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Abstract

We present a new method to extract from a classical proof of ∀x(I [x] → ∃y(O[y]∧ S[x; y]))
a program computing y from x. This method applies when O is a data type and S is a decidable
predicate. Algorithms extracted this way are often far better than a stupid enumeration of all the
possible outputs and this is veri4ed on a nontrivial example: a proof of Dickson’s lemma.
c© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Since Gri<n and Felleisen [8,9], we know a relation between classical proofs and
programs. However, it is not true that from a classical proof of the existence of an
object you can compute this object. This would clearly be a contradiction with the
existence of provably total but noncomputable functions (such as a function saying if
a Turing machine will stop or not). There are two ways of extracting a program from
a classical proof:
• To associate to the absurdity rule a special control operator (the C operator of

Felleisen also used by Krivine [12]) or the � binder of Parigot [15,16]. In this case,
the proof and the theorem are unchanged, but the complexity of the operator can
make it di<cult to understand the obtained algorithm.

• To translate the proof to intuitionistic logic using a GFodel translation or similar
methods adding negations in the formula. In this case, it may be easier to understand
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the algorithm (the control operator is replaced by highly functional programs) but
the theorem is changed.

Let us examine informally what happens with a classical proof of ∀x(N[x]→
∃y(N[y]∧ S[x; y])) with the 4rst approach. We will not, in general, obtain the value
of y from a proof of N[x]. Nevertheless, the algorithm will indeed build a pair whose
4rst element is in some sense a natural number y (it is a classical proof of N[y])
and whose second element is a classical proof p of S[x; y]. But, the natural y almost
never satis4es the speci4cation (this is the main di%erence between classical and in-
tuitionistic proofs). However, the algorithm will backtrack and give a “better” value
for y if we put together the proof p with a proof of ¬S[x; y]. Nevertheless, Buchholz,
Schwichtenberg and Berger in [2] were able to give a method to transform classical
proofs into intuitionistic ones minimizing the number of negation. They identify a class
of formulas (named “goal formulas”) that do not need negation at all. In this case, if
your formula ∀x(N[x]→ ∃y(N[y]∧ S[x; y])) is a “goal formula”, then you will really
get an algorithm computing y from x after transforming the classical proof. In this pa-
per, we present another method: we assume that S[x; y] is a decidable predicate in the
sense that ∀x; y(N[x]→N[y]→ (S[x; y]∨ ¬S[x; y])) is provable in intuitionistic logic.
Then we make interact the classical proof of ∀x(N[x]→ ∃y(N[y]∧ S[x; y])) and the
proof of decidability until we get, from x, a natural number y which really satis4es the
speci4cation. The main result (Section 5) in this paper is a proof that this interaction
always terminates with a correct answer (we do not limit ourselves to the case where
the input is a data type, only the output needs to be a data type). We also test this
method with a nontrivial example (Sections 6 and 7): Dickson’s lemma 1 (suggested
in [2] and treated for a restricted case in [3]). This is important, because with a decid-
able predicate, there is always a trivial algorithm enumerating all the possible outputs
and testing them until it 4nds the correct one. This example will show that algorithms
extracted from classical proofs can be far better than this trivial algorithm.
Finally we compare our method to the method presented in [2] and [13] (Section 8).

The 4rst three sections (2–4) of the paper present the framework and previous results
we use to state and prove our main theorem.

2. Second order mixed logic

The main idea of our theorem is to make interact a classical proof and an intu-
itionistic proof. Therefore, the natural way to prove our theorem is to use mixed logic
which manipulate both classical and intuitionistic reasoning.

De�nition 2.1 (Mixed second order formulas). They are built from a set of intuitionis-
tic predicate variables (in4nite for each arity) and a set of classical predicate variables
(also in4nite for each arity). We will write the intuitionistic variables Xi; Yi; : : : and
the classical variables Xc; Yc; : : : . Then, from a set of 4rst order terms T build over

1 We use PhoX [17] to formalize the proof and to extract and run the program.
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a language L and a set of 4rst order variables (written x; y; : : :), we build the set of
formulas using the following grammar:

F = Xi(T; : : : ;T) | Xc(T; : : : ;T) | F → F | ∀xF | ∀XiF | ∀XcF

De�nition 2.2 (Classical formulas). A formula of mixed logic is said to be classical if
its right most atomic formula is built using a classical predicate variable (regardless if
it is a free or a bound predicate variable).

De�nition 2.3 (Translation of formulas). If A is a usual second order formula (using
only one kind of predicate variable). We will write Ai (resp. Ac) the formula obtained
by replacing all the predicate variables in A by intuitionistic (resp. classical) predicate
variables with the same name.

De�nition 2.4. In second order mixed logic, there are many ways to de4ne the usual
connectives (in fact each de4nition is duplicated). We de4ne the one we use here.
• ⊥c :=∀Xc Xc and ⊥i :=∀Xi Xi,
• ¬cA :=A→ ⊥c and ¬iA :=A→ ⊥i,
• A∨c B=∀Xc((A→Xc)→ (B→Xc)→Xc),
• A∨i B=∀Xc((A→Xi)→ (B→Xi)→Xi),
• A∧c B=∀Xc((A→B→Xc)→Xc),
• A∧i B=∀Xi((A→B→Xi)→Xi),
• ∃cx A=∀Xc(∀x(A→Xc)→Xc) and ∃ix A=∀Xi(∀x(A→Xi)→Xi).

Remark. we will also use the same de4nitions for usual second order predicates
with only one kind of variables, for instance A∨B=∀X ((A→X )→ (B→X )→X ).
The rules of mixed logic and the corresponding �-terms are given in the Table 1.

Table 1
The rules of mixed logic

Axx : A; � �m x : A
� �m t : (A → ⊥c) → ⊥c A classical absurd� �m C t : A

x : A; � �m t : B →i� �m �x:t : A → B
� �m t : A → B � �m u : A →e� �m t u : B

� �m t : A x =∈� ∀1
i� �m t : ∀x A

� �m t : ∀x A ∀1
e� �m t : A [x=t]

� �m t : A Xi =∈� ∀2i
i� �m t : ∀Xi A

� �m t : ∀Xi A ∀2i
e� �m t : A [Xi ⇐ �x1; : : : ; xn:B]

� �m t : A Xc =∈� ∀2c
i� �m t : ∀Xc A

� �m t : ∀Xc A B classical ∀2i
e� �m t : A [Xc ⇐ �x1; : : : ; xn:B]
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We use Krivine’s �C-calculus [12] to interpret the algorithmic contents of the proofs.
One should also say that the idea of Mixed logic is not new: Nour uses it to give a
very general type to storage operators [14].

De�nition 2.5. If we restrict the rules of mixed logic to formulas using only one kind
of predicate variables, we obtain the usual rules for intuitionistic or classical logic. We
will write � 
i t :A for provability in intuitionistic logic and � 
c t :A for provability
in classical logic.

Lemma 2.6. If � 
i t :A then we have �i 
m t :Ai and �c 
m t :Ac. If � 
c t :A then
we have �c 
m t :Ac.

Proof. Trivial induction on the size of the proofs.

3. Semantics of mixed logic

The main tool in this paper is the semantics of mixed logic. We use Krivine’s “stack
semantics” [10,11].

De�nition 3.1 (Stacks). A stack is a 4nite sequence of �-terms. If �=(t1; : : : ; tn) then
u � represents the term u t1 : : : tn.

Notation 3.2. We write �(!) the set of all stacks.

De�nition 3.3 (Weak-head reduction). The weak-head reduction is a relation on the
�-calculus enriched with two constants C and A. It is de4ned as the smallest relation
such that:
• (�x:t) u �� t[x=u] �,
• C t �� t �x:(A(x �)),
• A t �� t.

Remark. The weak-head reduction does not preserve types, because the second rule
simpli4es the term by removing the C combinator. We can do that when we know
that the term will not receive further arguments, which is the case in the de4nition of
the semantics below.

De�nition 3.4 (Stable sets). We de4ne P(�)� (resp. P(�)�) the set of all sets of
�-terms closed by �-equivalence (resp. closed by weak-head expansion and �-equi-
valence). This means that if �∈P(�)�, t ∈� and if t′ � t or t′ � t then t′ ∈�.

De�nition 3.5 (Stack duality). If ⊥⊥ is a set of �-terms and if � is a set of stacks,
then we de4ne �, the dual of � by

� = {t ∈ � | ∀� ∈ �; t � ∈ ⊥⊥}:
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De�nition 3.6 (Implication). If � and � are sets of �-terms, we de4ne

� → � = {t ∈ � | ∀u ∈ �; t u ∈ �}:

De�nition 3.7 (Interpretation). An interpretation I is given by
• an interpretation t �→ |t|I from 4rst order terms to a set D given by an interpretation

of 4rst order variables in D and an interpretation of function symbols as functions
from Dn to D as usual,

• a set of �-terms ⊥⊥I ∈P(�)�,
• for each intuitionistic predicate variable Xi of arity n a function |Xi|I from Dn to

P(�)�.
• for each classical predicate variable Xc of arity n a function |Xc|I from Dn to

P(�(!)). We can remark, that since ⊥⊥I is closed by �-equivalence, for any
(t1; : : : ; tn)∈Dn, |Xc|I(t1; : : : ; tn)∈P(�)�.

Remark. To simplify writing, in the notation for �, we omit ⊥⊥. In practice, we always
use this notation in a context where there is an interpretation I, and the ⊥⊥ being used
in � will always be ⊥⊥I .

