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a b s t r a c t

Here, we hypothesize that intrinsically disordered proteins (IDPs) serve as important drivers of the
intracellular liquid–liquid phase separations that generate various membrane-less organelles. This
hypothesis is supported by the overwhelming abundance of IDPs in these organelles. Assembly and
disassembly of these organelles are controlled by changes in the concentrations of IDPs, their post-
translational modifications, binding of specific partners, and changes in the pH and/or temperature
of the solution. Each resulting phase provides a distinct solvent environment for other solutes lead-
ing to their unequal distribution within phases. The specificity and efficiency of such partitioning is
determined by the nature of the IDP(s) and defines ‘‘targeted’’ enrichment of specific molecules in
the resulting membrane-less organelles that determines their specific activities.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

1.1. Membrane-less organelles and liquid–liquid phase transitions

It is well known that the space inside the cell is crowded and
inhomogeneous. Recent studies clearly indicate that the cytoplasm
and nucleoplasm of any cell contain various membrane-less organ-
elles, the dynamic assemblies typically containing both RNA and
protein, and known as ribonucleoprotein (RNP) granules/bodies,
or RNP droplets [1]. These membrane-less organelles form via colo-
calization of molecules at high concentrations within a small cellu-
lar micro-domain. Examples of such organelles include PML bodies
or nuclear dots, or PODs [2], perinucleolar compartment (PNC) [3],
the Sam68 nuclear body (SNB) [3], paraspeckles [4], nuclear speck-
les or interchromatin granule clusters [5], nucleoli [6], processing
bodies [7], germline P granules [8,9], Cajal bodies (CBs; [10]),
centrosomes [11], and stress granules [12]. Being devoid of mem-
brane, these organelles or bodies are highly dynamic, and their
components exist in direct contact with the surrounding nucleo-
plasm or cytoplasm [13,14]. Many of these structures were shown
to be just slightly denser than the rest of the nucleoplasm or cyto-
plasm [15,16]. All this suggests that although these membrane-less
organelles may be considered as a different ‘‘state’’ of cytoplasm or
nucleoplasm, their major biophysical properties are rather similar
to those of the rest of the intracellular fluid [1]. Therefore, these
cellular bodies being only slightly denser than the bulk intracellu-
lar fluid and being characterized by high level of internal dynamics,
can be considered as liquid-droplet phases of the nucleoplasm/
cytoplasm [8,12,17–20].

Another important feature that various cellular membrane-less
organelles have in common is the mechanism of their formation,
which is believed to be related to the intracellular phase transi-
tions [1]. These phase transitions in aqueous media originate from
the different effects of macromolecules on the structure and sol-
vent properties of water and are related to the high concentrations
of macromolecular solutes. At low concentrations of macromole-
cules, the solution exists as a single phase, whereas at high concen-
trations, phase separation occurs [21].
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Table 1
Disorder content in proteins found in various membrane-less cytoplasmic and nucleoplasmic organelles. For each organelle, proteins are arranged according to the decrease in the
extent of their disorder evaluated as percentage of the residues predicted to be disordered (i.e., possessing disorder scores above 0.5) by PONDR� VSL2, which is among the more
accurate disorder predictors.

Protein name UniProt
ID

Number
of
residues

PONDR� VSL2
(% disordered
residues)

MobiDB (%
disordered
residues)a

Molecular functions (GO terms)b

PML bodies [2]
Speckled 100 kDa protein (Sp100) P23497 879 77.8 61.0 Protein binding, DNA binding, transcription corepressor,

transcription coactivator, protein homodimerization, chromo
shadow domain binding, identical protein binding, kinase
binding, protein domain specific binding, transcription factor
binding

Promyelocytic leukemia protein (PML) P29590 882 53.1 27.0 Protein binding, DNA binding, transcription coactivator, zinc
ion binding, SUMO binding, ubiquitin protein ligase binding,
cobalt ion binding, protein homodimerization, protein
heterodimerization

Perinucleolar compartment (PNC) [90]
Nucleolin P19338 710 86.2 64.9 Protein binding, RNA bonding, telomeric DNA binding, poly(A)

RNA binding, identical protein binding, protein C-terminus
binding, nucleotide binding

