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Abstract In this paper, we propose a novel algorithm to detect the suspicious regions on digital

mammograms that based on the Fisher information measure. The proposed algorithm is tested dif-

ferent types and categories of mammograms (fatty, fatty-glandular and dense glandular) within

mini-MIAS database (Mammogram Image Analysis Society database (UK)). The proposed method

is compared with a different segmentation based information theoretical methods to demonstrate

their effectiveness. The experimental results on mammography images showed the effectiveness in

the detection of suspicious regions. This study can be a part of developing a computer-aided deci-

sion (CAD) system for early detection of breast cancer.

MATHEMATICS SUBJECT CLASSIFICATION: 60F05, 62F15, 62E20, 62G30
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1. Introduction

Breast cancer is the most common malignancy in women and it

has been proved that an early diagnosis of the disease can help
strongly to enhance the expectancy of survival [1]. Understand-
ing the nature of data and the information in mammography
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images is very important for developing a model that helps to
diagnosis early the breast cancer. The presence of a breast mass

is an alert sign, but it does not always indicate a malignant can-
cer. Fine needle aspiration (FNA) is an outpatient procedure
that involves using a small-gauge needle to extract fluid directly
from a breast mass [2]. But FNA of breast masses is a cost-

effective.
In breast mammography images, bright regions represent

cancer. In this paper, we propose a new method based on

the Fisher information measurer to detect the bright regions
(suspicion region) in the mammography images.

The Fisher Information measure (FIM) is an important

concept in statistical estimation theory and information the-
ory. To our knowledge; FIM have been not seen for the mam-
mogram segmentation. The using of FIM for the segmentation
gyptian Mathematical Society. Open access under CC BY-NC-ND license.
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problem coming to formulate a novel objective function based
on FIM. The proposed method determines threshold that is
maximize the measure of separability of the resultant classes

in gray levels.
Medical images are more sensitive as compared to ordinary

images. Suspicious regions of medical images contain clinical

information. Thus, correct segmentation of suspicious regions
are very important to prevent false positive and false negative
readings of mammogram. Suspicious regions are extracted

from the background using a threshold value in the mammo-
gram. Regions having gray levels below the threshold are
assigned as background and regions having gray levels above
the threshold are assigned as suspicious regions. Thus, suspi-

cious regions correspond to the white regions in the output
image. The mammogram image consists of three classes. The
mammogram segmentation helps the specialists to find suspi-

cious areas, and to separate the suspicious areas from the
background [3]. The segmentation of mammogram is an essen-
tial and important step that determines the sensitivity of the

computer aided decision (CAD) diagnoses system.
Thresholding methods can be classified into two groups,

namely, global methods and local methods [4]. A global thres-

holding techniques are based on the global information, such
as the gray level histogram of the image. Local threshold tech-
niques partition the given image into a number of sub images
and threshold value is determined locally. Main advantages of

global thresholding are easy to implement and are computa-
tionally less involved. Many techniques of the global thres-
holding have been developed over the years to segment

images [5–7]. Many segmentation techniques originated from
the information theory such as Shannon entropy [8], Tsallis
entropy, and its improvement [9,10]. The principle of entropy

is to use uncertainty as a measure for describing the informa-
tion that is contained in a source. Maximum information is
achieved when no a prior knowledge is available, in which case

the result is maximum uncertainty. These techniques have been
used to segment the suspicion region in mammograms [11]. A
quantity that is related to the Shannon entropy is the FIM [12].
This quantity has two basic roles to play in theory. First, it is a

fundamental principle of the statistical field of study called
parameter estimation. Second, it is a measure of the state of
disorder of a system or phenomenon.

In this paper, we propose a new thresholding techniques
based on FIM. It determines a suitable threshold values for
segmentation mammogram, which helps to detect the suspi-

cious regions. We apply the proposed method on several differ-
ent kinds of standard test images (fatty, fatty glandular and
dense-glandular) of mini-MIAS database (Mammogram Im-
age Analysis Society database (UK)) to demonstrate their

effectiveness and usefulness.
The rest of the paper is organized as follow: Section 2

describes the basic concepts of FIM and its implementation,

with discussing the basic idea for segmentation of the suspi-
cious regions of mammograms based on FIM. Section 3
discuses the experimental results and performance measure.