Remark (bis). In the de4nition of interpretation, we ask all the sets to be closed by
�-equivalence while ⊥⊥I is also closed by weak-head expansion. This is fundamental to
get the correctness of the semantics, because intuitively, ⊥⊥I is the set of programs that
can really be evaluated on a machine and the reduction for C only apply to those terms.

De�nition 3.8. The interpretation of a formula of mixed logic is de4ned by induction
as follows:
• |Xi(t1; : : : ; tn)|I = |Xi|I(|t1|I ; : : : ; |tn|I),
• |Xc(t1; : : : ; tn)|I = |Xc|I(|t1|I ; : : : ; |tn|I),
• |A→B|I = |A|I → |B|I ,
• |∀x A|I =

⋂
u∈D |A|I[x=u],

• |∀Xi A|I =
⋂

�:�n �→P(�)� |A|I[Xi=�],
• |∀Xc A|I =

⋂
�:�n �→P(�(!)) |A|I[Xc=�].

Let I be an interpretation, if �= x1 :A1; : : : ; xn :An is a context, we write �∈ |�|I if �
is a substitution such that for all i∈ {1; : : : ; n} we have xi[�]∈ |Ai|I .

Lemma 3.9. For any interpretation I, the interpretation of a formula A belongs to
P(�)� and if A is classical, then it is the dual of a set of stacks.

Proof. By induction on the formula A:
• The atomic case is trivial.
• For the implication case, we have: |A→B|I = {t ∈� | ∀u∈ |A|I ; t u∈ |B|I}. From

that fact that |B|I is closed by �-equivalence, we know that the same is true
for |A→B|I . Moreover, if A→B is classical, that is if B is classical, by induc-
tion hypothesis, we know that |B|I =� for some �∈�(!). Therefore, we have
|A→B|I =�′ with �′ = {(u; t1; : : : ; tn) | u∈ |A|I and (t1; : : : ; tn)∈�}.
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• For the quanti4cation case, the closure under �-reduction is trivial. For classical
formulas, the result comes from the fact that

⋂
i∈I �i =

⋃
i∈I �i.

Theorem 3.10 (Correctness). If � 
m t :A and if I is an interpretation and � is a
substitution such that �∈ |�|I , then t�∈ |A|I .

Proof. By induction on the proof of � 
m t :A using the previous lemma for the case
of the two elimination rules of the second order quanti4ers. We will treat the only
di<cult case: the case of the absurdity rule: Remark: we get easily that |⊥c|I = {t ∈� |
∀�∈�(!); t �∈ ⊥⊥I} and this implies that if t ∈ ⊥⊥I then A t ∈ |⊥c|I (because A t ��
t and ⊥⊥I is closed by weak-head expansion). Moreover, we also have |⊥c|I ⊂ ⊥⊥I
using the empty stack. We choose �∈ |�|I and de4ne t′ = t�. By induction hypothesis,
we have t′ ∈ |(A→ ⊥c)→ ⊥c|I . We must prove C t′ ∈ |A|I . We know that A is classical
and therefore, we know that |A|I =�= {u∈� | ∀�∈�; u �∈ ⊥⊥I}. Therefore, we
choose �∈� and we must prove C t′ �∈ ⊥⊥I . Because ⊥⊥I is closed by weak-head
expansion, it is enough to prove t′ �x:(A (x �))∈ |⊥c|I ⊂ ⊥⊥I . To do so, using the
induction hypothesis, it is su<cient to prove �x:(A (x �))∈ |A→ ⊥c|I . Then, we choose
v∈ |A|I and we prove (�x:(A (x �))) v�A (v �)∈ |⊥c|I . By the previous remark, we
just have to prove (v �)∈ ⊥⊥I which is true because v∈ |A|I =� and �∈�.

4. Results about data types

We give now a de4nition of “data types”. There are many possible de4nitions (see
[7]) and nobody knows if they are all equivalent. The one we give is a variation on
these de4nitions, suited for our theorem. What is really important is that the data types
we use verify this de4nition.

De�nition 4.1. An interpretation I is faithful for a given data type if the interpretation
of all its constructors (which are function from Dn to D) are injective functions with
disjoint images.

De�nition 4.2 (Data types). A data type is a second order predicate O[x] with only
one free 4rst-order variable, such that
• O has only positive second-order quanti4cation (it may have negative 4rst-order
quanti4cation).

• For any faithful interpretation I, if t ∈ |Oi[x]|I then there exists a �-term t′ and a
closed 4rst order term u such that t � t′, 
i t′ :O[u] and |x|I = |u|I .

Lemma 4.3. If O is a data type, then we have the following properties:
• For any faithful interpretation I, |Oi[x]|I ⊂ |Oc[x]|I . The converse is in general

not true.
• For any faithful interpretation I, if t ∈ |Oi[x]|I then t is �-equivalent to a closed
term.
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Proof. The 4rst property is immediate because O has only positive universal quan-
ti4ers and no free second order predicate variable. The second property is a trivial
consequence of the second property in the de4nition.

Proposition 4.4. The following types are data types, if D is a data type itself (we
assume that the language contains the constants 0 and nil, the unary function symbol
S and the binary function symbol “::”):
• N[x] =∀X (X (0)→ ∀y(X (y)→X (Sy))→X (x)): this is the type of Church
numerals.

• LD[l] =∀X (X (nil)→ ∀y; n(D[n]→X (y)→X (n :: y))→X (x)): this is the type of
lists of elements of D.

Proof. See [7,10]. We will at least give the proof for natural numbers. Let I be
a faithful interpretation for natural number. This means that the interpretation of 0
is always distinct from the interpretation of S(x) and that the interpretation of S is
injective. Let us assume that t ∈ |Ni[x]|I . Then, we choose two �-variables a and b
not free in t and we de4ne � a function from D to P(�)� by �(|Sn(0)|I)= {t |
t � bna} (where bn = b(b(b : : : (b a) : : :))) and �(u)= ∅ otherwise. From this and the
faithfulness of I, it is clear that a∈ |X (0)|I[X=�] and b∈ |∀y(X (y)→X (Sy))|I[X=�].
From t ∈ |Ni[x]|I , using � to interpret X , we deduce t a b∈�(|x|I). Therefore, we
have |x|I = |Sn(0)|I for some n∈N. Let n be the Church numeral for n. We have

 n :Ni[n]. And moreover, from t a b� bna we deduce easily t � n.

Proposition 4.5. We can now type some operators we will need later:

Z = �x:�f:x
S = �n:�x:�f:(f (n x f))
TN = �n:(n �k:(k Z) �g:�k:(g (�p:(k (S p)))))
N = �x:�f:x
C = �a:�l:�x:�f:(f a (l x f))
TLN = �l:(l �k:(k N ) �n:�g:�k:(TN n �n′:(g �l:(k (C n′ l)))))

Then we can prove in mixed logic for O=N or O= LN that


m TO : ∀y(Oc[y] → ∀Xc((Oi[y] → Xc) → Xc)):

Proof. Z; S; N and C are the constructors for Church numerals and lists. The proof
starts by instantiating the classical variable in the hypothesis Oc[y] by the predicate
�z:(Oi[z]→Xc)→Xc) which is indeed a classical formula. Then, the proof is easy and
leads to the given terms.

Remark. The terms TN and TLN are storage operators [11], respectively for Church
numerals and lists. Moreover, the type given here is the most general type known for
storage operators [14] but we do not use here the fact that they are storage operators,
just the fact that they transform classical integers [12] into intuitionistic integers which
is immediate from the correctness of the semantics.



56 C. Ra'alli / Theoretical Computer Science 323 (2004) 49–70

5. The main theorem

Theorem 5.1. Let I [x]; O[y]; S[x; y] be three predicates such that:
• 
c P :∀x(I [x]→ ∃y(O[y]∧ S[x; y])),
• 
i D :∀x(I [x]→ ∀y(O[y]→ S[x; y]∨ ¬S[x; y])),
• 
m T :∀y(Oc[y]→ ∀Xc((Oi[y]→Xc)→Xc)),
• O[y] is a data type.
Then, we de�ne the following terms (the terms B[i] and C[i] depend on a parameter
i, and these de�nitions are adjusted to avoid administrative redexes):

A = �o:�p:o
B[i] = �o:�s:(D i o (A o) ((�s′�q:(q s′)) s))
C[i] = P i (�e:(e (�o′:�s:(T o′ �o:(B[i] o s))))):

If 
i i : I [u] then C[i] will reduce to a term o such that there exists a �-term o′ and
a �rst-order term v satisfying o� o′, 
i o′ :O[v] and 
i S[u; v] (because O is a data
type, it is in general easy to compute v from o).

Remark. The term A; B[i] and C[i] are not typable in mixed logic with a type that
would allow us to deduce our theorem directly from the adequation lemma. How to
read the term C[i]? Here is an informal answer (this is not a proof of the theorem,
but it explains how the term C[i] works).
The part (P i (�e:(e (�o′:�s : : :)))) calls the classical program P and go under the

proof of the existential and the conjunction to fetch o′ a classical proof of O[y] and s
a classical proof of S[x; y]. The term o′ being a classical proof, the part (T o′ (�o : : :))
transforms it into an intuitionistic proof o of O[y]. But o may not be what we are
looking for and we check by writing (D i o (A o) ((�s′�q:(q s′)) s)) that it satis4es
the speci4cation S[x; y]. If this is true, A op will arrive in head position where p is
a proof of S[x; y] and the 4nal result will be o. If it is false, (�s′�q:(q s′)) s q� q s
will arrive in head position where q is a proof of ¬S[x; y]. Then, (q s) is a proof
of ⊥ and the interaction of q and s will make the classical program P backtrack to
propose another o′ until the program terminates on a success (the program will always
terminates).