KH-type splicing regulatory protein (KSRP) Q92945 711 76.2 67.8 DNA binding, poly(A) RNA binding
Ribonucleoprotein PTB-binding 1 (Raver1) Q8IY67 606 74.2 45.4 Poly(A) RNA binding, nucleotide binding
CUG binding protein-2 (CUG-BP2) O95319 508 60.4 15.6 Poly(A) RNA binding, RNA binding, nucleotide binding
Ribonucleoprotein PTB-binding 2 (Raver2) Q9HCJ3 691 54.0 25.0 Poly(A) RNA binding, nucleotide binding
CUG binding protein-1 (CUG-BP1) Q92879 486 50.0 21.6 BRE binding, poly(A) RNA binding, nucleotide binding, protein

binding, translation repressor, nucleic acid binding, mRNA
binding, RNA binding

Polypyrimidine tract-binding protein (PTB) P26599 531 40.7 18.6 Poly(A) RNA binding, protein binding, nucleotide binding, RNA
binding, pre-mRNA binding, poly-pyrimidine tract binding

Polypyrimidine tract-binding protein 3 (Rod1) O95758 552 39.3 19.0 Poly(A) RNA binding, RNA binding, nucleotide binding,

Sam68 nuclear body (SNB) [3]
Sam68 like mammalian-1 (SML1) Q5VWX1 349 82.5 63.6 Poly(A) RNA binding, poly(U) RNA binding, protein binding,
Src associated in mitosis 68 kDa protein

(Sam68)
Q07666 443 79.7 66.1 Poly(A) RNA binding, poly(U) RNA binding, protein binding,

poly(A) binding, SH3/SH2 adaptor activity, DNA binding, RNA
binding,

Sam68 like mammalian-2 (SML2) O75525 346 68.2 54.3 Poly(A) RNA binding, RNA binding, protein binding

Paraspeckles [4,91]
Polypyrimidine tract-binding protein-

associated-splicing factor or splicing factor,
proline- and glutamine-rich (PSF or SFPQ)

P23246 707 79.8 74.5 Poly(A) RNA binding, core promoter binding, transcription
regulation sequence-specific DNA binding, protein binding,
nucleotide binding

Paraspeckle protein 1 (PSPC1) Q8WXF1 523 75.7 52.2 Poly(A) RNA binding, core promoter binding, protein binding,
nucleotide binding

Non-POU domain-containing octamer-
binding protein or 54 kDa nuclear RNA-
and DNA-binding protein (NONO or
P54NRB)

Q15233 471 76.9 56.1 Poly(A) RNA binding, core promoter binding, protein binding,
nucleotide binding, identical protein binding

Nuclear speckles or interchromatin granule clusters [5,92]
Transformer-2 protein homolog a (TRA2A) Q13595 282 80.5 72.3 Nucleotide binding, poly(A) RNA binding
Transformer-2 protein homolog b (TRA2B) P62995 288 79.5 72.6 Nucleotide binding, poly(A) RNA binding, mRNA binding,

protein binding
Arginine/serine-rich domains-containing

splicing factor, suppressor-of-white-
apricot (SFSWAP)

Q12872 951 79.2 RNA binding

Nuclear inhibitor of protein phosphatase 1
(NIPP-1)

Q12972 351 69.5 64.7 DNA binding, RNA binding, protein binding, endonuclease
activity, ribonuclease E activity, protein phosphatase type 1
regulator activity, protein serine/threonine phosphatase
inhibitor activity

Threonine-proline repeats-containing splicing
factor 3B subunit 1 (SF3B1)

O75533 1304 39.1 29.8 Chromatin binding, protein binding, poly(A) RNA binding

Nucleoli [6]
Ribosomal proteins, many of which are

known to be highly disordered [93]
rRNA binding, structural constituent of ribosome

Processing bodies or P-bodies
Proline-rich nuclear receptor coactivator 2

(PNRC2)
Q9NPJ4 139 97.1 81.3 Protein binding

Trinucleotide repeat-containing gene 6A
protein (TNRC6A)

Q8NDV7 1,962 96.5 79.9 Protein binding, poly(A) RNA binding, nucleotide binding

Eukaryotic translation initiation factor 4E
transporter (EIF4ENIF1)

Q9NRA8 985 93.3 57.5 Protein binding, poly(A) RNA binding, protein transported
activity

