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A Monoid for the Grassmannian Bruhat Order

NANTEL BERGERON† AND FRANK SOTTILE‡

Structure constants for the multiplication of Schubert polynomials by Schur symmetric polynomials
are related to the enumeration of chains in a new partial order onS∞, the Grassmannian Bruhat order.
Here we present a monoidM related to this order. We develop a notion of reduced sequences forM
and show thatM is analogous to the nil-Coxeter monoid for the weak order onS∞.

c© 1999 Academic Press

1. INTRODUCTION

Let S∞ denote the infinite symmetric group consisting of permutations of{1,2, . . .} which
fix all but finitely many numbers. In their approach to the Schubert calculus for flag manifolds,
Lascoux and Schützenberger [7–10] defined Schubert polynomialsSu ∈ Z[x1, x2, . . .], a
homogeneous basis indexed by permutationsu ∈ S∞. By construction, the degree ofSu is
the length,̀ (u), of u. We refer the reader to Ref. [11] for an interesting detailed account of
Schubert polynomials.

It is a famous open problem to understand the multiplicative structure constants for the
Schubert polynomials. From algebraic geometry, the structure constantscwuv defined by the
identity

SuSv =
∑
w∈S∞

cwuvSw

are positive integers, and in some special cases they are the Littlewood–Richardson coefficients.
A combinatorial construction for thecwuv is not known.

It is believed thatcwuv counts the number of chains fromu tow in the Bruhat order which satisfy
conditions imposed byv [2]. In particular, ifv is a Grassmannian permutation with descent
in k, then one can restrict the chains to a suborder: thek-Bruhat order≤k onS∞ [2, 9, 13]. In
Ref. [2], a study of≤k leads to a new partial order� onS∞ which we call theGrassmannian
Bruhat order. This order is ranked and has the property that a nonempty interval[u, w]k
in a k-Bruhat order is isomorphic to the interval[1, wu−1]� in the Grassmannian Bruhat
order (independent ofk). As a special case, every interval in Young’s lattice is an interval in
this Grassmannian Bruhat order. The Grassmannian Bruhat order is by definition linked to the
structure of the flag manifolds considered as a module over the ring of symmetric polynomials,
but this order is combinatorially interesting on its own. The aim of this paper is to present a
monoidM that describes the chain structure of this order.

In Section 3, we sketch the main features of the Grassmannian Bruhat order�but the detailed
background is found in Ref. [2]. We recall here the definition of the order�and its rank function
`u . Forζ ∈ S∞, let up(ζ ) = { j : ζ−1( j ) < j } and letdw(ζ ) = { j : ζ−1( j ) > j }. Set`u(ζ )

to be

|{(i, j ) ∈ up(ζ )× dw(ζ ) : i > j }| − |{(ζ(i ), ζ( j )) ∈ up(ζ )× dw(ζ ) : i > j }|
−|{(ζ(i ), ζ( j )) ∈ up(ζ )×2 : i < j andζ(i ) > ζ( j )}|
−|{(ζ(i ), ζ( j )) ∈ dw(ζ )×2 : i < j andζ(i ) > ζ( j )}|.
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DEFINITION 1.1 (GRASSMANNIAN BRUHAT ORDER ON S∞). η � ζ if and only if

(1) α ≤ η(α) ≤ ζ(α) for α ∈ ζ−1(up(ζ )),
(2) α ≥ η(α) ≥ ζ(α) for α ∈ ζ−1(dw(ζ )),
(3) (η(α) < η(β)⇒ ζ(α) < ζ(β)) for α < β ∈ ζ−1(up(ζ )) or α < β ∈ ζ−1(dw(ζ )).

We consider the monoidM that has a0 and generatorsuαβ indexed by integers 0< α < β,
subject to the relations:

(1) uβγ uγ δuαγ ≡ uβδuαβuβγ , if α < β < γ < δ,

(2) uαγ uγ δuβγ ≡ uβγ uαβuβδ, if α < β < γ < δ,

(3) uαβuγ δ ≡ uγ δuαβ, if β < γ or α < γ < δ < β,

(4) uαγ uβδ ≡ uβδuαγ ≡ 0, if α ≤ β < γ ≤ δ,
(5) uβγ uαβuβγ ≡ uαβuβγ uαβ ≡ 0, if α < β < γ .