Remark. We will not only prove the theorem, we will also prove that the term C[i]
behaves as described above. This can be expressed by the following theorem:

Theorem 5.2. Using the hypotheses and notation of Theorem 5.1, If 
i i : I [u] then
there exists n∈N and two sequences of terms o0; : : : ; on and so; : : : ; sn such
that:
1. C[i]�B[i] on sn,
2. B[i] on sn �B[i] on−1 sn−1,
3. : : : ,
4. B[i] o2 s2 �B[i] o1 s1,
5. B[i] o1 s1 �A o0 s0,
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6. A o0 s0 � o0,
7. o0; s0 are � equivalent to two terms o; s such that 
i o :O[v] and s0 ∈ |Si[u; v]|I

for any interpretation I and some �rst order term v.

Before proving the two theorems, we need the following lemma:

Lemma 5.3 (A property of disjunction). If 
i t :P ∨Q then t � �x�y(x sP) or t �

�x�y(y sQ) such that sP[x=u; x=v]∈ |Pi|I and sP[x=u; x=v]∈ |Pc|I (resp. sQ[x=u; x=v]∈
|Qi|I and sQ[x=u; x=v]∈ |Qc|I) for any interpretation I and all terms u and v. More-
over, we have 
i sP[x=u; y=u] :P (resp. 
i sQ[x=u; y=u] :Q) with u= �x�y y.

Proof. We consider t′ the normal form of t (it exists and is typable because sec-
ond order intuitionistic logic is strongly normalizable and satis4es subject reduction).
Then, by considering the applicable rules for a normal proof of 
i t′ :P ∨Q, we get
t′ = �x�y(x sP) or t′ = �x�y(y sQ) within the 4rst case x :P →X; y :Q →X 
i sP :P
and in the second case x :P →X; y :Q →X 
i sQ :Q. Moreover, the variable X is
not free in P and Q. Therefore, for any interpretation I and all terms u and v
we have u∈ |Pi →X |I[�=X ], v∈ |Qi →X |I[�=X ]. By the adequation lemma, we have
sP[x=u; y=v]∈ |Pi|I[�=X ] = |Pi|I . Similarly, we have sP[x=u; y=v]∈ |Pc|I , because x :P →
X; y :Q →X 
i sP :P implies x :P →X; y :Q →X 
c sP :P and �= ∅ is a possible clas-
sical interpretation for the variable X . For the typability of sP , we have x :P →X; y :Q
→X 
i sP :P implies x :P → I; y :Q → I 
i sP :P with I =∀X (X →X ) which implies

i sP[x=u; y=u] :P because we can prove 
i u :P → I and 
i u :Q → I with u= �x�y y.
The proof for sQ is identical.

Remark. From this proof, we see that it is essential that t be typable of type I [u] to
ensure in some sense that t belongs to both the classical and intuitionistic interpretation
of I [u]. For the same kind of reasons, it is important that O is a data type.

Proof (The two main theorems). We assume the hypotheses of the theorems:
• 
c P :∀x(I [x]→ ∃y(O[y]∧ S[x; y])),
• 
i D :∀x(I [x]→ ∀y(O[y]→ S[x; y]∨ ¬S[x; y])),
• 
m T :∀y(Oc[y]→ ∀Xc((Oi[y]→Xc)→Xc)),
• 
i i : I [u].
First, we choose 4ve distinct �-variables 3; 3′; 4; 5 and 5′ not free in P, D, T and i
(easy, these are closed terms). Then, we introduce the following terms:

C′[i] = P i (�e:(e (�o′:�s:(T o′ (�o:(4 o s))))));
B′[i] = �o:�s:(D i o (3 o) (5 s)):

We clearly have

B′[i][3=A; 5=�s′�q:(q s′)] = B[i];
C′[i][4=B′[i]][3=A; 5=�s′�q:(q s′)] = C′[i][4=B[i]] = C[i]:

Now, we de4ne the set ⊥⊥ by induction (we choose an arbitrary interpretation I):
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De�nition 5.4. The set ⊥⊥ is the smallest set such that t ∈ ⊥⊥ if and only if we are in
one of the following cases:
• ∃o; s t � 3 o s and o∈ |Oi[y]|I[y=w] for some w∈D
• ∃s; q t � 5 s q, and q[3=3′; 5=5′] s∈ ⊥⊥
• ∃o; s t � 4 o s; B′[i] o s∈ ⊥⊥ and o∈ |Oi[y]|I[y=w] for some w∈D

Remark. The de4nition of ⊥⊥ is not circular and does not depend on I because Oi

uses only intuitionistic variables and one free 4rst-order variable. It is also clear that ⊥⊥
is closed by weak-head expansion and �-equivalence and the ⊥⊥ is not empty (because
of the 4rst case). Remark: we always have ⊥⊥= {∅}, so ⊥⊥ is a possible interpretation
of a classical proposition (notice that ⊥⊥ is not the interpretation of ⊥c). Then, we
choose the interpretation I using the previous de4nition of ⊥⊥I =⊥⊥ and such that
I(Xc)=⊥⊥. Now the proof is decomposed in four parts:
1. We 4rst prove 3∈ |∀y(Oi[y]→ Si[u; y]→Xc)|I . This is immediate from the de4-

nition of ⊥⊥ and because I(Xc)=⊥⊥.
2. Now, we prove 4∈ |∀y(Oi[y]→ Sc[u; y]→Xc)|I . To prove this, we assume

(ii) o ∈ |Oi[y]|I[y=w] and (iii) s ∈ |Sc[u; y]|I[y=w]

and we need to prove B′[i] o s∈ ⊥⊥. Because ⊥⊥ is closed by weak-head expansion,
it is enough to prove D i o(3 o)(5 s)∈ ⊥⊥. Using the previous Lemma 5.3 and (ii),
we have two cases:
• D i o� �x�y(x s′). Therefore, D i o(3 o)(5 s)� 3 o s∈ ⊥⊥
• D i o� �x�y(x s′) with s′[x=t1; y=t2]∈ |¬cSc[u; y]|I[y=w] for all terms t1; t2. (iv)

Therefore, D i o(3 o)(5 s)� 5 s (s′[x=3 o; y=5 s]). We know that s′ � s′′, x
and y being the only free variables of s′′. This implies that s′[x=3 o; y=5 s]
[3=3′; 5=5′]� s′[x=3′ o; y=5′ s]. Then, using the de4nition of ⊥⊥ we need to prove
s′[x=3 o; y=5 s][3=3′; 5=5′] s∈ ⊥⊥. This comes from (iii) and (iv) with t1 = 3′ o,
t2 = 5′ s.

3. Next, we prove C′[i]∈ ⊥⊥. From the 4rst hypothesis of the theorem, we have
P ∈ |∀x(Ic[x]→ ∃cy(Oc[y]∧c Sc[x; y]))|I which implies P i∈ |∃cy(Oc[y]∧c Sc[u;
y]))|I . This implies that P i∈ |∀y(Oc[y]∧c Sc[u; y]→Xc)→Xc|I . Therefore, we
just need to prove that �e:(e (�o′:�s:(T o′ (�o:(4 o s)))))∈ |∀y(Oc[y]∧c Sc[u; y]→
Xc)|I . To prove this, assume

e ∈ |Oc[y] ∧c Sc[u; y]|I[y=w]

and we prove e (�o′:�s:(T o′ (�o:(4 o s))))∈ ⊥⊥. Because of the de4nition of ∧c,
it is enough to prove �o′:�s:(T o′ (�o:(4 o s)))∈ |Oc[y]→ Sc[x; y]→Xc|I[y=w]. For
this, we assume

(v) o′ ∈ |Oc[y]|I[y=w] and (vi) s ∈ |Sc[u; y]|I[y=w]

and we must prove T o′ (�o:(4 o s))∈ ⊥⊥. But we know that T ∈ |∀y(Oc[y]→
∀Xc((Oi[y]→Xc)→Xc))|I . So, using (v), it is enough to prove �o:(4 o s)∈
|Oi[y]→Xc|I[y=w] which is immediate from (2) and (vi).
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4. Finally, we conclude by describing the behavior of C: from (3) we have C′[i]∈ ⊥⊥.
Therefore, from the inductive de4nition of ⊥⊥ and the justi4cation below, we deduce:
(a) C′[i]� 4 on sn with on ∈ |Oi[y]|I[y=w] for some w∈D,
(b) B′[i] on sn � 5 sn qn,
(c) qn[3=3′; 5=5′]sn � 4 on−1 sn−1 with on−1 ∈ |Oi[y]|I[y=w] for some w∈D,
(d) B′[i] on−1 sn−1 � 5 sn−1 qn−1,
(e) : : :,
(f) B′[i] o2 s2 � 5 s2 q2,
(g) q2[3=3′; 5=5′]s2 � 4 o1 s1 with o1 ∈ |Oi[y]|I[y=w], for some w∈D,
(h) B′[i] o1 s1 � 3 o0 s0 with o0 ∈ |Oi[y]|I[y=w] for some w∈D.
The 4rst step is correct because 3 and 5 are not free in C′[i]. Moreover, this implies
that 3 and 5 are not free in on nor sn. Then, B′[i] on sn can either reduce to a term
starting with 5 (if D i on � �x�y(y q)) or 3 (if D i on � �x�y(x q)). This comes from
Lemma 5.3 and the fact that on ∈ |Oi[y]|I[y=w] for some w∈D. The second case
would mean we reached the last step 3 o0 s0 and n=1. In the 4rst case, we have
B′[i] on sn � 5 sn qn. Then, qn[3=3′; 5=5′]sn does not contain the variable 3 and 5 and
therefore reduces to a term 4 on−1 sn−1 (because it belongs to ⊥⊥). We can continue
this reasoning until we reach the 4nal step 3 o0 s0, keeping the property that 3 and
5 never occur in oj nor sj for any j. Remark: the variables 3′ and 5′ never arrive
in head position. Let us de4ne the substitution