CCR4-NOT transcription complex subunit 3
(CNOT3)

O75175 753 80.5 58.3 Protein binding

LIM domain-containing protein 1 (LIMD1) Q9UGP4 676 69.8 50.3 Protein binding, zinc ion binding, transcription corepressor
activity
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Table 1 (continued)

Protein name UniProt
ID

Number
of
residues

PONDR� VSL2
(% disordered
residues)

MobiDB (%
disordered
residues)a

Molecular functions (GO terms)b

Protein PAT1 homolog 1 Q86TB9 770 69.7 48.2 Protein binding, RNA binding, poly(A) RNA binding, poly(U)
RNA binding, poly(G) binding

Nanos homolog 3 (NANOS3) P60323 173 64.2 52.6 RNA binding, zinc ion binding
PAB-dependent poly(A)-specific ribonuclease

subunit PAN3
Q58A45 886 41.6 29.1 Protein binding, ATP binding, metal ion binding, protein kinase

activity
Enhancer of mRNA-decapping protein 3

(EDC3)
Q96F86 508 38.6 27.0 Protein binding, RNA binding, identical protein binding

CCR4-NOT transcription complex subunit 1
(CNOT1)

A5YKK6 2376 27.8 8.5 Protein binding, poly(A) RNA binding, estrogen receptor
binding, retinoic acid receptor binding

Germline P granules [94]
Pharynx and intestine in excess protein 1

(PIE1)
Q94131 335 90.1 37.9 DNA binding, protein binding, metal ion binding

Zinc finger protein MEX5 Q9XUB2 468 88.7 50.9 DNA binding, mRNA 30UTR binding, metal ion binding, poly-
pyrimidine tract binding, protein kinase binding, protein
domain specific binding

Pseudocleavage protein NOP1 Q09314 759 84.7 55.2 Unknownc

Zinc finger protein MEX6 Q09436 467 75.8 52.3 DNA binding, mRNA 30UTR binding, metal ion binding, protein
kinase binding, protein domain specific binding

Ectopic P granules protein 2 (EPG2) Q95XR4 690 75.5 15.9 Unknownc

ATP-dependent RNA helicase GLH-4 O76743 1156 68.1 53.8 ATP binding, JUN kinase binding, RNA helicase activity, ATP-
dependent helicase activity, RNA binding, zinc ion binding

Germline survival defective-1 (GLS-1) Q8I4M5 1052 63.8 51.3 Unknownc

mRNA-decapping enzyme 2 (DCP2) O62255 786 63.2 48.9 RNA binding, manganese ion binding, m7G(5’)pppN
diphosphatase activity

ATP-dependent RNA helicase GLH-2 Q966L9 974 61.9 51.8 ATP binding, zinc ion binding, protein self-association, RNA
binding, JUN kinase binding, RNA helicase activity, protein
binding, ATP-dependent helicase activity

Dual specificity tyrosine-phosphorylation-
regulated kinase MBK2

Q9XTF3 817 61.6 49.0 ATO binding, protein binding, protein kinase activity, protein
tyrosine kinase activity,protein serine/threonine kinase
activity, protein serine/threonine/tyrosine kinase activity

P granule abnormality protein 1 (PGL-1) Q9TZQ3 730 50.7 29.9 Protein binding, RNA binding, protein self-association
Defective in germ line development protein 3

(GLD3)
Q95ZK7 969 50.8 41.4 Protein binding, RNA binding, protein domain specific binding

ATP-dependent RNA helicase GLH-1 P34689 767 49.0 39.5 ATP binding, protein binding, protein self-association, RNA
helicase activity, DEAD/H-box RNA helicase, RNA binding, zinc
ion binding, JUN kinase binding, ATP-dependent helicase
activity

Fem-3 mRNA-binding factor 2 (FBF2,) Q09312 632 44.6 19.6 mRNA 30UTR binding

Cajal bodies (CBs; [10])
Coilin P38432 576 70.1 56.6 Protein binding, disulfide oxidoreductase activity, identical

protein binding, protein C-terminus binding
Survival motor neuron protein (SMN) Q16637 294 69.7 57.8 Protein binding, identical protein binding, RNA binsing
Spliceosomal SM proteins are known to be

highly disordered from previous
bioinformatics studies [95,96]

Protein binding, RNA binding

Centrosome [11,97]

