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Underdiagonal lattice paths with unrestricted steps 
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Abstract 

We use some combinatorial methods to study underdiagonal paths (on the Z’ lattice) made 
up of unrestricted steps, i.e., ordered pairs of non-negative integers. We introduce an algorithm 
which automatically produces some counting generating functions for a large class of these paths. 
We also give an example of how we use these functions to obtain some specific information on 
the number tl,, L of paths from the origin to a generic point (II,II - k). 13 1999 Else~ier Science 
R.V. All rights reserved. 
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1. Introduction 

In his interesting paper [3], Gessel gives an algebraic method which he calls “fac- 

torization of formal Laurent series” to tind the generatin g functions for underdiagonal 

lattice paths with unrestricted steps (functions ,fo and ,f_ in his notation) by means 

of the bivariate generating function of all lattice 2”s paths. By cttw.vtr.ic/ctl .stc~p.s we 

mean ordered pairs ($. 8) of non-negative integers, and a p1fh is a finite sequence of 

steps starting at the origin; an umlcw~iu~qon~tl pot/t only contains points (.I-, 1’) such that 

.v> J’. Even though the literature on lattice paths is extensive, most of it only deals 

with the steps belonging to some restricted classes. For example, many studies have 

been made on Dyck paths, but they are only made up of two steps (0.1 ) and (I .O). 

More in general, researchers seem to prefer treating problems related to “steep steps”, 

i.e.. steps (d, 0’) for which (S - ii’ < 1, rather than those related to “shallow steps”. i.o. 

steps (ii,(Y) for which ii - ii’> I. In addition to Gessel’s lattice path method. Goldman 

[4] and Goldman and Sundquist’s [5] propose one using a more combinatorial ap- 

proach. while Labelle’s method [6] regards problems involving some kind of restricted 

steps. The latter’s approach consists in starting out with an unambiguous definition of 
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lattice paths by means of a context-free grammar and then applying Schiitzenberger’s 

methodology [IO] to derive the recurrence relations and generating functions desired. 

In the present paper, we apply this method to both underdiagonal paths with unre- 

stricted steps (see [3]) and underdiagonal paths having privileged access to the main 

diagonal i.e., having special steps ending on the main diagonal: lattice paths have of- 

ten be used as a model for describing the behaviour of a particle walk; in that case, 

privileged access to the main diagonal corresponds to the fact that the diagonal attracts 

or rejects the particle. Some meaningful examples of this kind of paths are given in 

Section 2. We informally describe our main results (see Theorems 2.3 and 2.8) in the 

following way: a pair (R*,Ra) of finite sets of steps describes a path problem, i.e., 

the class of underdiagonal lattice paths composed of steps in RA U Ra, and precisely: 

(i) RA is used for steps not ending on the main diagonal, and (ii) Rn is only used for 

steps which do end on the main diagonal. Let dn,k be the number of paths ending at 

the point (n,n - k) (i.e., ending on the diagonal x - y=k) and let Dk(t) be the cor- 

responding generating function C,T, d,,$“; in particular, let Do(t) be the generating 

function for the paths ending on the main diagonal. It follows that Ilk(t) satisfies a 

linear recurrence relation 

Dk(t) = @(Dk-l(t),Dk-2(t), . . . ,Dk-s(t)) 

whose initial conditions are Do(t),Dl(t), . . . , DS_l(t), where s only depends on the 

maximal difference 16 - 6’) for steps in RA U RA. 

As far as paths without privileged access to the main diagonal are concerned, we 

find some of Gessel’s results again here and extend them to a more general case. 

For example, from the context-free formulation of path problems, we can immediately 

infer that the Dk(t)‘s (in particular, Do(t)), are algebraic functions. In addition, our 

approach can be used for deriving some information about the dn,k’s (k >O), which 

are the number of paths not returning to the main diagonal. This is a rather complex 

problem and is not often treated, especially when shallow steps are involved (see 

Section 4 for an example of it). 

Our paper is organized in the following way: Section 2 contains the definitions, 

methodology and proofs of our main results. In Section 3, we use the theorems proved 

in the previous section to introduce an algorithm which starts with the definition of a 

given lattice path problem and automatically generates the recurrences for the generat- 

ing functions that solve the problem. Finally, in Section 4, we develop an example to 

show the difficulties involved in dealing with shallow steps. 

