwardly extended to
fPIE [13]. In this case we undersample the intensity measurements
obtained in the diffraction plane: instead of Ψ| ( )|k R, we measure
Ψ| ( )| ( )Δk R III k, where ( )ΔIII k is a 2D Dirac-comb with period Δ. For
fPIE we have to apply the amplitude constraint only to the points
in which we have measured Ψ| ( )|k R, , while we let the other points
‘float’ freely. More precisely, step 3 of the PIE algorithm would
change to
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The other three algorithms change accordingly. Being able to ex-
tend the algorithm to fPIE is highly relevant in for example single-
shot ptychography [18]. In this case, multiple diffraction patterns
are measured simultaneously with one camera, so the sampling
rate for each diffraction pattern is reduced.

2.2. Extension to ePIE

One could also try to combine HIO with ePIE, in which case one
tries to reconstruct both the object and the probe simultaneously
[11]. Because in this case the probe and the object play the same
role ( ( )O r and ( )P r can be interchanged without consequence), it
makes sense to introduce feedback functions for both the object
and the probe.

Regular ePIE

1. We start with the nth guessed object ( )O rg n, and nth guessed
probe ( )P rg n, .

2. For a certain probe position R we calculate the guessed and
corrected exit wave according to steps 2–5 of Sequential PIE.

3. We update the guessed object using

ψ ψ( )≔ ( ) +
* ( − )

| ( − )|
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4. For the same probe position R we calculate the guessed exit
wave ψ ( ) = ( ) ( + )P Or r r Rg n g n, , (where ( )O r has not yet been up-
dated by Eq. (10)), and correct it according to steps 3–5 of
Sequential PIE.

5. We update the guessed probe using

ψ ψ( )≔ ( ) +
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6. Once we have done this for all probe positions R , an iteration is
completed and we can set ( ) = ( )+O Or rg n g n, 1 , , ( ) = ( )+P Pr rg n g n, 1 , .

HIO-ePIE

1. We start with the nth guessed object ( )O rg n, , the nth guessed
probe ( )P rg n, , the nth feedback function for the object ( )B r R,O n,
for all probe positions R , and the nth feedback function for the
probe ( )B r R,P n, for all probe positions R .

2. For a certain probe position R we calculate the guessed exit
wave ψ ( ) = ( ) ( − )O Pr R r r R,g n g n, , .

3. We calculate the guessed diffracted field
Ψ ψ( ) = { ( ) + ( )}Bk R r R r R, , ,g n g n O n, , , .

4. We obtain a corrected guess for the exit wave function ψ ( )r R,c n,
as in steps 4–5 of Sequential PIE.

5. We update the guessed object using Eq. (10).
6. We update ( )B rO n, according to
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Here α is a small parameter, and β is the HIO feedback para-
meter which we choose to be 0.9.

7. For the same position R we calculate the guessed exit wave
ψ ( ) = ( + ) ( )O Pr R r R r,g n g n, , . Note that we use for convenience the
same notation ψ ( )r R,g n, as in step 2, even though these two
functions are not identical.

8. We calculate the guessed diffracted field
Ψ ψ( ) = { ( ) + ( )}Bk R r R r R, , ,g n g n P n, , , .

9. We obtain a corrected guess for the exit wave function ψ ( )r R,c n,
as in steps 4–5 of Sequential PIE.

10. We update the guessed probe using Eq. (11).
11. We update ( )B rP n, according to
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Here α is a small parameter, and β is the HIO feedback para-
meter which we choose to be 0.9.



Fig. 2. Top row: the complex-valued test object used for reconstruction. The phase spans a range of π·0.7 2 . Second row: varying the amount of overlap between the ×2 2
probe positions that are used to obtain the intensity measurements in the diffraction plane. Bottom four plots: reconstruction errors after 100 iterations for the four different
algorithms as a function of the overlap between probe positions. For each value of overlap, the statistics (median, first and third quartile, minimum and maximum, and
outliers) for 20 different random initial guesses are plotted.
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Fig. 3. Comparison of the four algorithms for 8�8 probes. The blue squares represent the positions of two adjacent probes, and the dark blue region indicates where they
overlap. The error plots show the evolution of the reconstruction error for 20 different random initial guesses (random phase, random amplitude). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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3. Simulation results

For all simulations we use a complex-valued test object that is
shown in Fig. 2a and b.

3.1. No undersampling

For the first simulation, we see how the four algorithms per-
form in the case shown in Fig. 2(c)–(e): the probe ( )P r is a square
step function that is shifted to four positions R . Simulations are
performed for different amounts of overlap. Since we are keeping
the total field of view constant, we need to vary the probe size as
we vary the overlap. The initial guessed object has random am-
plitude and random phase. Because for each different initial guess
the algorithms may converge differently, we have performed the
algorithm 20 times with different initial guesses for each value of
overlap. In Fig. 2 it is shown how for each algorithm, the re-
construction error changes with the amount of overlap between
the probes. Note that ‘one iteration’ means going through all the
probe positions R once. The results show that for this case, se-
parated HIO-PIE is by far more reliable. The functional we have
used to characterize the reconstruction error is

∫
∫

[ ( )] =
| ( ) − ( )|

| ( )| ( )
E O

O cO

O
r

r r r

r r

d

d
.