� = [3′=3; 5′=5][4=B′[i]][3=A; 5=�s′�q(q s′)]:

Because of the above considerations and because C[i] =C′[i]�, we have:
(a) C[i]�B[i] on� sn�,
(b) B[i] on� sn��B[i] on−1� sn−1�,
(c) : : :,
(d) B[i] o2� s2��B[i] o1� s1�,
(e) B[i] o1� s1��A o0� s0�,
(f) A o0� s0�� o0�,
(g) o0�� o0 because o0 is element of the data type O and therefore it is �-

equivalent to a closed term.
This gives the intended behavior of C. We now have to prove that o0 satis4es the
speci4cation.
We know that B′[i] o1 s1 �� 3 o0 s0. This means that D i o1 reduces to �x:�y:(x s′0)

(vii) and o0 = o1. This is the only possibility, because 3 is not free in s1 nor o1. But
we know that 
i i : I [u] and o0 ∈ |O[y]|I[y=w]. From the latest we get (because O is
a data type) 
i o′

0 :O[v] for some closed 4rst order term v and with o′
0 the normal

form of o0. This implies (by (vii) and Lemma 5.3) that 
i s′0[x=t; y=t] : Si[u; v] for any
interpretation I with t= �x�y y.
This means that C[i]� o0� with the normal form o′

0 of o0�� o0 being the repre-
sentation in �-calculus of a 4rst order term v satisfying the speci4cation S[u; v].

Important remark. Giving the behavior of C[i], we can add to the storage operator T
some “side e%ects” to print the term o it stores. This allows to know the sequence of
values tried by the classical program before it reaches the correct answer.
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6. A nontrivial example: Dickson’s lemma

As suggested in [2], Dickson’s lemma stated below is a good nontrivial example to
test program extraction from classical proofs: this lemma has a nontrivial, but natural,
classical proof.

Lemma 6.1 (Dickson’s lemma). For any �nite sequence (f1; : : : ; fn) of functions from
N to N, there is an unbounded subset X of N such that for all i∈ {1; : : : ; n}, fi

restricted to X is an increasing function.

Corollary 6.2 (Weak Dickson’s lemma). For any �nite sequence (f1; : : : ; fn) of func-
tions from N to N, there are arbitrary large �nite subsets X of N such that for all
i∈ {1; : : : ; n}, fi restricted to X is an increasing function.

We will use the method described in this paper to compute these arbitrary large 4nite
subset X of N. First we need to give a more detailed description of the formalization,
in PhoX [17], of the lemmas and some hints about the proof:

Lemma 6.3. We de�ne the predicate Min[Q; f; x] by

Min[Q; f; x] = Q(x) ∧ ∀y (N[y] → Q(y) → f(x) 6 f(y))

which means that x is a minimum of f on the subset Q of N. Then, we can prove
the minimum principle:

∀Q⊂N ∀f:(N�→N) (∃x (N[x] ∧ Q(x)) → ∃x (N[x] ∧ Min[Q; f; x])):

Proof. The proof uses absurdity reasoning and the well founded induction principle on
N.

Lemma 6.4. Now, we de�ne the following predicates:

Ub[Q] = ∀x (N[x] → ∃y (N[y] ∧ x6 y ∧ Q(y)))
LMin[Q; f; x] = Q(x) ∧ ∀y (N[y] → Q(y) → x ¡ y → f(x) 6 f(y))

Ub[Q] means that Q is unbounded and LMin[Q; f; x] means that x is a left minimum
of f on Q. Then, we prove

∀Q⊂N ∀f:(N�→N) (Ub[Q] → Ub[LMin(Q;f)]):

Proof. Immediate from the previous lemma because LMin[Q; f; x] means Min[�y(x6y
∧ Q(y)); f; x].

Proof (Dickson’s lemma). We can now formalize Dickson’s lemma as

∀l

LN �→N[l] → ∀Q⊂N


Ub[Q] →

∃Q′⊂Q
(
Ub[Q′] ∧ ∀x;y:Q′

(x ¡ y → ∀f∈l f(x) 6 f(y))

)
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which is proved by induction on the length of the list l using the previous lemma:
we get an unbounded set Q such that any point of Q is a left minimum on Q for all
functions in the list which is what we wanted.

Proof (Weak Dickson’s lemma). To prove Dickson’s lemma we need to manipulate
4nite sets of naturals. We formalize 4nite sets as ordered lists. Then, the speci4cation
uses the following de4nitions:

Decreasing[R; l] means that l is ordered for R (de4ned by induction)
Rlf [i; j] = i ¿ j ∧ ∀f∈lf f(i) ¿ f(j) (the relation used to sort list)
S[lf; p; l] = length(l) = p ∧ Decreasing[�i;jRlf [i; j]; l]:

The weak Dickson’s lemma is stated as

∀lf (LN �→N[lf] → ∀p (N[p] → ∃l (LN[l] ∧ S[lf; p; l])))

and it is an immediate consequence of the previous lemma (by induction on the integer
p) and

Proof (Decidability of the speci4cation). It is stated as follows and it is easy (but long
and tedious) to prove in intuitionistic logic.

∀lf (LN �→N[lf] → ∀l (N[l] → ∀li (LN[li] → S[lf; l; li] ∨ ¬(S[lf; l; li])))):

It is clear that the hypotheses of our main theorems are veri4ed. We have two
predicates as inputs but this changes nothing. However, we really use the fact that
inputs do not need to be data types because LN �→N[lf] is not a data type. The output
is LN[l] and we have a storage operator for it (see Proposition 4.5). Finally, the
speci4cation is S and it is decidable. There is still one problem, in the proof we use
some axioms: the axioms saying that zero is distinct from successor and the successor
is injective and similar axioms for lists and length of lists. These axioms are treated
as follows, taking into account the need to use the classical part of the semantics (we
only treat the axioms for natural numbers, the axioms for lists are treated in the same
way):

Lemma 6.5. If in the interpretation I we have |0|I �= |Sx|I[x=v] for any v∈D, then we
have �x:(x �y:y)∈ |∀x(0=c Sx→ ⊥c)|I where x=c y :=∀Xc(Xcx→Xcy). If |S|I is an
injective function, then �x:x∈ |∀x; y(Sx=c Sy→ x=c y)|I .

Proof. For the 4rst axiom, we assume t ∈ |0=c Sx|I[x=v]. We take � such that �(|0|I)
= |∀Xc(Xc →Xc)|I and �(v)= |⊥c|I if v �= |0|I . Thus, we have t ∈ |∀Xc(Xc →Xc)|I
→ |⊥c|I which implies t �y:y∈ |⊥c|I which is what we wanted. For the second ax-
iom, we assume t ∈ |Sx=c Sy|I[x=v;y=w], we must prove t ∈ |x=c y|I[x=v;y=w]. To do so
we choose � from D to P(�(!)) and we must prove that t ∈�(v)→�(w). From the
hypothesis that |S|I is an injective function, we choose a function p from D to D such
that p(|S|I(u))= u for all u∈D. Next, we take �′ =� ◦ p and from the hypothesis
t ∈ |Sx=c Sy|I[x=v;y=w] we get t ∈�′(|S|I(v))→�′(|S|I(w))=�(v)→�(w).
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Remark. When we use higher-order logic, the axioms saying that constructors are
distinct and injectives are the only ones which are really needed. Nevertheless, we can
also use equational axioms to de4ne functions or any axiom that can be “realized”
by a �-term to preserve the adequation lemma (and the later includes the axiom of
dependent choice [13]!). Using PhoX [17], we have extracted a �-term from the above
proof and we tested it on a list of functions f2; : : : ; fk where fi(p)=pmod i. We give
below the various lists tried by the algorithm before they 4nd the correct answer, for
various values of k and various length n of the wanted lists. We give also the number
of tries including the 4nal correct answer.
k = 2; n = 4 {3 tries} {3, 2, 1, 0} {4, 3, 2, 0} {5, 4, 2, 0}
k = 2; n = 5 {4 tries} {4, 3, 2, 1, 0} {5, 4, 3, 2, 0} {6, 5, 4, 2, 0} {7, 6, 4, 2, 0}
k = 3; n = 4 {12 tries} {3, 2, 1, 0} {4, 3, 2, 0} {4, 3, 1, 0} {5, 4, 3, 0} {6, 5, 4, 0} {7, 6, 4, 0} {7, 6,

3, 0} {8, 7, 6, 0} {9, 8, 6, 0} {9, 7, 6, 0} {10, 9, 6, 0} {11, 10, 6, 0}
k = 3; n = 5 {19 tries} {4, 3, 2, 1, 0} {5, 4, 3, 2, 0} {5, 4, 3, 1, 0} {6, 5, 4, 3, 0} {7, 6, 5, 4, 0} {8,