2. Definitions and main results 

A step template is a triple (6,6’, KC) where 6,6’ EN and K belongs to a (maybe 

infinite) set of colours. A colouved (6,6’, rc)-step is a triple ((x, y), (x + 6, y f a’), K), 

where (x, y) and (x + 6, y + 6’) are two points in Z2. A path scheme R is a finite set 
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Fig. 1. Representations for Dyck paths. 

of step templates and an R-path is a finite sequence (s~,sz,. ,s,) of coloured steps 

such that: 

(a> 
lb) 

(cl 

.*I = ((0, O), (6,6’), K) with (6,6’, K) E R; 
Vi = 2,3,. , n, ifs,=((x,,y,),(x,fii,yj+6’),K) thenxi>y,,xj+6~~j+ii’ and 
(6,6’, K) E R; 

Vi = 2,3,. , n - 1, if ~1 = ((xl, yi), (xi + 6, y, + 6’), K) and si+i = ((xi+, , y,+, ), (x,~+, 
+~,Y,+I +p),K) thenxi+6=x,+, and JI+~=Y,+,. 

The number n is the R-path’s length. Colours are very useful for representing paths 

and j equal steps with different colours are algebraically equivalent to a step having 

tt,eiyht ,j. When the set of colours consists of only one element, a path can be described 

more simply by giving the ordered (n + 1)tuple of points (0, PI, PI,. , P,) the path 

goes through. 

Dyck paths constitute a very simple example: their scheme is Rc = ((0,l. black), 

(I,O,bfack)}. In Fig. l(a), we illustrate some of these paths. The numbers are usu- 

ally arranged in a lower triangular array, as shown in Fig. l(b). The number of 

paths arriving at the point (n,n - k) is denoted by d,,k, which therefore also rep- 

resents the number contained in the array at row n and column k. The array shown in 

Fig. l(b) is called the Catalan triangle. The Pascal triangle corresponds to the scheme 

Rp={(l,O,black), (I,l,black)} and the Motzkin triangle to RM = {( l,O, black). 

(1. l,hlack), (1,2,hlack)}. 

We wish to point out that if ((x, y),(x -t 6,~ + 6’) K) is a step ending on the 

main diagonal, i.e., x + 6 = y + 8, then the step template (6,6’, K) should have 6 < 0’. 

Therefore, if A(R) is R’s set of step templates ending on the main diagonal, A(R) 

is usually different from R. We can generalize our model by defining two sets of 

step templates: RA is used for steps not ending on the main diagonal, while RI is 

used for steps which end on the main diagonal. If A(RA) = RA, we have our original 

model; if A(RA) # RA, we have some new schemes: a scheme R = (R,A., RA)), for which 

A(RA) # RA, is said to have privileged accexs to the muin diagonal. 

Some examples are in order at this point. Let us take the artificial scheme RA = 

{(O,l,black), (l,O,black)} and RA = {(O,l,black), (1.2,hlack)). This is a modified 

Dyck scheme in which the main diagonal attracts particles on the diagonal x - y = I 

(see Fig. 2(a)). A more interesting example is R,A, = { ( 1 , 0, black), ( 1, 1, black), ( 1,2. 
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Fig. 2. Two schemes illustrating privileged access to the main diagonal 

black)} and RA = {( 1, l,black), (1,2,61ack), (1,2, red)}. This corresponds to the tri- 

angle of trinomial coefficients (see Fig. 2(b)). Lastly, if R = (RA, RA) is any scheme in 

the generalized model, its related scheme R H = (RA, 8) having privileged access to the 

main diagonal (because it rejects all the paths except the empty one) is of theoretical 

interest (see Section 3); the RH-paths are the R-paths uvoiding the main diagonal. 

We are now going to use the “first and last passage decompositions” method (see 

[2, p. 891) in order to translate a scheme into an unambiguous context-free grammar in 

which step templates become terminal symbols. The non-terminal symbols are indicated 

by the names of some path sets (defined further on). Schiitzenberger’s methodology is 

then used to obtain some recurrence relations for generating functions that count the 

number of paths and therefore solve our lattice path problem. 

Formally, if R = (RA,RA) is a lattice path scheme, we consider the following sets 

of step templates: 

Sj = ((6, d’, ti) E RA 1 6 ~ 6’ =j}. 

For the sake of simplicity we start out with the schemes not having privileged access 

to the main diagonal and prove our results for them. We then state analogous results 

for our more general model. Let us examine the following sets of R-paths: 

& is the set of R-paths that start from the origin (xo,yo) = (0,O) and arrive at a 

point (XF, y,~) having XF - ye = k (i.e., (XF, ye) belongs to the diagonal x - y = k). 