Finally the conclusion presents in Section 4.

2. Fisher information measure and information theory

In this section, the FIM concept and Shannon entropy mea-
sure are reviewed. A new thresholding objective function for
the mammogram images and the corresponding algorithm
are then proposed.

2.1. Fisher information measure

The concept of the FIMwas introduced by Fisher [13]. The FIM
has a great utility in physics as well. FIM essentially describes

the amount of information data provide about an unknown
parameter. It has applications both in finding the variance of
an estimator through the Cramer–Rao inequality and in the

asymptotic behavior of maximum likelihood estimates [13].
Let X be a random variable, and let p(x;h) be the probability
density (mass) function for some model of the data that have

the parameter h. The FIM is given by the following [13].

IðhÞ ¼ �E d2 log pðx; hÞ
dh2

� �
¼ E

d log pðx; hÞ
dh

� �2

: ð1Þ

The special case of translation families deserve special men-

tion. These are mono parametric families of distribution of
the form p(x � h) which are known up to the shift parameter
h All members of the family possess identical shape, and here

FIM adopts the appearance

IðXÞ ¼
Z

d log pðxÞ
dx

� �2

pðxÞdx ¼ �
Z

d2 log pðxÞ
dx2

pdx: ð2Þ

This form of Fisher information measure constitute the main

ingredient of a powerful variational principal devised by Frie-
den [12], that gives rise to a substantial portion of the physics.
In the consideration, that follow we shall restrict ourselves to

the form (2) of FIM.

2.2. Fisher information measure vs. entropy

Let X be a physical system that takes on a finite or accountably

infinite number N of values that are characterized by the prob-
ability density pi, i 2 N where pi is the probability of xi and
xi 2 ða; bÞ# R, is assumed to be normalized to unity so thatPN

i¼1pi ¼ 1. In this case, X can be specified by a probability
vector, P = {p1, p2, . . ., pN}. Its distribution over the interval
(a, b) can be studied by using the following complementary

spreading and information-theoretic measures: the FI measure
[12,15] and the Shannon entropy [14].

The principle of maximal entropy (Boltzmann) is frequently
used to indicate the amount of information produced in a cer-

tain source, and is also used to measure the disorder or com-
plexity of a dataset and defined by [14]

HðXÞ ¼ �
X
i

pðxiÞ log pðxiÞ: ð3Þ

A second measure of disorder, beside entropy, exists which is

called Fisher information. The FIM [12,16] of X are defined
by the following.

IðXÞ ¼
X
i

ðpðxiþ1Þ � pðxiÞÞ2

pðxiÞ
; ð4Þ

which follows from a suitable discretization of (2). In analogy

to Eq. (3) for the entropy H. The most obvious difference
between (2) and (3) is the fact that (2) contains a derivative
while (3) does not. As a consequence, extremizing these two

functionals yields fundamentally different equations for the
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probability function P, namely a differential equation for the

Fisher functional I and an algebraic equation for the entropy
functional H. Thus, whereas Shannon entropy is a global
measure of smoothness in p(x), FIM is a local measure. Hence,

when extremized through the variation of p(x), Fisher’s form
gives a differential equation whereas Shannon’s form always
gives directly the same form of solution, an exponential
function [12]. Therefore, if one of the two measures Shannon

entropy (global) or FIM (local) is to be used in a variation
principle in order to derive the physical law p(x) describing a
general scenario, a preference is given to the local measure,

FIM [12,16]. For different applications of FIM and more com-
parisons among the FIM and information-theoretic measures
we refer the reader to the book by Frieden [12].