(1.1)

The relation betweenM and the order� on S∞ is obtained via a faithful representation of
M as linear operators on the group algebraQS∞. Let (α β) ∈ S∞ be the transposition that
interchangesα andβ. We define the linear operatorûαβ by

ûαβ : QS∞ −→ QS∞,

ζ 7−→
{
(α β)ζ if `u((α β)ζ )) = `u(ζ )+ 1,

0 otherwise.

(1.2)

THEOREM 1.2.

(a) The map̀ u :S∞ → N is well defined bỳ u(ζ ) = `(ζu) − `(u) for any u and k such
that u≤k ζu.

(b) The operatorŝuαβ satisfy the relations (1.1), and a composition of operators is charac-
terized by its value at the identity. That isûα′mβ ′m · · · ûα′1β ′1 = ûαnβn · · · ûα1β1 if and only
if ûα′mβ ′m · · · ûα′1β ′11= ûαnβn · · · ûα1β11.

(c) For x = uαnβn · · ·uα2β2uα1β1 ∈M, the mapx 7→ x̂ = ûαnβn · · · ûα2β2ûα1β1 is a faithful
representation ofM.

(d) The mapM→ S∞ ∪ {0}, well defined byx 7→ x̂1, is a bijection.
(e) The Grassmannian Bruhat order� on S∞ is ranked bỳ u . We haveη � ζ if and

only if there existsx ∈ M such thatζ = x̂η. The order� satisfies the property:
[u, ζu]k ∼= [1, ζ]� whenever u≤k ζu. In particular, [η, ζ ]� ∼= [1, ζη−1]� whenever
η � ζ .

(f) The set Ru(ζ ) = {x̂ : x̂1 = ζ } is in bijection with the set of all maximal chains in
[1, ζ]�.

We call the elements ofRu(ζ ) theu-reduced sequences ofζ . Parts (a) and (e) of Theorem 1.2
were obtained in Section 3.2 of Ref. [2]. We have included them for completeness. In Section
3, we show the remaining parts. In Section 2, we emphasize the parallel between Theorem 1.2
and a similar classical results on the weak order ofS∞ and the nil-Cotexer monoid.

Recall [11] that the Schur polynomialSλ(x1, x2, . . . , xk) = Sv(λ,k) for a unique Grass-
mannian permutationv(λ, k). In Theorem E of Ref. [2], we have shown that ifcwuv(λ,k) 6= 0,

thencwuv(λ,k) depends only onλ andζ = wu−1. We can thus define constantscζλ such that

cwuv(λ,k) = cwu−1

λ wheneveru ≤k w. We have (cf. Proposition 1.1 [2])

|Ru(ζ )| =
∑
λ

f λcζλ, (1.3)
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where f λ is the number of standard Young tableaux of shapeλ. In Section 4 we give a
description of the constantcwuv(λ,k) using elements ofRu(ζ ). This description will be helpful
in some subsequent work [3, 4].

2. ORDERS AND MONOIDS ON S∞

Let `(u) denote the length of a permutationu ∈ S∞. The weak order≤wk on S∞ is the
transitive closure of the following cover relation: foru, w ∈ S∞, we say thatw coversu in the
weak order if̀ (w) = `(u)+ 1 andwu−1 is a simple transposition(α α+1). Maximal chains
from the identity tow ∈ S∞ correspond to reduced sequences forw. The nil-Coxeter monoid
N plays a role [8] in studying reduced sequences. The monoidN has a0 and generatorsui

indexed by integersi > 0, subject to the nil-Coxeter relations:

uαuα+1uα ≡ uα+1uαuα+1,

uαuβ ≡ uβuα, if |α − β| > 1,
uαuα ≡ 0.

(2.1)

There is a faithful representation ofN as linear operators on the group algebraQS∞. For this,
consider the linear map̂uα : QS∞ → QS∞ defined by

ζ 7−→
{
(αα + 1)ζ if `((αα + 1)ζ )= `(ζ )+ 1,
0 otherwise.

The following proposition is a reformulation of well-known results by J. Tits about reduced
sequences of a permutation and the weak order. See Ref. [11] for proofs.

PROPOSITION 2.1.

(a) The map̀ : S∞ → N is well defined.
(b) The operatorŝuα satisfy the relations (2.1), and a composition of operators is char-

acterized by its value at the identity. That isûαn · · · ûα1 = ûβm · · · ûβ1 if and only if
ûαn · · · ûα11= ûβm · · · ûβ11.