In particular, Do = D denotes the set of R-paths that reach the main diagonal. More 

in general, by translation, Dk also denotes the set of R-paths that start from (x0, yo), 

that does not necessarily belong to the main diagonal, arrive at a point (xF,yF) 

having X,C - ye 3x0 - yo and never go above the diagonal x - y =x0 - yo; 

G, (s > 0) is the set of R-paths that start from a point (x0, yo) having x0 - yo = k > 0, 

arrive at the point (XF, yF) having XF-yF = k-s > 0 and never go above the diagonal 

x-y = XF -yF. In other words, these R-paths climb s units towards the main diagonal 

without ever going “too high”. 

is worth noting that the index k in Dk is only used to relate & recursively to 

some other sets &I with k’ Gk. The index s in G, takes on the values 0, 1,. . . ,i, 

where s^ is the maximum value of 6’ - 6 for the steps in R. We now want to find an 

unambiguous context-free grammar defining Dk and the Gs’s. We also need the initial 



values Do, D,. . . , D,.: Do has a specific definition, whilst the other sets are obtained 

by specializing DA and their number Y depends on the order of the recurrence defining 

Dx; actually Y is the maximum value of ii ~ 6’ for the steps in Rl. 

Proof. We immediately deduce Go = DO from the definitions. For s>O, we use the 

so-called “first passage decomposition”: given an R-path in G,. let us take the tirst 

point (x,J, y’p) such that xp - yp <_YO - ~0, i.e., the first point at which the path goes 

above the starting point diagonal x - J‘ =XO - J(~ = k. The step arriving at (.Y,I. ,I’~>) 

should therefore belong to some S_; ( j >O). Let its template be (cS. 8, K): the whole 

path can be divided into three parts, in one and only one way: 

(i) the path from (xg, ~0) to (xp - 6, .)‘I’ - 8): because, by definition, (-up. J‘,~) is the 

lirst point above the diagonal x - J’ = SO - ~1) = k, This path therefore belongs to 

D,, where 

(ii) the step having template (ii,N,ri) E S-,; 

(iii) the path from (.xp,yp) to (_yF,Jr); by definition, this path climbs (sP ~ ,\.I>) 

~ (xp ~ oh-) units towards the main diagonal without ever going above the diagonal 

.Y - J’ =x/ - YF. Therefore, this is a path in G,,. with s’ <.v. 

Since all the possible values for ,j are given by the templates in R.,, this relation 

uniquely determines the corresponding values for k and .s’. E 

We are now able to give a grammar for Do, and this is our first important result: 

D,, ::= i: / &Do / S, G, ) S2G2 1 

Proof. The empty path has (xr, ?‘F) = (xg, ~‘0) = (0.0) and obviously satisfies the theo- 

rem’s condition. If the path is not empty, then it should begin with some step having 

template (6.8, K) E Sj (j 3 0). This step goes j units away from the diagonal’s starting 

point, and, therefore, it should be followed by a path which recuperates these ,j units 
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without ever going above the diagonal’s starting point; this path belongs to Gj by 

definition. 0 

After determining the starting relation for D 0, we go on to find an expression for 

D,(k>O): 

Theorem 2.3. Given a scheme R, the set Dk of the R-paths that start from the origin 

(x0, yo) = (O,O), arrive at the point (xF, yF), with xF > yF and always remain on, or 

below, the main diagonal, is 

Dk-&Do 
&-&Do 

& ::=Dk-,s,Do 
Dk-l&GI 

Dk_$$G, . 

Dk-l&& 

Proof. We now use the “last passage decomposition” method. Let (xp, yp) be the last 

point at which a path in Dk goes on or below the diagonal x - y =xF - yF that starts 

above it. If the step arriving at (xp, yp) has template (6,6’, K) we have 6 - 6’ =j > 0 

and the whole path can be divided into the following three parts: 

(i) the path from (x0, yo) to (xp - 6, yp - 6’); since the latter point is above the 

diagonal x - y =xF - yF, the path is in Dk_,, where 

k - i =xp - 6 - (yp - 8’) - (x0 - yo) = (xp - yp) - (x0 - yo) - j; 

(ii) the step with template (6,6’, K) E S,; 

(iii) the path from (XP, yp) to (XF, y,~); since (xp, yp) is on, or below, the diagonal 

(x - y) = (XF - yF) and the path never goes above this diagonal, it belongs to 

G,, where s = (xp - yp) - (XF - yF). The decomposition Dk_iS,Gz is obviously 

unique and we should obtain 

k=k-ifj-s or j=i+s. 

Since the values of j are given by the templates in R, this relation determines the 

possible values of i and s. 0 

Theorems 2.2 and 2.3 define Dk and DO in terms of the Gs’s. The latter can be 

eliminated by Lemma 2.1 and we therefore obtain a “recurrence relation” for Dk which 

depends on some “initial conditions” DO, DI , . , D,. The expressions for DI, D2,. . , D, 

are obtained from Dk by setting DP = (D for p < 0. In the next section, we show how 

these relations can be translated into actual recurrence relations for generating functions. 