7, 6, 4, 0} {8, 7, 6, 3, 0} {9, 8, 7, 6, 0} {10, 9, 8, 6, 0} {10, 9, 7, 6, 0} {11, 10, 9, 6, 0} {12, 11,
10, 6, 0} {13, 12, 10, 6, 0} {13, 12, 9, 6, 0} {14, 13, 12, 6, 0} {15, 14, 12, 6, 0} {15, 13, 12, 6, 0}
{16, 15, 12, 6, 0} {17, 16, 12, 6, 0}

k = 4; n = 4 {26 tries} {3, 2, 1, 0} {4, 3, 2, 0} {4, 3, 1, 0} {5, 4, 3, 0} {5, 4, 2, 0} {5, 4, 1, 0} {6, 5,
4, 0} {7, 6, 4, 0} {8, 7, 6, 0} {9, 8, 6, 0} {8, 5, 4, 0} {9, 8, 4, 0} {10, 9, 4, 0} {11, 10, 9, 0} {12,
11, 10, 0} {13, 12, 10, 0} {13, 12, 9, 0} {12, 8, 4, 0} {13, 12, 4, 0} {14, 13, 12, 0} {15, 14, 12, 0}
{15, 13, 12, 0} {16, 15, 12, 0} {16, 14, 12, 0} {16, 13, 12, 0} {17, 16, 12, 0}

k = 4; n = 5 {49 tries} {4, 3, 2, 1, 0} {5, 4, 3, 2, 0} {5, 4, 3, 1, 0} {6, 5, 4, 3, 0} {6, 5, 4, 2, 0} {6, 5,
4, 1, 0} {7, 6, 5, 4, 0} {8, 7, 6, 4, 0} {9, 8, 7, 6, 0} {10, 9, 8, 6, 0} {9, 8, 5, 4, 0} {10, 9, 8, 4, 0}
{11, 10, 9, 4, 0} {12, 11, 10, 9, 0} . . . {21, 20, 16, 12, 0} {22, 21, 16, 12, 0} {23, 22, 21, 12, 0} {24,
23, 22, 12, 0} {25, 24, 22, 12, 0} {25, 24, 21, 12, 0} {24, 20, 16, 12, 0} {25, 24, 16, 12, 0} {26, 25,
24, 12, 0} {27, 26, 24, 12, 0} {27, 25, 24, 12, 0} {28, 27, 24, 12, 0} {28, 26, 24, 12, 0} {28, 25, 24,
12, 0} {29, 28, 24, 12, 0}

k = 5; n = 4 {114 tries} {3, 2, 1, 0} {4, 3, 2, 0} {4, 3, 1, 0} {5, 4, 3, 0} {5, 4, 2, 0} {5, 4, 1, 0} {6,
5, 4, 0} {6, 5, 3, 0} {6, 5, 2, 0} {6, 5, 1, 0} {7, 6, 5, 0} {8, 7, 6, 0} {9, 8, 6, 0} {9, 8, 5, 0} {10,
9, 8, 0} {11, 10, 9, 0}. . . {50, 49, 48, 0} {51, 50, 48, 0} {50, 47, 46, 0} {51, 50, 46, 0} {51, 50, 45,
0} {52, 51, 50, 0} {52, 51, 45, 0} {53, 52, 50, 0} {53, 52, 45, 0} {53, 52, 40, 0}

k = 5; n = 5 {249 tries} {4, 3, 2, 1, 0} {5, 4, 3, 2, 0} {5, 4, 3, 1, 0} {6, 5, 4, 3, 0} {6, 5, 4, 2, 0} {6,
5, 4, 1, 0} {7, 6, 5, 4, 0} {7, 6, 5, 3, 0} {7, 6, 5, 2, 0} {7, 6, 5, 1, 0} {8, 7, 6, 5, 0} {9, 8, 7, 6, 0}
{10, 9, 8, 6, 0} {10, 9, 8, 5, 0} . . . {110, 107, 106, 60, 0} {111, 110, 106, 60, 0} {111, 110, 105, 60,
0} {112, 111, 110, 60, 0} {112, 111, 105, 60, 0} {113, 112, 110, 60, 0} {113, 112, 105, 60, 0} {113,
112, 100, 60, 0}

It is clear that the number of tries is far below the number of subsets enumerated by
a stupid algorithm. Moreover, it seems that this proof of Dickson’s lemma gives the
4rst answer for the lexicographic order (this is not at all true for all proofs).

7. Simpli�cation of the algorithm

It is possible, by analyzing the proof (the formalization in PhoX is not very long: 343
lines including the proof of decidability), to extract (by hand) a simpli4ed algorithm
omitting parts of the proof which are not useful for the computation. The program is
written in ObjectiveCaml. The C operator has been removed using a CPS translation
(callcc is not available in ObjectiveCaml) and the program needs recursive types to
be accepted (use ocaml -rectypes). We now describe brieSy the program. The 4rst



C. Ra'alli / Theoretical Computer Science 323 (2004) 49–70 63

function lem1 corresponds to Lemma 6.3:

let lem1 f e k =
let rec k’ x q = k (x : int) ((f,k’)::q) in
e k’

The algorithmic content of the fact that N is well founded has been simpli4ed using
a recursive de4nition. The C operator has been replaced by the continuation k. To
make the program more readable, we have stored in a list the proof that the wanted
integer belongs to the desired set. The list ((f,k’)::q) is the algorithmic content of
the fact that x is a minimum of f (represented by the pair (f,k’)) and of the fact
that x belongs to Q represented by q. The continuation k’ in the pair (f,k’) allows
this function to backtrack if x is not a minimum of f. In this case, k’ will receive in
argument an integer y such that f(y)¡f(x) and such that y belongs to Q. Then, the
function will call again the continuation k with y instead of x. Lemma 6.4 (function
lem2) is very easy and the Dickson’s lemma itself (function dickson) does a simple
induction on the list of functions:

let lem2 f u x = lem1 f (u (x : int))
let rec dickson lf =
match lf with
[] -> (fun x k -> k x [])

| f::lf -> lem2 f (dickson lf)

For the weak Dickson’s lemma, we have a 4rst function extract receiving a proof
u that a set Q is unbounded and building a list of elements of Q of length n. It is
a list of pairs (z,lz) where z is the integer and lz is “the proof ” that z belongs
to Q. This list is passed to the continuation k. The weak Dickson’s lemma (function
weak_dickson) is easy using dickson and extract:

let rec extract n u k =
match n with
0 -> k []

| x ->
let k’ l =
match l with
[] -> u 0 (fun z lz -> k [z,lz])

| (y, ly)::_-> u (y+1) (fun z lz -> k ((z,lz)::l))
in
extract (x - 1) u k’

let weak_dickson lf n = extract n (dickson lf)

Finally, the proof of decidability (function decidable) checks that the list satis4es the
speci4cation calling the continuation stored in the list to make the program backtrack
if it is not the case. The program had to be adjusted to do the check in the same order
as the term extracted from the proof.
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let rec decidable’ acc = function
(y, ly)::l ->
match l with
[] -> y::acc

| (x,lx)::_ ->
let rec test lx’ ly’ =
match lx’, ly’ with
[], [] -> decidable’ (y::acc) l

| ((fx, kx)::lx’), ((fy, ky)::ly’) ->
if not (fx == fy) then
failwith "bug: the function should be the same !";

if fx x < fx y then
ky x lx’ else test lx’ ly’

in test lx ly
let decidable l =
(* side effect to print l *)
decidable’ [] (List.rev l);

To run the program, you can enter the following:

weak_dickson [(fun x -> x mod 2); (fun x -> x mod 3)] 4 decidable

Remark. The storage operator is not useful for this proof because the proof only con-
structs intuitionistic lists of naturals. This is often the case but not always (you can build
examples where the storage operator will be really used to translate classical data into
intuitionistic ones). If you replace the comment “(* side effect to print l*)”
by some code to print the integers in the list l, you will get exactly the same behavior
(except that it is much faster) as the program extracted from the proof. This gives a
strong argument to check that we did nothing wrong when simplifying the program
extracted from the proof. This program is surprisingly short and e<cient and it seems
that it would have been very hard to 4nd such an algorithm directly. This means that
even for a quite simple speci4cation and a short proof, our theorem and a classical
proof can lead to an interesting algorithm which is hard to construct directly.

8. Comparison with other work

8.1. Comparison with the work of Berger, Buchholz and Schwichtenberg [2]

In [2] the authors have chosen a completely di%erent approach by 4nding some
means to transform the classical proof in an intuitionistic one. They do not use a GFodel
translation. They use a logical framework with only one decidable predicate symbol
and only the connectives ⊥; → ;∀ which implies that classical and intuitionistic logic
are equivalent in this setting. However, to code the formula you want to prove, you
need to add negations (at least two negations for the existential quanti4er because the
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formula you want to prove is ∀x∃yG[x; y]). Then, the authors prove that if G is a
so called “goal formula” and if you prove 
 ∀x(∀y(G[x; y]→ ⊥)→ ⊥) then you can
prove 
 ∀xG[x;Mx] where M is a functional program computing y from x. We could
consider that goal formulas play a similar role as decidable predicates, but what is the
relation between these two notions? Goal formulas do not necessarily de4ne decidable
predicates (they may contain universal quanti4cations), but in this case the method
in [2] will probably not lead to an algorithm?. A 4rst clue is that, in our method,
if we change the decidability proof, it changes the order in which we check that the
solution is correct and the program behaves di%erently. In [2] it seems that Lemma 3.1
plays a similar role. This lemma says that for any goal formula G, we can prove
that 
 GX [x; y]→ (G[x; y]→X )→X where GX [x; y] is the formula G[x; y] where all
occurrences of ⊥ have been replaced by a variable X . It is clear that there may be
many proofs of 
 GX [x; y]→ (G[x; y]→X )→X and this probably introduces the same
kind of variation in the behavior of the extracted algorithm. However, we do not see
a clear relation between the proof of 
 GX [x; y]→ (G[x; y]→X )→X and a proof of
decidability of the predicate G[x; y]. Yet, in [3], using the method in [2], a program is
extracted from a restricted version of Dickson’s lemma (only two functions and two
natural numbers) and is very similar to ours: : : .