Pericentrin (PCNT) O95613 3,336 93.0 35.4 Protein binding
Centrosomal protein of 152 kDa (CEP152) O94986 1710 88.9 24.3 Protein binding, protein kinase binding
Centromere protein J (CENPJ) Q9HC77 1338 83.5 51.2 Protein binding, protein kinase binding, protein domain

specific binding, tubulin binding
A-kinase anchor protein 9 (AKAP9) Q99996 3911 81.5 17.0 Ion channel binding, protein complex scaffold, protein binding,

receptor binding
CDK5 regulatory subunit-associated protein 2

(CK5P2)
Q96SN8 1893 74.6 31.0 Calmodulin binding, protein binding, transcription regulatory

region DNA binding, tubulin binding, microtubule binding,
protein kinase binding

Centrosomal protein of 192 kDa (CEP192) Q8TEP8 1941 48.1 25.7 Phosphatase binding, protein binding

Stress granules [12]
Ataxin 2 (ATX2) Q99700 1313 93.2 79.1 Protein binding, RNA binding, poly(A) RNA binding, protein

C-terminus binding, epidermal growth factor receptor binding
RNA-binding protein fused in sarcoma (FUS) P35637 526 90.7 86.1 DNA binding, RNA binding, nucleotide binding, protein

binding, zinc ion binding, identical protein binding, poly(A)
RNA binding

Eukaryotic translation initiation factor 4
gamma 1 (eIF4G1)

Q04637 1599 71.3 58.1 Poly(A) RNA binding, translation factor activity, nucleic acid
binding, translation initiation factor activity, protein binding

Ras GTPase-activating protein-binding
protein 2 (G3BP2)

Q9UN86 482 64.9 58.1 Nucleotide binding, poly(A) RNA binding, receptor signaling
complex scaffold activity

Ras GTPase-activating protein-binding
protein 1 (G3BP1)

Q13283 466 64.0 56.0 ATP binding, ATP-dependent RNA helicase activity,
ATP-dependent DNA helicase activity, endonuclease activity,
poly(A) RNA binding, DNA binding, mRNA binding, protein
binding

(continued on next page)
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Table 1 (continued)

Protein name UniProt
ID

Number
of
residues

PONDR� VSL2
(% disordered
residues)

MobiDB (%
disordered
residues)a

Molecular functions (GO terms)b

TAR DNA-binding protein 43 (TDP-43) Q13148 414 57.2 37.0 Double-stranded DNA binding, mRNA 30-UTR binding, poly(A)
RNA binding, RNA binding, identical protein binding,
sequence-specific DNA binding transcription factor activity,
nucleotide binding, protein binding

Eukaryotic translation initiation factor 4
gamma 2 (eIF4G2)

P78344 907 51.6 31.0 Protein binding, poly(A) RNA binding, translation factor
activity, nucleic acid binding, translation initiation factor
activity

Nucleolysin TIA-1 isoform p40 (TIA-1) P31483 386 38.6 22.5 AU-rich element binding, poly(A) binding, poly(A) RNA
binding, protein binding, nucleotide binding

a Consensus disorder content of a given protein evaluated by MobiDB (http://mobidb.bio.unipd.it/) [67]. This consensus MobiDB disorder score is based on the outputs of
ten disorder predictors, such as ESpritz in its three flavors [68], IUPred in its two flavors [69], DisEMBL in two of its flavors [70], GlobPlot [71], VSL2b [72,73], and JRONN [74].

b Functional information is provided as characteristic Gene Ontology (GO) terms in the ‘‘Molecular function’’ category. This information is taken from the corresponding
entry at UniProt (http://www.uniprot.org/uniprot/P23497).

c Protein functions are annotated as unknown if the information on ‘‘molecular function’’ GO terms was unavailable at the time of analysis.
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1.2. Aqueous two-phase systems (ATPSes) and coacervates