When we examine a scheme R having privileged access to the main diagonal, we 

have to consider how a path behaves when it touches the diagonal, because it is not 

like the other points in Z2. The sets Dk and G, become more specialized and should 

be supported by some auxiliary sets, which we call Ek and G,“. These sets coincide 

with the previous one when R does not have privileged access to the main diagonal: 

l Dk is the set of R-paths that start from the origin (x0, yo) = (0,O) and arrive at a 

point (XF, yF) having XF - yF = k. More in general, by translation, Dk also denotes 
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the set of R-paths starting from (xa,_va) on the main diagonal and having the same 

characteristics as the previous ones. 

El, is the set of R-paths that start from a point (.xo,yo) not belonging to the main 

diagonal, arrive at a point (XF, ye) having (XF - ye) - (.ql - ~0) = k, and never go 

above the diagonal x - y = xa - ya. 

G,? (S 3 0) is the set of R-paths that start from a point (x0, ya) having x0 -- y. = k > 0 

(i.e., a point that does not belong to the main diagonal), arrive at the point (xp, J’/; ) 

having _YF - ye = k - s > 0, and never go above the diagonal x - y = XF - ye. These 

paths climb s units towards the main diagonal without ever going “too high”. 

G? (~20) is the set of R-paths that start from a point (xa,yo) having xg ~ J’() =.Y 

and arrive at a point (XF,JJF) belonging to the main diagonal, without ever going 

above that diagonal. 

The following results are stated without proof but the reasoning based on the first 

and last passage decompositions is analogous to the one previously discussed. 

Lemma 2.4. Given the scheme R = (RA, RA ), the set G, of the R-puths that sturt,fj.otn 

u point (xg, y(j) not belonging to the muin diagonal, arrive ut the point (xF, .L!F ) hozing 

XF - ye =x0 - y() - s # 0 and never go uhove the diugonul x - y = xp- - y,C. is: Go = Et,, 

und ,fiw s > 0 

For paths arriving on the main diagonal we should also consider the following sets 

of steps: 

S+{(ii.iS’,ti)~R~ /S ~ S’=,j}. 

For ,j > 0, we should have Sf = 8 and when the scheme has unprivileged access to the 

main diagonal, .S,q = Sj, Vj GO. 

Lemma 2.5. Given the scheme R=(RA.RA), the set Gg of the R-puths thut sturt 

,fkom u point (xo,yo) having x0 - yo =s and arrive ut u point (xF, yF) on tile muin 

diugonul, is, G,? = DO and for s > 0 

E,S_&-, 
EzS-3 G,“- , 

G;1 :I= E&G,;_, 
E,,S?,G;‘-2 

E,S_3G$, 
3 

EoS?,G,-, 

Lemma 2.6. Given the scheme R = (RA, RA), the set E. of the R-paths thut sturt ,fLom 

u point (xo,yo) not belonging to the main diugonul, urrive ut the point (xF,xp) on 

the diugonul .xF - yF =x0 - yo and never go above this diugonul, is 

Eo::=r:ISoEo/S,G, /SIG21 ... 
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Analogously, the set Do of the R-paths thut sturt from the origin und end on the 

main diugonal (,cithout ever going uboce it) is 

Lemma 2.7. Given a scheme R = (RA,R~), the set Ek of the R-paths that start from 

u point (x0, yo) not belonging to the main diugonul, arrive at the point (x,c, yF) having 

xF - yF =x0 - yo + k and never go ubove the diagonul x - y =x0 - yo, is 

Ek-3&Eo 

EL- ::= Ek-,S,Eo Ek-2s2Eo EkP2S3G, . 
&-I&GI 

E~;--I&G 

Theorem 2.8. Given a scheme R = (RA, Ra), the set Dk of the R-paths that start from 

the origin (x0, yo) = (O,O), arrive at the point (XF, yF), und ulwtys stay on, or below, 

the main diugonul, is 

&-3Wo 
Dk ::=Dx--ISIEO Dk_,S2G, 

Dk-2S2Eo Dk_2S3G, . 

Dx-I&G 

Although the definition of Ek is similar to Dk’s their use is quite different because only 

l?k is needed to obtain El, E2,. . . , E,.. As in the previous model, the G,‘s and G$‘s can 

be eliminated and what remains is the “recurrence” for Dk, which is defined in terms 

of Dx_,‘s with k’<k and the initial conditions Do,DI,...,D,.,Eo,E,,...,E,. In the next 

section, we go on to treat generating functions’ actual recurrence relations and initial 

conditions. 