8.2. Comparison with [13]

In this paper, Krivine shows how the �C-term extracted from a classical proof can
be directly used as a winning strategy for Coquand’s game semantics [5]. Krivine stud-
ies formulas written ∀x1 ∈N∃y1 ∈N : : :∀xn ∈N∃yn ∈N �(x1; y1; : : : ; xn; yn)= 0 where
� is a recursive function. Therefore, the case n=1 (∀x∈N∃y∈N�(x; y)= 0) is a
particular case of our work because the equality is decidable and it is very easy to
make the �C-term extracted from a classical proof computes y from x (intuitively,
because the decidability proof is trivial). What do we gain by using formulas of the
shape ∀x∈N∃y∈N S(x; y) instead of ∀x∈N∃y∈N�(x; y)= 0? First it is easy to go
from one to another (the second case is a particular case of the 4rst one and from
a decidable predicate we can easily get a recursive function). However, it would be
very di<cult to analyze the behavior of the classical proof of Dickson’s lemma (or any
large proof), because the decidability proof (which has an obvious algorithmic con-
tents) is replaced by a proof that ∀x∈N∀y∈N (S(x; y)↔ (�(x; y)= 0)). Moreover,
in our paper the program is a well analyzed interaction between two components: the
intuitionistic decidability proof and the classical existence proof, which helps a lot in
understanding the whole program (this is the main point of our theorem). In Krivine’s
work, there is only one monolithic proof to analyze.
One should note that Krivine’s work is more general because proofs can use the

axiom of dependent choice and the alternation of quanti4ers is not limited (but in
this case we cannot anymore compute the value of y1 from x1). It is clear that our
work can be extended to use the axiom of dependent choice because the justi4cation
uses the same semantics and there is only to prove that the term chosen for the axiom
of choice preserves the adequation lemma which is the case. We also think that
Krivine’s work can be extended to formula of the shape ∀x1 ∈N∃y1 ∈N : : :∀xn ∈
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N∃yn ∈N S(x1; y1; : : : ; xn; yn) where S is a decidable predicate using our technics, but
this needs to be checked.

9. Further works

There is at least two open questions:
1. What is the relation between goal formulas and decidable formulas and more gen-

erally, can we prove a syntactical result similar to our theorem:

Conjecture 9.1. If S is decidable and if O is a data type ( for a well-chosen de�-
nition), then from a classical proof of ∀x(I [x]→ ∃y(O[y]∧ S[x; y])) we can build
an intuitionistic one (it would be better not just to �nd a proof, but really give a
constructive transformation of the classical proof into an intuitionistic one).

This conjecture would be a consequence of the existence of typed storage operators
for all decidable predicates, which is equivalent to the following question: “Can we
prove ∀x(I(x)→ ∀y(O[y]→ S∗[x; y]→ ¬¬S[x; y]) where S∗ is a GFodel translation
of S?”. This would allow a proof similar to the proof that all functions provably
total in classical second order logic are provably total in intuitionistic logic.

2. There is a huge di%erence between the extracted term and the simpli4ed program.
Can we reduce these di%erences automatically using methods similar to those in
[1,4,6] developed for intuitionistic logic. However, with classical logic, there is one
added problem compared to intuitionistic logic: the equational reasoning can have an
algorithmic content: the equality proofs can trigger the backtracking of the program.
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Appendix. The �-terms

Here are the real �-terms extracted from the proof except
• the 4rst height which are axioms,
• the 4nal term interact which corresponds to �iC[i] (in our example we have two
arguments in input: the list of functions and the number of integers we want, this is
why the term starts with �l�n : : :),

• and the terms PL and PN that are used to print the various lists tested by the decid-
ability proof while behaving like the identity on the intended data type).

From our web page www.lama.univ-savoie.fr/~raffalli, you can download the
three 4les dickson.phx, storage.phx and run_dickson.phx to run yourself the
real extracted program using PhoX. To do so you need to compile the 4rst two 4les
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using the command phox -c filename.phx then, you can run the last 4le using the
command phox -f < filename.phx.

peirce_law = \x0 a1 [a1]x0 (\x2 [a1]x2)
S_inj.N = \x0 \x1 \x2 x2
N0_not_S.N = \x0 \x1 x1
equal.reflexive = \x0 x0
cons.injective.List = \x0 \x1 x1 x0 x0
nil_not_cons.List = \x0 x0
length.nil.List = \x0 x0
length.cons.List = \x0 \x1 x1
lesseq.refl.N = \x0 \x1 \x2 x1
conjunction.intro = \x0 \x1 \x2 x2 x0 x1
exists.intro = \x0 \x1 x1 x0
exists.elim = \x0 \x1 x1 x0
conjunction.left = \x0 \x1 x1 x0
S.total.N = \x0 \x1 \x2 x2 (x0 x1 x2)
disjunction.right.intro = \x0 \x1 \x2 x2 x0
N0.total.N = \x0 \x1 x0
disjunction.elim = \x0 \x1 \x2 x2 x0 x1
disjunction.left.intro = \x0 \x1 \x2 x1 x0
case.N = \x0 x0 (disjunction.left.intro equal.reflexive)

(\x1 disjunction.elim
(\x2 disjunction.right.intro

(exists.intro
(conjunction.intro (x2 (\x3 x3) N0.total.N)

equal.reflexive)))
(\x2 exists.elim

(\x3 conjunction.left
(\x4 \x5 disjunction.right.intro

(exists.intro
(conjunction.intro (x5 (\x6 x6) (S.total.N x4))

equal.reflexive))) x3) x2) x1)
case_left.N = \x0 \x1 \x2 disjunction.elim

(\x3 x3 (\x4 x4) (x0 x3))
(\x3 exists.elim

(\x4 conjunction.left (\x5 \x6 x6 (\x7 x7) (x1 x5 x6)) x4) x3)
(case.N x2)

lesseq.lS.N = \x0 \x1 \x2 \x3 x1 x2 (\x4 x3 x4)
conjunction.right.elim = \x0 x0 (\x1 \x2 x2)
rec.N = \x0 \x1 \x2 conjunction.right.elim

(x2 (conjunction.intro N0.total.N x0)
(\x3 conjunction.left

(\x4 \x5 conjunction.intro (S.total.N x4) (x1 x4 x5)) x3))
lesseq.lN0.N = \x0 \x1 \x2 rec.N x1 (\x3 \x4 x2 x4) x0
false.elim = \x0 x0
not.lesseq.imply.less.N = \x0 rec.N

(\x1 \x2 false.elim (x2 (lesseq.lN0.N x1)))
(\x1 \x2 \x3 \x4 disjunction.elim

(\x5 lesseq.lS.N x3 (x5 (\x6 x6) (lesseq.lN0.N x1)))
(\x5 exists.elim

(\x6 conjunction.left
(\x7 \x8 lesseq.lS.N x3

(x8 (\x9 x9)
(x2 x7 (\x9 x4 (x8 (\x10 x10) (lesseq.lS.N x1 x9))))))

x6) x5) (case.N x3)) x0
absurd = \x0 peirce_law x0
lesseq.rS.N = \x0 \x1 \x2 \x3 x3 (x1 x2 x3)
lesseq.rec.N = \x0 \x1 \x2 \x3 \x4 conjunction.left

(\x5 \x6 conjunction.left (\x7 \x8 x8) x6)
(x4

(conjunction.intro (lesseq.refl.N x0)
(conjunction.intro x0 x2))

(\x5 conjunction.left
(\x6 \x7 conjunction.left

(\x8 \x9 conjunction.intro (lesseq.rS.N x0 x6)
(conjunction.intro (S.total.N x8)

(case_left.N (\x10 x3 (x10 x8) (x10 x6) (x10 x9))
(\x10 \x11 x3 (x11 x8) (x11 x6) (x11 x9)) x8))) x7)

x5))
S_inj_left.N = \x0 \x1 \x2 \x3 x2 (S_inj.N x0 x1 x3)
lesseq.S_inj.N = \x0 \x1 \x2 exists.elim

(\x3 conjunction.left
(\x4 \x5 conjunction.left

(\x6 \x7 S_inj_left.N x1 x4 (\x8 x8 (\x9 x9) x7) x6) x5) x3)
(lesseq.rec.N (S.total.N x0) (S.total.N x1)

(exists.intro
(conjunction.intro x0

(conjunction.intro equal.reflexive (lesseq.refl.N x0))))
(\x3 \x4 \x5 exists.elim

(\x6 conjunction.left
(\x7 \x8 conjunction.left

(\x9 \x10 exists.intro
(conjunction.intro (x9 x3)

(conjunction.intro (x9 equal.reflexive)
(lesseq.rS.N x0 x10)))) x8) x6) x5) x2)

lesseq.S_inj_left.N = \x0 \x1 \x2 \x3 x2 (lesseq.S_inj.N x0 x1 x3)
lesseq.or_eq_S.N = \x0 \x1 case_left.N

(\x2 \x3 disjunction.left.intro (lesseq.lN0.N x1))
(\x2 \x3 \x4 lesseq.S_inj_left.N x2 x1

(\x5 lesseq.rec.N x2 x1
(disjunction.right.intro equal.reflexive)
(\x6 \x7 \x8 disjunction.left.intro (lesseq.lS.N x2 x7)) x5)

x4) x0
lesseq.or_eq_S_left.N = \x0 \x1 \x2 \x3 \x4 disjunction.elim

(\x5 x2 x5) (\x5 x3 x5) (lesseq.or_eq_S.N x0 x1 x4)
S_not_N0.N = \x0 \x1 N0_not_S.N x0 (x1 (\x2 x2) equal.reflexive)
lesseq.rN0.N = \x0 \x1 case_left.N (\x2 x2 x2)