14
g n

g n
,

,
2

2

Here, c is a complex constant that minimizes E. This assures that if
( ) = ( )θO e Or rg n

i
, , the error is 0 as it should be. c is found by solving

=E cd /d 0, which gives

∫
∫

* =
*( ) ( )

| ( )| ( )
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O O

O

r r r

r r

d

d
.

15

g n

g n

,

,
2

In the next simulation, we compare the four different algo-
rithms for the case where we use ×8 8 probe positions. The re-
construction results for three different probe sizes are shown in
Fig. 3. For each case, we plot the evolution of the reconstruction for
twenty runs of the algorithm, each with a different random initial
guess (random phase and random amplitude distribution). It can
be seen that in nearly all situations our proposed method of Se-
quential HIO-PIE is at least as good as the other methods, and
often even significantly outperforming them.

3.2. Effect of shot noise

Simulations have been performed to investigate the PIE and
HIO-PIE algorithms in case the intensity measurements are af-
fected by shot noise (i.e. Poisson noise). To simulate the shot noise,
all the simulated intensity patterns are multiplied by a certain gain
factor such that the total photon count of each measurement lies
around a certain value (in this case either 104, 105, 106, 107, or 108).
To simulate a measurement affected by shot noise, each pixel is
assigned a value obtained by taking a sample from a Poisson dis-
tribution, the mean value of which is the value of that pixel in the
noise-free case. It was noted in [19] that HIO may fail to converge
to the right solution when shot noise is present, and that the al-
gorithm needs to be adapted in order to make it work. In [15], it
was noted that it usually is beneficial to alternate between itera-
tions of ER and iterations of HIO. In a similar vein, to deal with the
presence of shot noise we propose a scheme of a slightly modified
HIO-PIE (let us call it snHIO-PIE, where sn is short for shot noise),
in which also the intensity measurements are updated, and in
which we alternatingly use HIO-PIE iterations and PIE iterations.

snHIO-PIE

� Apply 20 HIO-PIE iterations. Each time the object estimate ( )O rg
is updated, also update the estimated intensity pattern ( )I k R,g
as follows

⎪
⎪⎧⎨
⎩ ( )

Ψ Ψ Ψ
( )≔

| ( )| | ( ) − | ( )| | < | ( )|

( ) 16
I

I

I
k R

k R k R k R k R

k R
,

, if , , 2 , ,

, otherwise.
g

g g g
2

noise
2

noise

Here, Ψ ( ) = { ( ) ( − )}O Pk R r r R,g g , and ( )I k R,noise is the measured
intensity pattern, that is affected by Poisson noise. The idea
behind this update is that the noisy measurement Inoise is not
expected to deviate from the noise-free intensity pattern I by
more than two times the standard deviation of a Poisson dis-
tribution with a mean value of I. This standard deviation is I ,
so in short we expect | − | <I I I2noise . For the HIO-PIE iterations,

( )I k R,g are used for the amplitude constraints.
� Apply 20 PIE iterations. For the amplitude constraints, ( )I k R,noise

are used. Set the HIO feedback functions ( )B r R, to 0, and update
( )I k R,g as in Eq. (16).

� Repeat the above two steps.

The results of this scheme are shown in Fig. 4. For the simu-
lations, we used ×2 2 probes with 60% overlap, which is according
to the results of Fig. 2 the optimal value of overlap for PIE for this
setting. For low levels of noise, the reconstruction error is sig-
nificantly lower for snHIO-PIE, which is to be expected from the
results of Fig. 2. For higher levels of noise, the difference in re-
construction error decreases. However, even when the noise level
is so high that the reconstruction errors are practically the same
for both methods, snHIO-PIE appears to converge faster, which is
beneficial when computing time is of the essence (e.g. if the re-
construction takes place as part of a feedback-loop).

3.3. With undersampling

We have also performed simulations on how the four algo-
rithms perform when they are extended to fPIE. The three cases in
which now the intensity measurements in the diffraction plane are
undersampled are shown in Fig. 5. The rate of undersampling is
illustrated by the aliases of the probe obtained by calculating

{ { ( )} ( )}Δ
− P r III k1 : if the probe ( )P r is Fourier transformed and

sampled in Fourier space, then its inverse Fourier transform will
consist of displaced copies of ( )P r . The distance between these
copies decrease when the sampling interval is increased, thus from
the locations of these copies one can infer the sampling interval in
Fourier space. In particular, if the copies of ( )P r overlap, it means
the sampling is sub-Nyquist. In this case, separating the feedback
function seems essential in order to obtain a good reconstruction.