3. Generating functions and algorithms 

The theorems and lemmas illustrated in the previous section can now be used to 

generate the grammar which recursively defines the set of paths for a given model 

R = (RA, Ra). This scheme includes also paths not having privileged access to the main 

diagonal and so we only study it from now on. The grammar’s terminal symbols are R’s 

steps and the symbols Dk and S,, D,,E,,, G,, G,” (where s d max{ 16 - 6’ / in R’s steps}) 

are its non-terminal symbols. The symbols Dk and D,, ES are the grammar’s most 

important terms and their definition allows us to determine the recurrence relations for 

the paths generated by R. By Schiitzenberger’s methodology, we are able to translate 

the grammar into a set of recursive functional expressions which we derive generating 

functions Dk(r), k E N from. Since for every k the set of steps involved in Dk’S 

definition is finite, every Dk is actually a context-free language and, according to a 

well-known result [4, 5, lo], the corresponding generating function is algebraic (see 

also [3]). 



Let us now illustrate the algorithm with a simple but non-trivial example: RA = { (0, 1, 

bluck), (l,O,hlack), (3,l,black)} and Rl= ((0, l,bla&)}, i.e., a scheme not having 

privileged access to the main diagonal. From now on, we ignore the latter property in 

order to describe the various steps of the generating algorithm more clearly. 

(1) We begin by determining the sets S, and S; and we have 

SI = { ( I, 0, black)} = {u}, s_, =s?, = {(0,1,h/ack)} = {h}, 

s2 = {(3,l,black)} = {c}, 

we denote the three steps by a, 6, c’ to simplify our notations. 

(2) We now determine the productions for D,: and Da by using Lemma 2.6 and 

Theorem 2.8. In our example, we have 

Do ::=iZ 1 uGf 1 CC?, 

Dk ::=&,a& 1 Dh_2c& ( Dx_,cG,. 

This shows that the recurrence relation has order 2 and we need to determine 

the expressions for Ea, Gt, Gf, G; (as previously observed, in the present case 

Gt = Gj?‘, Gz = G; and Eo = Do but we ignore these identities for clarity’s sake). 

(3) We determine the productions for Eo by Lemma 2.6: 

EC) = i: 1 CIG~ / cG~, 

this means that we also have to determine G?. 

(4) We determine the productions for G,Y and G,: (s as required); in our example we 

have s = 1,2 and we find 

Go = 61, G; = D,,, 

GI = EohGo, G;1= E”bG$, 

G2 = EohG,. Gf = EobGt 

(5) We go on to determine the productions for E,, G,, G,$ recursively according to 

what is generated in the previous step. Since s is limited by the maximal difference 

16 - ii’1 in R’s steps, this process eventually ends. In our example, this step is not 

required. 

(6) At this point, the grammar is complete except for the initial conditions regarding 

DA’s recurrence. Since we need as many initial conditions as the order Y of the 

recurrence, and we already know Do, we should set k to the values from 1 to 

v ~ I. However, Dl,. , Dr_l can be found by specializing Dk, this is done by 

setting D, = 0. Vj <O. In our example, r = 2 and we immediately find 

D, ::= DoaEo 1 DocG,. 

Since we use the productions for Dk, no new non-terminal symbol is generated. 

Our grammar is now complete and can be simplified by standard methods. The final 
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set of productions is 

Dk ::=Dk_laEo 1 Dk_-zc& 1 Dk_-lcEobEo, 

DI ::= DoaEo 1 DocEobEo, 

Do ::= E 1 aEobDo 1 cEobEobD0, 

EO ::= E 1 aEobEo I cEobEobE0. 

We apply Schtitzenberger’s method to obtain the recurrence relations from the grammar. 

This method consists in a homomorphism @ from the grammar to the formal power 

series’ algebra, defined in the following way: first the symbols ::= and 1 are transformed 

into = and t; then 

@(A) =A(t) 

for every non-terminal A character; 

@((6, d’, K)) = t6 

if (6,6’, K) is a terminal character, and Q(E) = 1. We obtain the following set of func- 

tional relations: 

Dk(t) = t&(t)Dk-l(t) + t3&(t)*Dk-,(t) + t3Eo(t)Dk-2(t>, 

Dl(t) = tEo(t)Do(t> + t3EoW2DoW, 
Do(t) = 1 + tEo(t)Do(t) + t3Eo(t)*Do(t), 

l&(t) = 1 + t&(t)* + t3E,,(Q3. 