(\x2 \x3 false.elim
(lesseq.rec.N x0 N0.total.N (\x4 N0_not_S.N x2 (x3 x4))

(\x4 \x5 \x6 \x7 N0_not_S.N x4 x7) x1 equal.reflexive)) x0
lesseq.rN0_left.N = \x0 \x1 \x2 x1 (lesseq.rN0.N x0 x2)
lesseq.rN1.N = \x0 \x1 lesseq.rN0_left.N (S.total.N x0)

(\x2 S_not_N0.N x0 x2) x1
well_founded.N = \x0 \x1 rec.N

(\x2 \x3 lesseq.rN0_left.N x2
(\x4 x0 x2 (\x5 \x6 lesseq.rN1.N x5 (x4 x6))) x3)

(\x2 \x3 \x4 \x5 lesseq.or_eq_S_left.N x4 x2
(\x6 case_left.N (\x7 x3 (x7 x4) (x7 x6))

(\x7 \x8 x3 (x8 x4) (x8 x6)) x4)
(\x6 x0 x4

(\x7 \x8 lesseq.S_inj_left.N x7 x2 (\x9 x3 x7 x9) (x6 x8)))
x5) x1 x1 (lesseq.refl.N x1)

lem1 = \x0 \x1 \x2 exists.elim
(\x3 conjunction.left

(\x4 \x5 absurd
(\x6 false.elim

((\x7 well_founded.N
(\x8 \x9 \x10 \x11 \x12 exists.elim

(\x13 conjunction.left
(\x14 \x15 conjunction.left

(\x16 \x17 x9
(case_left.N (\x18 x1 (x18 x14))

(\x18 \x19 x1 (x19 x14)) x14)
(x11 (\x18 x18) x17) x14 equal.reflexive x16)

x15) x13)
((\x13 \x14 absurd

(\x15 false.elim
(x6

(exists.intro
(conjunction.intro x13

(conjunction.intro x14
(\x16 \x17 absurd

(\x18 false.elim
(x15

(exists.intro
(conjunction.intro x16

(conjunction.intro x17
(not.lesseq.imply.less.N

(case_left.N
(\x19 x1 (x19 x13))
(\x19 \x20 x1 (x20 x13))
x13)

(case_left.N
(\x19 x1 (x19 x16))
(\x19 \x20 x1 (x20 x16))
x16) x18)))))))))))))

x10 x12)) x7) (x1 x4) x4 equal.reflexive x5))) x3)
x2

lesseq.ltrans.N = \x0 \x1 \x2 x2 x1 (\x3 lesseq.rS.N x0 x3)
lesseq.S_is_S.N = \x0 \x1 \x2 lesseq.rec.N (S.total.N x0) x1

(exists.intro
(conjunction.intro x0

(conjunction.intro equal.reflexive (lesseq.refl.N x0))))
(\x3 \x4 \x5 exists.elim

(\x6 conjunction.left
(\x7 \x8 conjunction.left

(\x9 \x10 exists.intro
(conjunction.intro (x9 (\x11 x11) (S.total.N x7))

(conjunction.intro equal.reflexive
(x9 (\x11 x11) (lesseq.rS.N x0 x10))))) x8) x6) x5)

x2
lesseq.S_is_S_left.N = \x0 \x1 \x2 \x3 exists.elim

(\x4 conjunction.left
(\x5 \x6 conjunction.left (\x7 \x8 x2 x5 x7 x8) x6) x4)
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(lesseq.S_is_S.N x0 x1 x3)
lem2 = \x0 \x1 \x2 \x3

(\x4 exists.elim
(\x5 conjunction.left

(\x6 \x7 conjunction.left
(\x8 \x9 conjunction.left

(\x10 \x11 exists.intro
(conjunction.intro x6

(conjunction.intro x10
(conjunction.intro x11

(\x12 \x13 \x14 x9 x12
(lesseq.S_is_S_left.N x6 x12

(\x15 \x16 \x17 conjunction.intro
(x16 (\x18 x18)

(lesseq.rS.N x3
(lesseq.ltrans.N x3 x10 x17))) x13)

x14)))))) x8) x7) x5)
(lem1

(exists.elim
(\x5 conjunction.left

(\x6 \x7 \x8 conjunction.left
(\x9 \x10 exists.elim (\x11 x0 x10) (x2 x6)) x8) x5)

x4) x1 x4)) (x2 x3)
cons.total.List = \x0 \x1 \x2 \x3 x3 x0 (x1 x2 x3)
nil.total.List = \x0 \x1 x0
rec.List = \x0 \x1 \x2 conjunction.left (\x3 \x4 x4)

(x2 (conjunction.intro nil.total.List x0)
(\x3 \x4 conjunction.left

(\x5 \x6 conjunction.intro (cons.total.List x3 x5)
(x1 x3 x5 x6)) x4))

lem3 = \x0 rec.List
(\x1 \x2 exists.intro

(conjunction.intro (\x3 x3)
(conjunction.intro x2 (\x3 \x4 \x5 nil.total.List))))

(\x1 \x2 \x3 \x4 \x5 exists.elim
(\x6 conjunction.left

(\x7 \x8 conjunction.left
(\x9 \x10

(\x11 exists.intro
(conjunction.intro

(\x12 conjunction.left
(\x13 \x14 exists.elim (\x15 x7 x13)

(x11 N0.total.N)) x12)
(conjunction.intro x11

(\x12 \x13 \x14 cons.total.List
(conjunction.right.elim x12

(conjunction.left (\x15 \x16 x4 (x7 x15)) x13)
(conjunction.left (\x15 \x16 x15) x13) x14)

(x10 (conjunction.left (\x15 \x16 x15) x12)
(conjunction.left (\x15 \x16 x15) x13) x14)))))

(lem2 (\x11 x4 (x7 x11)) x1 x9)) x8) x6) (
x3 x4 x5)) x0

List_increasing = \x0 \x1 rec.List nil.total.List
(\x2 \x3 \x4 cons.total.List (x0 x2) x4) x1

succ.Good = \x0 \x1 \x2 \x3 \x4 \x5 \x6 \x7 x7 x0 x1 x2
(x3 x5 x6 x7) x4

true.intro = \x0 x0
True.List = \x0 rec.List nil.total.List

(\x1 \x2 \x3 cons.total.List true.intro x3) x0
un.Good = \x0 \x1 \x2 \x3 x2 x0
case.List = \x0 x0 (disjunction.left.intro equal.reflexive)

(\x1 \x2 disjunction.right.intro
(disjunction.elim

(\x3 exists.intro
(conjunction.intro x1

(exists.intro
(conjunction.intro (x3 (\x4 x4) nil.total.List)

equal.reflexive))))
(\x3 exists.elim

(\x4 conjunction.left
(\x5 \x6 exists.elim

(\x7 conjunction.left
(\x8 \x9 exists.intro

(conjunction.intro x1
(exists.intro

(conjunction.intro
(x9 (\x10 x10) (cons.total.List x5 x8))
equal.reflexive)))) x7) x6) x4) x3) x2))

case_left.List = \x0 \x1 \x2 disjunction.elim
(\x3 x3 (\x4 x4) (x0 x3))
(\x3 exists.elim

(\x4 conjunction.left
(\x5 \x6 exists.elim

(\x7 conjunction.left
(\x8 \x9 x9 (\x10 x10) (x1 x5 x8 x9)) x7) x6) x4) x3)

(case.List x2)
zero.Good = \x0 \x1 \x2 x0
rec.Good = \x0 \x1 \x2 \x3 conjunction.left (\x4 \x5 x5)

(x3 (conjunction.intro zero.Good x0)

(\x4 conjunction.intro (un.Good x4) (x1 x4))
(\x4 \x5 \x6 \x7 \x8 conjunction.intro

(succ.Good x4 x5 x6 (conjunction.left (\x9 \x10 x9) x7) x8)
(x2 x4 x5 x6 (conjunction.left (\x9 \x10 x9) x7)

(conjunction.left (\x9 \x10 x10) x7) x8)))
dickson = \x0 \x1 exists.elim

(\x2 exists.elim
(\x3 conjunction.left

(\x4 \x5 conjunction.left
(\x6 \x7 exists.intro

(conjunction.intro
(rec.Good nil.total.List

(\x8 cons.total.List x8 nil.total.List)
(\x8 \x9 \x10 \x11 \x12 \x13 cons.total.List x8 x12)
x7) x5)) x5) x3)

(rec.N
(exists.intro

(conjunction.intro nil.total.List
(conjunction.intro (length.nil.List equal.reflexive)

zero.Good)))
(\x3 \x4 exists.elim

(\x5 conjunction.left
(\x6 \x7 conjunction.left

(\x8 \x9 conjunction.left
(\x10 \x11 case_left.List

(\x12 exists.elim
(\x13 conjunction.left

(\x14 \x15 conjunction.left
(\x16 \x17 exists.intro

(conjunction.left
(\x18 \x19 conjunction.intro

(cons.total.List x17 nil.total.List)
(conjunction.intro

(x18
(x12 (\x20 x20)

(length.cons.List nil.total.List
equal.reflexive)))

(un.Good x14))) x7)) x15) x13)
(x10 N0.total.N))

(\x12 \x13 \x14 exists.elim
(\x15 conjunction.left

(\x16 \x17 conjunction.left
(\x18 \x19 exists.intro

(lesseq.S_is_S_left.N (x8 x12) x16
(\x20 \x21 \x22 conjunction.left

(\x23 \x24 conjunction.intro
(cons.total.List x19 x6)
(conjunction.intro

(x23
(length.cons.List

(x14 (\x25 x25)
(cons.total.List true.intro

(True.List x13)))
equal.reflexive))