Aqueous two-phase systems (ATPSes) are formed in aqueous
mixtures of different water-soluble polymers, or in a solution of
a single polymer and certain salt [22]. In such systems, two or more
distinct aqueous phases arise with a well-defined interface. When
two specific polymers, such as dextran and Ficoll, are mixed in
water above certain concentrations, the mixture separates into
two immiscible aqueous layers. There is a clear interfacial bound-
ary separating two distinct aqueous-based phases, each preferen-
tially rich in one of the polymers, with the aqueous solvent in
both phases suitable for biological products [23–25]. These sys-
tems are unique in that each of the phases typically contains well
over 80% water on a molal basis, and yet they are immiscible and
differ in their solvent properties [23,26–31]. Phase separation is
known to occur also in aqueous solutions of a single polymer in
response to temperature change or salt concentration increase.
Phase separation is also observed for strongly interacting polymers
such as oppositely charged polyelectrolytes (e.g., mixtures of oppo-
sitely charged proteins or mixtures of positively charged proteins
and negatively charged nucleic acids), which are known to form
complex coacervates that represent another form of liquid–liquid
phase separation constituting a dilute phase and a concentrated
coacervate phase enriched in both polyelectrolytes [21,32,33]. In
the process of the coacervate formation, the efficiency of interac-
tions between the polyelectrolytes is controlled via their charge
screening by dissolved salts and therefore is strongly dependent
on the solution ionic strength [24].

1.3. Membrane-less organelles as ATPSes and coacervates

As mentioned above phase separation in solution of macromol-
ecules depends on their concentration. Typical phase separation
thresholds in aqueous mixtures of polymers, proteins, and polysac-
charides are within a range of several weight percent of each mac-
romolecule [21,34]. The cell cytoplasm is well known to resemble a
thick soup with a very crowded environment where the concentra-
tion of macromolecules, including proteins, nucleic acids, and
carbohydrates, can be as high as 400 g/L [35,36]. These intracellu-
lar solutes occupy as much as 20–30% of the total cellular volume
[35,37–39], creating a crowded medium where, in general, no
individual macromolecular species are present at very high
concentration [39,40]. It is likely, however, that the cytoplasm of
living cells may contain a range of coexisting aqueous phases that
defines the known compartmentalization of living cells [41–43].
Since cytoplasm and nucleoplasm contain the large number of dif-
ferent biomacromolecules, the intracellular phase separation can
generate multiple phases [21,41–43]. This hypothesis proposed
in the 1990s [23,40] is supported by the discovery of various mem-
brane-less organelles briefly discussed above.
2. Intrinsically disordered proteins as major drivers of
physiological phase separations

2.1. Some related peculiarities of intrinsically disordered proteins

Although for a very long time it was believed that the specific
functionality of a given protein is predetermined by its unique
3-D structure, evidence is rapidly accumulating now that many
protein regions and even entire proteins lack stable and/or second-
ary structure in solution yet possess crucial biological functions
[44–52]. These intrinsically disordered proteins (IDPs) and IDP
regions (IDPRs) are very abundant in nature [53–57], possess the
highly heterogeneous structures [58], and differ from structured
globular proteins and domains at multiple levels, such as amino
acid composition, sequence complexity, hydrophobicity, charge,
and flexibility. For example, IDPs/IDPRs are significantly depleted
in a number of order-promoting residues, such as Ile, Leu, Val,
Trp, Tyr, Phe, Cys, and Asn, being substantially enriched in the dis-
order-promoting amino acids, such as Ala, Arg, Gly, Gln, Ser, Pro,
Glu, and Lys [46,59–61]. Since many IDPs and IDPRs possess extre-
mely high net charges, might have mosaic structure with alternat-
ing regions of opposite charges, might have highly repetitive
sequences, and since many of them are present at high enough
concentrations, they can clearly serve as potential players in phase
separation. Among admittedly limited number of proteins known
to phase separate in aqueous mixtures with other proteins or poly-
saccharides are casein, fibrinogen, glycinin, prolamine, gliadin,
legumin [62], and b-crystalline [63] – all proteins being members
of the family of IDPs or hybrid proteins containing ordered
domains and long IDPRs. Elastin-like polypeptides (ELPs) known
to phase separate in aqueous solutions in response to the temper-
ature increase [64] (see below) also belong to the IDP family.