Finally, we obtain EO = DO, and, consequently, Eo(t) = Do(t). The final solution is there- 

fore 

D/c(t) = t&(t)Dk-,(t) + t3Do(t)2Dk-,(t> + t3&(t)Dk-2(t), 

Do(t) = 1 + to,,(t)* + t3Do(t)3, 

Dl(t) = tDo(t)* + t3Do(Q3. 

In Section 4, we make a detailed description of this recurrence and report the actual 

values of the dn,k elements in the resulting lower triangular array {dn,k}n,kEN, by 

counting the number of lattice paths from the origin to the point (n, n - k). 

We wish to point out that the bivariate generating function D(~,w) for the com- 

plete set of underdiagonal R-paths can be easily obtained from the previous recurrence 

relation. The function D(t, w) depends on Do(t), which we denote by d(t) for the 

simplicity’s sake. It is worth noting that d(t) can be found explicitly by solving the 

third-degree equation that defines it. The reader can use either Maple or Mathematics 

to solve the problem. By shifting the recurrence relation, we have 

Dk+z(t) = td(t)Dk+i(t) + t3d(t)2Dk+i(t) + t3d(t)&(t), 
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since this recurrence holds for every k E N. we can go on to the generating function 

D( t, IV): 

and this equation can be easily solved as follows: 

D( t, W) = 
d(t)( 1 + tw + twd(t)) 

I - twd(t) - t3wd(t)2 - tWd(t)‘ 

We conclude this section with some considerations on a particular class of schemes 

in our model. These schemes have been widely treated in current literature (see [9]). 

They only contain the steps in S, having j < 1, and we assume that they always have at 

least one step in Sr We call them Raney or Riordan schemes and they are characterized 

by two generating functions (d(t), h(t)), as we are now going to see. 

Let us begin with the following definition: given a lattice path scheme R = (RA, 

Rh), R’s associated scheme is RH = (Ra, 0), which has the same set RA of steps arriving 

at a point not belonging to the main diagonal and an empty set of templates for the steps 

that reach the main diagonal. By convention, the set of paths reaching the diagonal 

x - y = k for the associated scheme are denoted by Hk, instead of &. Since RN 

does not contain any template for the steps that touch the main diagonal, no RH-path 

touches the main diagonal other than at its starting point (x0, yo) = (0,O). Otherwise, the 

RH-paths coincide with the R-paths and, as a result, the RH-paths are called the R- 

puths uvoidinq the main diugonul. Set Ho is only made up of the empty path and so 

we are interested in the Hk’s for k >O. There is an important relationship between H,: 

and Dx, given by the following: 

Theorem 3.1. Gioen a luttice path problem R = (RA, RA) and its ussociclted scheme 

R” = (RA, Q)), then ,for every k >O I~‘P huue 

Dk = DoHk 

Proof. Let us consider an R-path ending at a point (.x~, yF) on the diagonal x-y = k # 0 

and let (xp,_~p) be the last point which the path touches the main diagonal at. The 

path is divided into two parts: 

(i) the path from the origin to (xp,yp): it can be (xp,yp) =(O,O), but, at any rate, it 

is a path in Do; 

(ii) the path from (xp, JJP) to (x,F, y,~): it is empty if (xp, yp) = (x,~, y,~) or, by definition, 

it avoids the main diagonal; at any rate, it is a path in Hk. 

Since this decomposition is unique, the theorem follows from it. 0 

As far as Raney-Riordan schemes are concerned, we prove the following: 

Theorem 3.2. Let R = (RA, Ra) be u Riordan scheme and let RH = (RA, 0) be its NS- 

sociuted scheme. If d(t) is the generating Junction qf’ R’s muin diugonal and h(t) is 
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the genevuting function of the diugonul x - y = 1 in RH, then the generating function 

dk(t) qf the diagonal x - y = k is 

dk(t) = d(t)(th(t))“. (1) 

Proof. It is worth noting that, in general, if R and R’ are two schemes having RA = Ra, 

then Eo = Eh because they do not depend on Ra and Rk, as the results in the previous 

section show. This is particularly true for an R scheme and its RH associated scheme. 

By Theorem 2.8, we now have Dk = Dk-,SIEO for a Riordan scheme, and, accord- 

ing to the preceding remarks, Hk = Hk_ISI Eo. For k = 1, the latter relation reduces to 

HI = SI Eo, and we therefore have Dk = Dk_ IHI. The generating function is equivalent 

to Dk(t)=Dk-,(t)tH,(t), which can be iterated to give Dk(t)=Do(t)(tHl(t))k. If we 

set Do(t) =d(t) and HI(~) = h(t), we immediately obtain the result desired. 0 

This theorem provides us with a simple way for dealing with Riordan schemes: we 

only need to compute d(t) = Do(t) with the original scheme R = (R*,Ra) and then 

compute h(t) = H,(t) by the associated scheme RH = (RA,~) in order to describe the 

whole array {dn,k}n,kEN. In current literature, any array characterized by two formal 

power series (d(t), h(t)) such that the generating function for column k given by Eq. (1) 

is called a Riordan array (see [ 111). Many path properties in a Raney-Riordan scheme 

can be studied by means of Riordan array theory, and the reader is referred to [8] for 

further information on the subject. 