3.4. Probe and object reconstruction

A very important variation of the PIE algorithm is ePIE, which
reconstructs both the probe function and the object function si-
multaneously. Since the probe is also being reconstructed, the
object reconstruction will not deteriorate due to unknown aber-
rations in the probe. In this section, we investigate the effects
augmenting the ePIE algorithm with HIO. To simulate a realistic
scenario, we choose the probe to a circular step function (as would
be created by an aperture) with some aberrations (in this case we
choose astigmatism) that is propagated over a small distance. The
initial guess we use for the probe is the unaberrated, un-
propagated circular step function. This is shown in Fig. 6. The in-
itial guesses we use for the object functions have random ampli-
tude and random phase.

First, we compare ePIE with HIO-ePIE as described in Eqs. (12)
and (13) for the noise-free case. For the first ten iterations, the
probe estimate is not updated for either algorithm. The results for

×3 3 probe positions and ×6 6 probe positions are shown in



Fig. 4. Comparison of the PIE (black) and HIO-PIE (green) algorithms in the presence of different levels of Poissonian shot noise. For each noise level, 20 runs have been
performed for each algorithm. The error plots show the evolution of the reconstruction error for 20 different random initial guesses (random phase, random amplitude) and
different noise patterns for each algorithm. ĒPIE and ¯ −EsnHIO PIE denote the average reconstruction error (as defined in Eq. (14)) after 300 iterations for PIE and snHIO-PIE
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Comparison of the four algorithms (extended to their fPIE version) for different numbers of probes, with a constant probe size. The blue squares represent the
positions of two adjacent probes, and the dark blue region indicates where they overlap. The sampling frequency ωsample is proportional to Δ1/ , where Δ is the sampling
interval as used in Eq. (9).The error plots show the evolution of the reconstruction error for 20 different random initial guesses (random phase, random amplitude). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Illustration of the probes used for simulating (HIO-)ePIE.

Fig. 7. Reconstruction for ePIE and HIO-ePIE in the noise-free case, with ×3 3 large probes.
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Fig. 8. Reconstruction for ePIE and HIO-ePIE in the noise-free case, with ×6 6 large probes.

Fig. 9. Reconstruction for ePIE and HIO-ePIE in the noise-free case, with ×8 8 small probes.
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Fig. 10. Reconstruction for ePIE and HIO-ePIE in the presence of shot noise, with ×3 3 large probes.

Fig. 11. Reconstruction for ePIE and HIO-ePIE in the presence of shot noise, with ×6 6 large probes.
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Figs. 7 and 8 respectively. It is shown that when large probes are
used, the reconstruction obtained with the regular ePIE algorithm
contains noticeable artifacts. Especially when fewer probe posi-
tions, namely ×3 3, are used, the difference between ePIE and
HIO-ePIE becomes even more apparent. When we use smaller
probes as in Fig. 9, the reconstruction of regular ePIE contains no
noticeable artifacts. However, HIO-ePIE converges faster in this
noise-free case.

Next, we study the case in which the intensity measurements
are affected by shot noise. The intensity measurements have total
photon counts of approximately 106. In the presence of shot noise
it is required to extend HIO-ePIE like HIO-PIE was extended to
snHIO-PIE as in Eq. (16). That is, the intensity measurements have
to be reconstructed, and one has to alternate between HIO-ePIE
iterations and regular ePIE iterations. Additionally, simulations
have shown it to be beneficial to introduce a cut-off value s for the
HIO feedback functions ( )B r R,O and ( )B r R,P as was proposed in
[19]. That is, during each iteration we set
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Here, s is some cut-off value that depends on the noise level. It
basically indicates which values of ( )B r R,n are sufficiently small
such that they can be non-zero due to noise. In the case of noise-
free measurements, s would be reduced to 0. The result for ×3 3
probes is shown in Fig. 10, where one can see that the effect of
augmenting ePIE with HIO is significant. When using ×6 6 probes,
as shown in Fig. 11, the differences between the reconstructions
are much less pronounced.
4. Conclusions

In this article we have proposed a way to combine existing
ptychographical algorithms such as PIE, ePIE and fPIE with the HIO
algorithm. Simulations indicate that for many instances the com-
bination with HIO results in a considerable improvement. In the
noise-free case, an extension with HIO is almost always an
improvement, though when shot noise is present in the algorithm,
extra adaptions have to be applied to the algorithm. Nevertheless,
when few probe positions are used, the HIO-augmented algo-
rithms still tend to produce reconstructions that are noticeably
better and obtained in fewer iterations than those obtained by the
unaugmented algorithms. As the number of probes is increased
and shot noise is introduced, the difference between the re-
constructions of the two algorithms becomes smaller. Although
we have focused here on the HIO algorithm, the same train of
thought can be applied more generally: when combining any
ptychographical algorithm with some other algorithm that uses a
feedback function, this function ought be kept strictly separate
from the object function. Hopefully with this insight, many pty-
chographical algorithms can be improved significantly in a
straightforward manner.
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