2.2. Abundance of IDPs in cellular membrane-less organelles

In agreement with this hypothesis, many proteins responsible
for the formation of the cytoplasmic or nucleoplasmic mem-
brane-less organelles are in fact intrinsically disordered. This is
supported by Table 1 that lists the disorder propensities of the sev-
eral proteins found in various membrane-less organelles. Proteins
in Table 1 are arranged according to the decrease in the extent of
their disorder evaluated as percentage of the residues predicted
to be disordered (i.e., possessing disorder scores above 0.5) by

http://mobidb.bio.unipd.it/
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Fig. 1. Illustrative examples of highly disordered proteins found in various membrane-less organelles. (A) Speckled 100 kDa protein (P23497) from the PML bodies; (B)
nucleolin (P19338) from the perinucleolar compartment; (C) Sam68 like mammalian-1 (Q5VWX1) from the Sam68 nuclear bodies; (D) polypyrimidine tract-binding protein-
associated-splicing factor or splicing factor, proline- and glutamine-rich (P23246) from the paraspeckles; (E) Transformer-2 protein homolog a (Q13595) from the nuclear
speckles or interchromatin granule clusters; (F) trinucleotide repeat-containing gene 6A protein (Q8NDV7) from the processing bodies or P-bodies; (G) pharynx and intestine
in excess protein 1 (Q94131) from the germline P granules; (H) coilin (P38432) from the Cajal bodies; (I) pericentrin (O95613) from the centrosome; (J) ataxin 2 (Q99700)
from the stress granules. Intrinsic disorder propensities are evaluated by PONDR� FIT (green lines), PONDR� VLXT (gray lines), PONDR� VSL2B (blue lines), and PONDR� VL3
(red lines). Scores above 0.5 correspond to disordered residues/regions.
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PONDR� VSL2, which is among the more accurate disorder predic-
tors. In fact, based on the comprehensive assessment of in silico
predictors of intrinsic disorder [65,66], PONDR� VSL2 was shown
to perform reasonably well. Table 1 also contains consensus disor-
der contents evaluated by MobiDB (http://mobidb.bio.unipd.it/)
[67]. These consensus MobiDB disorder scores are based on the
outputs of ten disorder predictors, such as ESpritz in its three fla-
vors [68], IUPred in its two flavors [69], DisEMBL in two of its fla-
vors [70], GlobPlot [71], VSL2b [72,73], and JRONN [74]. Table 1
clearly shows that proteins found in various cellular membrane-
less organelles are extremely disordered.

Fig. 1 represents the peculiarities of distribution of intrinsic dis-
order propensities within the sequences of some of the constitu-
ents of these organelles. Here, for each organelle, an illustrative
example is chosen as its most disordered protein. Disorder was
evaluated by a family of PONDR predictors. Here, scores above
0.5 correspond to disordered residues/regions. PONDR� VSL2B is
one of the most accurate stand-alone disorder predictors [75],
PONDR� VL3 possesses high accuracy in finding long IDPRs [76],
PONDR� VLXT is not the most accurate predictor but has high sen-
sitivity to local sequence peculiarities which are often associated
with disorder-based interaction sites [59], whereas PONDR-FIT
represents a metapredictor which, being moderately more accu-
rate than each of the component predictors, is one of the most
accurate disorder predictors [77]. Fig. 1 provides further support
to the notion that these proteins are excessively disordered.

It is known that functional repertoire of IDPs complements
functions of ordered proteins [47,50,51,78–81]. Furthermore, com-
prehensive computational analysis revealed that many functional
keywords found in Swiss-Prot strongly correlate with intrinsic dis-
order [82–84]. Among the molecular functions possessing stron-
gest correlation with protein disorder were ribonucleoprotein,
ribosomal protein, chromatin regulator, repressor, activator, and
developmental protein [82]. Among the biological processes whose
proteins show strongest preference for intrinsic disorder were dif-
ferentiation, transcription, transcription regulation, DNA conden-
sation, cell cycle, mRNA processing, mRNA splicing, and cell
division [82]. Table 1 lists functional keywords ascribed to proteins
found in various cellular membrane-less organelles and shows that
vast majority of these proteins possess functions relying on intrin-
sic disorder.