(x14 (\x25 x25)
(succ.Good x16

(exists.elim (\x25 x8 x12)
(x10 x20))

(List_increasing x8 x13)
(x14 x24)
(conjunction.intro

(x21 (\x25 x25)
(lesseq.lS.N

(exists.elim
(\x25 x8 x12)
(x10 x20)) x22))

(x11 x12 x19
(x21 (\x25 x25)

(lesseq.lS.N (
x8 x12) x22)))))))) x7)

x18)) x17) x15)
(x10 (S.total.N (x8 x12)))) x6) x9) x2) x5) x4)

x1))
(lem3 x0 (\x2 x2)

(\x2 exists.intro
(conjunction.intro x2

(conjunction.intro (lesseq.refl.N x2) x2))))
NStor = \x0 x0 (\x1 x1 N0.total.N)

(\x1 \x2 x1 (\x3 x2 (S.total.N x3)))
LNStor = \x0 x0 (\x1 x1 nil.total.List)

(\x1 \x2 \x3 NStor x1 (\x4 x2 (\x5 x3 (cons.total.List x4 x5))))
conjunction.left.elim = \x0 x0 (\x1 \x2 x1)
cons.injective_left.List = \x0 \x1 x0

(conjunction.left.elim (cons.injective.List x1))
(conjunction.right.elim (cons.injective.List x1))

cons_not_nil.List = \x0 nil_not_cons.List
(x0 (\x1 x1) equal.reflexive)

case.Good = \x0 \x1 \x2 \x3 rec.Good
(\x4 \x5 \x6 x4 equal.reflexive)
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(\x4 \x5 \x6 \x7 x6 x4 equal.reflexive)
(\x4 \x5 \x6 \x7 \x8 \x9 \x10 \x11 \x12 x12 x4 x5 x6 x7 x9

equal.reflexive) x3 x0 x1 x2
length.total.List = \x0 rec.List

(length.nil.List (\x1 x1) N0.total.N)
(\x1 \x2 \x3 length.cons.List x2 (\x4 x4) (S.total.N x3)) x0

lesseq.anti_sym.N = \x0 rec.N
(\x1 \x2 \x3 lesseq.rN0_left.N x1 (\x4 x4 (\x5 x5) (x4 x4)) x3)
(\x1 \x2 \x3 rec.N

(\x4 lesseq.rN0_left.N (S.total.N x1) (\x5 S_not_N0.N x1 x5)
x4)

(\x4 \x5 \x6 \x7 x2 x4 (lesseq.S_inj_left.N x1 x4 (\x8 x8) x6)
(lesseq.S_inj_left.N x4 x1 (\x8 x8) x7) equal.reflexive) x3)

x0
x_not_Sx.N = \x0 rec.N (\x1 N0_not_S.N N0.total.N x1)

(\x1 \x2 \x3 S_inj_left.N x1 (S.total.N x1) (\x4 x2 x4) x3) x0
lesseq.Sx_x.N = \x0 \x1 x_not_Sx.N x0

(lesseq.anti_sym.N x0 (S.total.N x0)
(lesseq.rS.N x0 (lesseq.refl.N x0)) x1)

less_dec = \x0 rec.N
(\x1 case_left.N

(\x2 disjunction.right.intro (\x3 lesseq.Sx_x.N (x2 x1) x3))
(\x2 \x3 disjunction.left.intro

(lesseq.lS.N N0.total.N (lesseq.lN0.N x2))) x1)
(\x1 \x2 \x3 rec.N

(disjunction.right.intro (\x4 lesseq.rN1.N (S.total.N x1) x4))
(\x4 \x5 disjunction.elim

(\x6 disjunction.left.intro
(lesseq.S_is_S_left.N x1 x4

(\x7 \x8 \x9 lesseq.lS.N (S.total.N x1)
(x8 (\x10 x10) (lesseq.lS.N x1 x9))) x6))

(\x6 disjunction.right.intro
(\x7 lesseq.S_inj_left.N (S.total.N x1) x4

(\x8 lesseq.S_is_S_left.N x1 x4
(\x9 \x10 \x11 x6

(x10 (\x12 x12) (lesseq.lS.N x1 x11))) x8) x7))
(x2 x4)) x3) x0

lesseq_dec = \x0 rec.N
(\x1 disjunction.left.intro (lesseq.lN0.N x1))
(\x1 \x2 \x3 rec.N

(disjunction.right.intro (\x4 lesseq.rN1.N x1 x4))
(\x4 \x5 disjunction.elim

(\x6 disjunction.left.intro (lesseq.lS.N x1 x6))
(\x6 disjunction.right.intro

(\x7 lesseq.S_inj_left.N x1 x4 (\x8 x6 x8) x7)) (
x2 x4)) x3) x0

cons.left.List = \x0 \x1 case_left.List (\x2 cons_not_nil.List x2)
(\x2 \x3 \x4 cons.injective_left.List

(\x5 \x6 x0 (x5 (\x7 x7) x2) (x6 (\x7 x7) x3)) x4) x1
forall_dec = \x0 \x1 rec.List

(disjunction.left.intro nil.total.List)
(\x2 \x3 \x4 disjunction.elim

(\x5 disjunction.elim
(\x6 disjunction.left.intro (cons.total.List x6 x5))
(\x6 disjunction.right.intro

(\x7 cons.left.List (\x8 \x9 x6 x8) x7)) (x0 x2))
(\x5 disjunction.right.intro

(\x6 cons.left.List (\x7 \x8 x5 x8) x6)) x4) x1
Spec_dec = \x0 \x1 \x2 rec.List

(\x3 case_left.N
(\x4 disjunction.left.intro

(conjunction.intro (length.nil.List equal.reflexive)
zero.Good))

(\x4 \x5 disjunction.right.intro
(\x6 conjunction.left

(\x7 \x8 N0_not_S.N x4 (length.nil.List x7)) x6)) x3)
(\x3 \x4 \x5 \x6 case_left.N

(\x7 disjunction.right.intro
(\x8 conjunction.left

(\x9 \x10 S_not_N0.N (length.total.List (True.List x4))
(length.cons.List (True.List x4) x9)) x8))

(\x7 \x8 disjunction.elim

(\x9 case_left.List
(\x10 disjunction.left.intro

(conjunction.left
(\x11 \x12 conjunction.intro

(x11
(x10 (\x13 x13)

(length.cons.List nil.total.List equal.reflexive)))
(un.Good x3)) x9))

(\x10 \x11 \x12 disjunction.elim
(\x13 disjunction.elim

(\x14 disjunction.left.intro
(lesseq.S_is_S_left.N x10 x3

(\x15 \x16 \x17 conjunction.left
(\x18 \x19 conjunction.intro

(x18
(x12 (\x20 x20)

(length.cons.List
(cons.total.List true.intro

(True.List x11)) equal.reflexive)))
(succ.Good x3 x10 x11 (x12 x19)

(conjunction.intro
(x16 (\x20 x20) (lesseq.lS.N x10 x17)) x14)))

x9) x13))
(\x14 disjunction.right.intro

(\x15 conjunction.left
(\x16 \x17 case.Good (\x18 cons_not_nil.List x18)

(\x18 \x19 cons.injective_left.List
(\x20 \x21 cons_not_nil.List x21) x19)

(\x18 \x19 \x20 \x21 \x22 \x23
cons.injective_left.List
(\x24 \x25 cons.injective_left.List

(\x26 \x27 conjunction.left
(\x28 \x29 x14

(x24 (\x30 x30) (x26 (\x30 x30) x29)))
x22) x25) x23) x17) x15))

(forall_dec (\x14 lesseq_dec (x14 x10) (x14 x3)) x0))
(\x13 disjunction.right.intro

(\x14 conjunction.left
(\x15 \x16 case.Good (\x17 cons_not_nil.List x17)

(\x17 \x18 cons.injective_left.List
(\x19 \x20 cons_not_nil.List x20) x18)

(\x17 \x18 \x19 \x20 \x21 \x22
cons.injective_left.List
(\x23 \x24 cons.injective_left.List

(\x25 \x26 conjunction.left
(\x27 \x28 lesseq.S_is_S_left.N x18 x17

(\x29 \x30 \x31 x13
(x23 (\x32 x32)

(x30 (\x32 x32)
(lesseq.lS.N x10

(x25 (\x32 x32) x31))))) x27) x21)
x24) x22) x16) x14)) (less_dec x10 x3)) x4)

(\x9 disjunction.right.intro
(\x10 x9

(conjunction.left
(\x11 \x12 conjunction.intro

(S_inj_left.N (length.total.List (True.List x4)) x7
(\x13 x13) (length.cons.List (True.List x4) x11))

(case.Good (\x13 cons_not_nil.List x13)
(\x13 \x14 cons.injective_left.List

(\x15 \x16 x16 (\x17 x17) zero.Good) x14)
(\x13 \x14 \x15 \x16 \x17 \x18

cons.injective_left.List
(\x19 \x20 x20 (\x21 x21) x16) x18) x12)) x10)))

(x5 x7)) x6) x2 x1
PN = \x0 x0 "0" "S"
PL = \x0 x0 "\n" (\x1 \x2 PN x1 "," x2)
interact = \x0 \x1 dickson x0 x1

(\x2 x2
(\x3 \x4 LNStor x3

(\x5 PL x5 (Spec_dec x0 x1 x5 (\x6 x5) (\x6 x6 x4)))))
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