There is another way of computing the function h(t) without having to deal with 

the associated scheme explicitly: 

Lemma 3.3. Let R = (RA, RA) he a Riordan scheme and let RH = (RA, 8) be its usso- 

ciuted scheme; then we hazie 

HI = S, Eo. 

Proof. By applying Theorem 2.8 to the associated scheme RH, we obtain 

Since HO = {E}, Sj = 0 Vj > 1 the lemma follows. 0 

When Si only contains a finite number of step templates, S,(t) is a polynomial 

and we have h(t) = Sl(t)Eo(t). When the scheme has unprivileged access to the main 

diagonal, then h(t)=Sl(t)d(t) and, in particular, if Si only contains the step template 

(l,O,black), then h(t) = d(t). A Riordan array having d(t) = h(t) is said to be a uenewd 

array and its elements are computed by the following simplified formula: 

dn,k = [t”]d(t)(th(t))” = [tn-k]d(t)k+‘. 



4. The analysis of a simple case 

We conclude by giving a closer look at a particular example. that is the scheme 

R = { ( I, 0, hl~lck), (0, 1, black), (3, 1, black)} having unprivileged access to the main 

diagonal. This case can also be studied by Gessel’s method [3]. The same functional 

relation for Do can be easily found for the paths that go back to the main diagonal. As 

far as the other kinds of paths are concerned, our approach obtains recurrence relations 

which may be better suited for asymptotic analysis. On the other hand, some explicit 

bivariate generating functions can also be derived. 

The formulas found in the previous section can be analyzed further to obtain some 

more precise information on the number of paths generated by this simple scheme. Let 

us begin by d,, = [P]n(t), the number of paths arriving at the point (n.17) on the main 

diagonal. If we set ~3 = y(t) = td(t), the formula for d(t) can be written as 

Since ~(0) = 0, we can apply the Lagrange inversion formula and obtain an explicit 

expression for u’,, = [t”+‘]Jz(t): 

From the former formula, we can derive the asymptotic expression for d,, by using 

the method of implicit functions (see [7]) as described in Sprugnoli and Verri [12]. 

However, we obtain the same expression by using the following version of the same 

method. This, in turn, can be directly applied to some other cases of lattice path 

enumeration. Let .P(t, d) = 1 -d+td2+13d3 be the functional equation defining CI = u’( t ): 

the dominating singularities of d(t) (i.e., the singularities having the smallest modulus) 

are among the solutions of the following system: 

F(f,d) = 1 - d + td2 + t3d3 = 0, 

.F<;(t, d) = - I + 2td + 3t3d2 = 0. 

It is quite simple to obtain the solution (Y,s) we are interested in: 

I’= ;4==0.2270833462. 

.s= (i,,+ ;) d=- ;(A+ 1)=1.917448161. 

Since .Yfi:I(~...~) # 0, the function d =d(t) can be developed around its dominating 

singularity: 
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We can now determine the values of ul,a2,a3,. . by feeding this expression into the 

functional equation F(t, d) = 0 and by equating the coefficients to 0. This gives us a 

series of linear equations which can be solved in the variables al, a2, a3,. . . By using 

Maple, we obtain 

al= - ($a+:) JiZI+g~j+i= -2.131200536, 

a4 = ;fi+ ;) J&K- ;ti- $2.152649536, 

a5= - &!!?a+ !!$) JE. ;a+ $= -2.175658428 

and, therefore, we have the following asymptotic approximation: 

4- (01 (1f)+a3(3f)+a5(5f)) (-i)“, 
The main term of this expression can now be found by applying the well-known 

asymptotic formula for (‘f): 

Let us now go on to dn,k = [tn]dk(t), where dk(t) iS given by the recurrence in 

the formulas used in Example 4.2. The initial conditions are do(t) = d(t) and d,(t) = 

tdo(t)(do(t) + do(t)2t2) = d(t) - 1, by the formula defining do(t). Therefore 

dz(t) = t3d(t)2 + td,(t)h(t) = t3d(t)2 + d(t) - 2 + d(t)-‘. 

This expression can be simplified by using the initial relation in the form of t3d(t)* = 

1 - td(t) - d(t)-‘: 

dz(t)=(l - t)d(t) - 1. 