The further proof of potential validity of the hypothesis that
IDPs can serve as important players in biologically relevant
liquid–liquid phase transitions comes from the analysis of the
unique behavior of a series of synthetic repetitive peptides, elas-
tin-like polypeptides (ELPs), originally derived from the mamma-
lian elastin proteins. ELPs contain the repeats of the VPGXG
pentapeptide with the ‘‘guest residue’’ X being any amino acid with
the exception of proline. The peculiar feature of ELPs is their ability
to undergo a completely reversible inverse phase transition result-
ing in the formation of ATPS, where an ELP converts from the struc-
turally disordered, highly solvated conformation below the inverse
transition temperature (Tt) to a new phase comprised of desolvated
and aggregated polypeptides when the temperature is raised above
Tt [85–88]. In addition to the strong dependence on the nature of
the host residue X, the Tt of the transition depends on a polypep-
tide concentration and a polypeptide length, and can be triggered
by temperature and the addition of chaotropic salts. Experimental
analysis revealed that the ELP-based ATPSes can be generated
in vivo in Escherichia coli and tobacco cells [89]. Furthermore, the
formation of ELP-based droplets was shown to protect the content
of the ELP-enriched phase from the proteolytic degradation by the
preferential protease exclusion from the phase where the protein
targeted for proteolysis was present [89]. The authors concluded
that in the analyzed ELP-based ATPS, the overall rate of proteolysis
was dramatically reduced due to the fact that cleavage reaction can
only happen at the interface of the two phases [89].

2.3. Some implications of the hypothesis

Based on the above considerations combined with the ability of
IDPs and hybrid proteins possessing ordered and disordered
domains to be involved in a wide spectrum of weak interactions
of different physico-chemical nature and with the abundant pres-
ence of IDPs in various membrane-less organelles found in cyto-
plasm and nucleoplasm, we hypothesize that IDPs serve as
perfect candidates for the formation of these cellular ATPSes and
coacervates. This hypothesis has several important outcomes
related to the mechanisms of formation and disassembly of such
organelles and even to the potential functional roles of such cellu-
lar ATPSes.

As far as the formation and disassembly of IDP-based cellular
ATPSes are concerned, the appearance of the membrane-less
organelles represents the result of a liquid–liquid phase separation.
The emergence of a new liquid phase may be triggered by changes
in concentration of critical ATPS-forming constituents, changes in
the concentrations of specific small molecules, and changes in
the pH and/or temperature of the solution. The liquid–liquid phase
separations generating micrometre-sized liquid droplets in aque-
ous media of cyto- or nucleoplasm may be further regulated by
the various posttranslational modifications of the related proteins
[18], or by the specific binding of the phase forming proteins to
some definite partners.

An important feature of all known ATPSes is their ability to
modulate partitioning of various solutes. In fact, each phase of
ATPS provides a distinct solvent environment for proteins, nucleic
acids, RNPs, or other solutes. Differences in solute–solvent interac-
tions in the two phases commonly lead to unequal solute distribu-
tion. As a result, a new liquid phase may be specifically enriched or
depleted in particular solutes. Aforementioned exclusion of prote-
ases from the ELP-containing phase represents an illustration of
this phenomenon. Cellular ATPSes, such as membrane-less organ-
elles in the Xenopus oocyte nucleus or germinal vesicle (GV) were
shown to have a low-density structure that provides access to
macromolecules from the nucleoplasm [15]. Importantly, some
membrane-less organelles are known to act as liquid-phase
micro-reactors where the cytoplasmic reactions are accelerated
due to the increased concentrations of related RNA and protein
components [1]. The aforementioned increased concentrations of
the reactive components inside these organelles may result from
the preferential partitioning of the related RNAs, proteins and
other compounds to these IDP-based liquid phases. In other words,
there is a good chance that the functionality of a given organelle is
pre-determined by the nature of the IDP(s) responsible for the for-
mation of a corresponding ATPS.

3. Concluding remarks

(a) Highly disordered proteins are very common in various
cytoplasmic and neuroplasmic membrane-less organelles.

(b) These organelles are formed as a result of IDP-based liquid–
liquid phase transitions.

(c) These transitions are controlled by IDP concentrations, post-
translational modifications, and peculiarities of local
environment.

(d) The resulting organelles are biological ATPSes or coacer-
vates.

(e) These biological ATPSes define the inequality of solute distri-
butions between phases, where some solutes are preferen-
tially partitioned into the IDP-containing phase.

http://mobidb.bio.unipd.it/
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(f) Phase-specific enrichment in distinct solutes is driven by
their preferred diffusion to a phase formed by specific IDPs.

(g) Such concentration enrichment may define the functional
peculiarity of a given membrane-less organelle.
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