2.3. Fisher information and information theory mammogram

thresholding

Mammogram consists of three objects namely breast back-

ground, tissue background and suspicious region. Breast
background does not provide any information in diagnosis.
So, breast background can be ignored in mammogram analysis

study. Approximately, more than one-third of a mammogram
is breast background. It could affect the average gray level
value of the breast tissues. Hence, the average gray level value

of the breast tissues is defined as follows by excluding breast
background pixels [17,18]

k ¼ 1

n

XMN

i;j2R
fði; jÞ: ð5Þ

where M and N are dimensions of the mammogram, R is the

region having gray level values greater than 100, n is the num-
ber of pixels in this region and f(i, j) is the gray level value at
the coordinates i and j. Let I denote a gray-scale image with L

gray levels [0, 1, . . ., L]. The number of pixels with gray level i
is denoted by ni and the total number of pixels by
N= n0 + n1 + � � �+ nL. The probability of gray level i ap-

peared in the image is defined as:

pi ¼
ni
N
; pi P 0;

XL
i¼0

pi ¼ 1:

Suppose that the pixels in the image are divided into three clas-
ses A, B and C by a gray level t; A is the set of pixels with levels

[0, 1, . . ., k], B is the set of pixels with levels [k + 1, k + 2, . . .,
t] and the rest of pixels belongs to C; where, A, B and C are
normally correspond to the breast background, tissue back-
ground and suspicious region respectively. We can derive three

probability distributions, one for the breast background,
second for the tissue background and third for the suspicious
region is shown as the following: probability distribution of

breast background:

PA ¼
p1
w1

;
p2
w1

; . . . ;
pk
w1

;

the probability distribution of tissue background:

PB ¼
pkþ1

w2 � w1

;
pkþ2

w2 � w1

; . . . ;
pt

w2 � w1

;

and the probability distribution of suspicious region:

PC ¼
ptþ1

1� w2

;
ptþ2

1� w2

; . . . ;
pL

1� w2

;

where

w1 ¼
Xk
i¼1

pi; w2 ¼
Xt

j¼1
pj;

and t is the threshold value. Then the Shannon entropy [4]
based thresholding selected a threshold t* maximizing the

criterion

t� ¼ max
t
½SBðtÞ þ SCðtÞ�; ð6Þ

where

SBðtÞ ¼
1

w2 � w1

Xt

i¼kþ1
pðxiÞ logðpðxiÞÞ;

and

SCðtÞ ¼
1

1� w2

XL
i¼tþ1

pðxiÞ logðpðxiÞÞ:

The Reny entropy [19] based thresholding selected a threshold
t* maximizing the criterion

t� ¼ max
t
½RBðtÞ þ RCðtÞ�; ð7Þ

where

RBðtÞ ¼
1

ð1� aÞ loge
Xt

i¼kþ1

pðxiÞ
ðw2 � w1Þ

� �a
" #

;

RCðtÞ ¼
1

ð1� aÞ loge
XL
i¼tþ1

pðxiÞ
ð1� w2Þ

� �a
" #

; and a–1; a � 0:

The Kapur entropy based thresholding [4] selected a threshold
t* maximizing the criterion

t� ¼ max
t
½KBðtÞ þ KCðtÞ�; ð8Þ

where

KBðtÞ ¼
1

ðb� aÞ loge
Xt

i¼kþ1

pðxiÞ
w2�w1

� �a

pðxiÞ
1�w2

� �b

2
64

3
75;

KCðtÞ ¼
1

ðb� aÞ loge
XL
i¼tþ1

pðxiÞ
w2�w1

� �a

pðxiÞ
1�w2

� �b

2
64

3
75; and a–b; a � 0; b � 0

Finally Harvrda and Charvat entropy based thresholding [10]
selected a threshold t* maximizing the criterion

t� ¼ max
t
½HCBðtÞ þHCCðtÞ þ ð1� aÞðHCBðtÞ

þHCCðtÞÞ�; ð9Þ

where

HCBðtÞ ¼
1

ð1� aÞ
Xt

i¼kþ1

pðxiÞ
ðw2 � w1Þ

� �a

� 1

" #
;

and

HCCðtÞ ¼
1

ð1� aÞ
XL
i¼tþ1

pðxiÞ
ð1� w2Þ

� �a

� 1

" #
; and a–1; a � 0:

The new method proposes an optimality criterion based on the

FIM. Based on the definition of FIM in Eq. (4), the priori FIM
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of tissue background pixels and the FIM of the suspicious re-

gion pixels can be defined as follows respectively:

FIMBðtÞ ¼
1

w2 � w1

Xt

i¼kþ1

ðpðxiþ1Þ � pðxiÞÞ2

pðxiÞ
;