The quantity d(t)-’ has disappeared here, and we can prove the following result: 

Lemma 4.1. For every value m E N, we have 

dm(t) = pm(tMt) - qm(t)r 

where pm(t) and qm(t) ure polynomials, such that qm(t) = pm_1 (t), pa(t) = 1, qo(t) = 0. 
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Proof. The three functions do(t),di(t) and dz(t) correspond to the theorem’s initial 

cases and they allow us to proceed by mathematical induction. 

d,(t) = d,,,_,(l)( 1 - d(t)-‘) + t3dm-z(t)d(t) 

= (P+I(t)d(t) - qm-l(f))(l -d(t)-‘) + t3@)(Pr?-2(Mt) - qm-Z(t)) 

= p*-l(tMf) - pm-l(t) ~ q,,-l(f) +qn4~)4W 

+ t3pm_2(t)d(t)2 - t3d(t)q,-2(t) 

= pnl-l(t)4f) - pm-l(t) - qn,-l(f) +qm4(w(w' + pm-2(t) 

-jpt?-2(j)4t) - pm-z(W(W' - ~3qdW(~) 

= (J&?-l(t) ~ t&?-z(t) - ~34,1-2cmw - Pnz-l(t) - qm-l(j) 

+ pm-z(t) + (4+1(t) - pw2(mwY. 

By the induction hypothesis, q,,_l(t) = p,,_2(t) and, therefore, d(t)-’ disappears. 

We also obtain 

qm(t)= pr?-l(l) +qm-l(t) - pm--Z(t)= pm-l(j) 

which proves the final relation. 0 

It is obvious that the polynomials ym(t) are simple corrections which reduce the 

initial part of the generating functions d,(t) to 0. As a result, the asymptotic value 

of d ,,.k = [t”]dk(t) only depends on the product pk(t)d(t) and the polynomial pi(t) is 

definitely analytic at the dominating singularity t = r of d(t). By a well-known result 

(see [ 1, Theorem 2]), it follows that 

dn,l, N pr(r)[j"ld(t). 

Since we already know the asymptotic value of [t”]d(t), we only have to compute 

PA(U) for every k E N. This is not difficult and 

Lemma 4.2. The closed form for the value of 

jQ(r) =A(k + l)sC” + BY” + c+. 

we can find a closed form for pk( r ): 

pk(t) computed uf t = r is 

Lvhere s has the sume value as before, s1 = - (1 + 2sr2)/r2 M - 23.22720118 untl 

A,B.C ure the three constunts 

A= 
I + 2sr’ 
~ z 0.9237432928, B = 

sr2( 1 + 2sr2) 
3sr2 zz I 0.07044162 + 1 + 6sr2 9s2r4 17, + 

c= 
s’r4 

% 
1 

0.0058 150853. 
+ 6sr2 + 9s2r4 

Proof. From the last step in the derivation of d,(t) in Lemma 4.1 'S proof, we have 

JQ(t)= pk--l(t) - @k-Z(t)- t3q/;-2(t)= f&l(f) - Q&2(f) - j3PX-3(f). 
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we therefore obtain the recurrence 

J%(Y) = /%--l(r) - ~Pk--z(f”) ~ r’p/,-3(4, 

whose initial conditions are pa(r) = 1, p](r) = 1 and pz(r) = 1 - Y. If we write the 

recurrence for k + 3 and examine the generating function C!!{pk(~)} =P(t), we have 

p!s+3(r) = Pk+Z(Y) - rPk+l(r) - ~3Pkw, 

P(t) - 1 - t - (1 - r)t2 P(t) - 1 - t P(t) - 1 

t3 t2 
--r- 

t 
- GP(t), 

P(t) = 
1 

1 -t+rt”+u3t3’ 

The denominator’s roots can be easily found: they are tl = t2 =s and t3 = - (1 

+ 2sr2)/r2 = sl . A partial fraction expansion now gives us 

A 
p(t) = (1 _ +>2 + 

B C 
-+-, 
1 - t/s 1 - t/s, 

and we can immediately derive the closed form from it. 0 

Thanks to all the previous results, we can conclude with the asymptotic formula for 

the generic element dn,k, i.e., the number of lattice paths arriving at the point (n,n-k): 

Theorem 4.3. The asymptotic value of dn,k = [t’]dk(t) is 

Ak 1 
d,,i, c.- ((A(k + 1) + B)s+ + C.y,k)d,, N ~__ 

2nfisk-‘rn’ 

Proof. The proof is immediate from the two lemmas above and from the previously- 

mentioned theorem by Bender. It is not difficult (but very laborious) to find out that 

this formula is a true approximation when k = o(&). 17 
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