FIMCðtÞ ¼
1

1� w2

XL
i¼tþ1

ðpðxiþ1Þ � pðxiÞÞ2

pðxiÞ
:

The FIM is parametrically dependent upon the threshold value
t for the foreground and background. We define the FIM with-
in the two classes as the following

FIMðtÞ ¼ ðw2 � w1ÞFIMBðtÞ þ ð1� w2ÞFIMCðtÞ:

We maximize the information measure within the two classes
(the suspicious region and the tissue background). When
FIM(t) is maximized, the luminance level t is considered to
be the optimum threshold value

topt ¼ arg max½FIMðtÞ�: ð10Þ
Figure 1.1 (a) Fatty-glandular mammogram (mdb218) of mini-

MIAS database, (b) its gray level histogram, and (c) segmented

image using FIM.
2.4. Algorithm

The following steps describe the proposed algorithm for image
segmentation:

1. Let max = 0 be the optimal threshold, and let max FIM be the

maximum value of the objective function.

2. For t= 1 to Maximum of gray intensities

3. Compute the function objective value that corresponds to the

gray level t

If FIM(t) > max, Then max = FIM(t), Topt = t. End.

Take Topt as the optimal threshold for segmenting the image.
Figure 1.2 (d) Shannon entropy threshold t= 180, (e) Renyi

entropy threshold t= 191 with a = 0.7, (f) Havrda & Charvat

entropy threshold t= 194 with a = 0.2, and (g) Kapur entropy

threshold t= 191.
3. Experimental results and discussion

Experiments are conducted on images of mini-MIAS database

(Mammogram Image Analysis Society database (UK)), to
demonstrate the effectiveness and usefulness of the proposed
method. Several different kinds of standard test images (fatty,
fatty-glandular and dense glandular) of mini-MIAS database

are segmented. We pick randomly more than one mammo-
gram of each kind. The results yield by the proposed method
compared with the most commonly information theoretic

methods used in literature. Namely Shannon entropy, Renyi
entropy, Havrda & Charvat and Kapur entropy described by
Eqs. (6)–(9). The mammograms with their gray level histo-

grams and the segmented images obtained by using the pro-
posed method, that based on FIM are displayed in Figs. 1.1,
2.1 and 3.1; while The results yield by Renyi entropy, Havrda
& Charvat and Kapur entropy methods are displayed in

Figs. 1.2, 2.2 and 3.2. In order to objectively assess the
proposed method, the uniformity measure, is used for perfor-
mance evaluation.

The quality of the results is compared quantitatively by
using the uniformity measure besides the visual perception.
From Figs. 1.1, 2.1 and 3.1, it can easily observe that the

suspicion region based on the proposed method is well seg-
mented. In order to avoid human interpretation, we use the
measure of uniformity [20,21], for performance evaluation.
The uniformity measure is generally used to describe region
homogeneity in an image. For a given threshold t, it is defined
by

UðtÞ ¼ 1� r2
BðtÞ þ r2

FðtÞ
C

; ð11Þ

where B and F represent background and foreground regions,
f(x, y) is the grey level of the pixel (x, y)



Figure 2.1 (a) Dense-glandular mammogram (mdb236) of mini-

MIAS database, (b) its gray level histogram, and (c) segmented

image using FIM. Figure 3.1 (a) Fatty mammogram (mdb238) of mini-MIAS

database, (b) its gray level histogram, and (c) segmented image

using FIM.
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Figure 2.2 (d) Shannon entropy threshold t= 186, (e) Renyi

entropy threshold t= 200 with a = 0.7, (f) Havrda & Charvat

entropy threshold t= 201 with a = 0.2, and (g) Kapur entropy

threshold t= 201 with a = 0.5, b = 0.7.

Figure 3.2 (d) Shannon entropy threshold t = 171, (e) Renyi

entropy threshold t= 179 with a = 0.7, (f) Havrda & Charvat

entropy threshold t= 178 with a = 0.2, and (g) Kapur entropy

threshold t= 177 with a = 0.5, b = 0.7.



Table 1 The threshold values for Shannon, Renyi with a = 0.7, Havrda & Charvat with a = 0.2, Kapur with a = 0.5, b = 0.7 and

the proposed method. With the measure of uniformity U(t).

mdb218 mdb236 mdb238 mdb219 mdb222

t U(t) t U(t) t U(t) t U(t) t U(t)

Shannon 180 8.56E�01 186 8.95E�01 171 8.51E�01 185 8.46E�01 186 8.38E�01
Renyi with a = 0.7 191 8.47E�01 200 8.54E�01 179 8.36E�01 194 8.40E�01 193 8.23E�01
Havrda with a 0.2, 194 8.45E�01 201 8.50E�01 178 8.37E�01 198 8.38E�01 194 8.21E�01
Kapur a = 0.5, b = 0.7 193 8.46E�01 201 8.50E�01 177 8.40E�01 198 8.38E�01 194 8.21E�01
ProposedMethod 191 8.47E�01 196 8.68E�01 178 8.37E�01 189 8.43E�01 193 8.23E�01

Table 2 The threshold values for Shannon, Renyi with a = 0.7, Havrda & Charvat with a = 0.2, Kapur with a = 0.5, b = 0.7 and

the proposed method. With the measure of uniformity U(t).

mdb227 mdb240 mdb245 mdb248 mdb253

t U(t) t U(t) t U(t) t U(t) t U(t)

Shannon 184 8.56E�01 198 8.29E�01 177 8.83E�01 177 8.61E�01 191 8.69E�01
Renyi with a = 0.7 193 8.39E�01 210 7.77E�01 198 8.70E�01 192 8.51E�01 203 8.10E�01
Havrda with a 0.2, 194 8.37E�01 210 7.77E�01 200 8.69E�01 193 8.51E�01 205 7.96E�01
Kapur a = 0.5, b = 0.7 194 8.37E�01 210 7.77E�01 199 8.70E�01 194 8.52E�01 205 7.96E�01
ProposedMethod 195 8.36E�01 218 7.48E�01 192 8.73E�01 184 8.55E�01 207 7.82E�01
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C ¼ 1

2
ðfmax � fminÞ2; lt

B ¼
P
ðx;yÞ2Bfðx; yÞ

ntB
;

lt
F ¼

P
ðx;yÞ2Ffðx; yÞ

ntF
;

r2
BðtÞ ¼

1

ntF

X
ðx;yÞ2B

ðfðx; yÞ � lBÞ
2;

r2
FðtÞ ¼

1

ntF

X
ðx;yÞ2F

ðfðx; yÞ � lFÞ
2;

ntB is the number of pixels in background region and ntF is the

number of pixels in foreground region. Maximising U(t) [20] is
equivalent to minimising Vart within-classes, which is also
equivalent to maximizing Vart between-classes and the thresh-

old value produced by Otsu’s method, t is identical to the t that
maximises U(t) in [21]. It should be noted that the values of
U(t) vary with images. However, the normalization constant
C in U(t) is independent of the threshold value t. In this case,

C can be chosen to normalise the values of U(t) to the range of
[0, 1] such that the minimum and maximum of U(t) for each
image were always set to 0 and 1 respectively for comparison.

Using this process, the uniformity values calculated from U(t)
in the following experiments are always in between 0 and 1.

Tables 1 and 2 show that the proposed method gives good

results of segmentation according to the values of U(t)

4. Conclusion and future works

Fisher information is a measure of the state of disorder of a
system or phenomenon; thus, it plays an important role in
terms of physical theory. In this paper, we have developed a

simple but effective method of digital mammograms segmenta-
tion that employs the FIM. The underlying idea of the pro-
posed method is to maximize the FIM of the object and
background classes. The application has been taken on a sev-
eral different kinds of mammogram images (fatty, fatty-glan-
dular and dense-glandular) of mini-MIAS database.

The study shows that the results of FIM to separate suspi-
cious region from the tissue background in mammogram
images are well segmented. The detection of suspicious region

is quite promising. The proposed method can be very useful
for radiologists to find suspicious region in mammogram.
Thus, it will be useful to control the breast cancer. In future

work, various effective features will be extracted from suspi-
cious region of mammogram to characterize suspicious region
as benign or malignant. This study can be a part of developing
a computer aided decision (CAD) system for early detection of

breast cancer.
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