(c) For x = uαn · · ·uα2uα1 ∈ N , the mapx 7→ x̂ = ûαn · · · ûα2ûα1 is a faithful representa-
tion ofN .

(d) The mapN → S∞ ∪ {0}, well defined byx 7→ x̂1, is a bijection.
(e) The weak order≤wk onS∞ is ranked bỳ . We have u≤wk w if and only if there exists

x ∈ N such thatw = x̂u. Also[η, ζ ]wk ∼= [1, ζη−1]wk wheneverη ≤wk ζ .
(f) The set R(w) = {x̂ : x̂1 = w} is in bijection with the set of all maximal chains in
[1, w]wk. The elements of R(w) are the reduced sequences ofw.

At this point we note the striking resemblance between Theorem 1.2 and Proposition 2.1.
The proof of Proposition 2.1 relies on the understanding of reduced sequences. For Theorem
1.2, the order� is new and its chains have not been studied previously. We develop the
elementary theory of reduced sequences for�.

We note that not all orders onS∞ have such a simple monoid. In particular, the Bruhat order
≤ onS∞ has no known monoid. Recall thatw coversu in the Bruhat order if̀ (w) = `(u)+1
andwu−1 is a transposition(α β). In fact, very little is known about the problem of chain
enumeration for the Bruhat order. We believe that a monoid for the Bruhat order would not
satisfy conditions as simple as those of Theorem 1.2 and Proposition 2.1.
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The monoid structure for the weak order was a key factor in the following results. Under
the nil-Coxeter–Knuth relations

uαuα+1uα ≡ uα+1uαuα+1,

uβuγ uα ≡ uβuαuγ and uαuγ uβ ≡ uγ uαuβ, if α < β < γ ,

uαuα ≡ 0,

(2.2)

the set of all reduced sequencesR(w) for a permutationw ∈ S∞ is refined into classes, called
Coxeter–Knuth cells, indexed by some semi-standard tableaux. The cardinality of a cell is the
number of standard tableaux of the same shape as the cell’s index [5, 8, 14]. This decomposition
suggests an action of the symmetric group onR(w). The symmetric function corresponding to
such an action is the functionFw introduced by Stanley in Ref. [14]. Equation (1.3) suggests
the possibility of similar structure for the monoidM and relations (1.1).

3. k-BRUHAT ORDERS AND THE MONOIDM

Monk’s rule [11] determines the multiplicative structure of Schubert polynomials:

Su(x1+ x2+ · · · + xk) =
∑

a ≤ k < b
`(u(a b))=`(u)+1

Su(a b).

Successive applications of this give

Su(x1+ x2+ · · · + xk)
n =

∑
w ∈ S∞

`(w)=`(u)+n

γ (u, w, k)Sw,

whereγ (u, w, k) counts the sequences of transpositions(a1 b1), (a2 b2), . . . , (an bn) such
thatw = u(a1 b1)(a2 b2) · · · (an bn) and, for allr , we havear ≤ k < br with

`(u(a1 b1)(a2 b2) · · · (ar−1 br−1)) = `(u(a1 b1)(a2 b2) · · · (ar br ))+ 1.

On the other hand,

(x1+ x2+ · · · + xk)
n =

∑
λ

f λSλ(x1, x2, . . . , xk),

whereSλ(x1, x2, . . . , xk) is the Schur polynomial indexed by a partitionλ of n. There is a
unique Grassmannian permutationv(λ, k) such that the Schubert polynomialSv(λ,k) is equal
to the Schur polynomialSλ(x1, x2, . . . , xk) [11]. Hence

Su(x1+ x2+ · · · + xk)
n =

∑
λ

f λSuSv(λ,k) =
∑
w

(∑
λ

f λcwu v(λ,k)

)
Sw,

and we have ∑
λ

f λcwu v(λ,k) = γ (u, w, k).

This suggests that we should study the partial order defined by the relation:u ≤k w if and
only if γ (u, w, k) > 0. Equivalently, this is the partial order with covering relation given by
the index of summation in Monk’s rule. We call this suborder of the Bruhat order thek-Bruhat
order. We denote by[u, w]k the interval fromu tow in thek-Bruhat order. Henceγ (u, w, k)
is the number of maximal chains in[u, w]k.
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These cover relations give some invariants of thek-Bruhat order. For example, consider the
following maximal chain in the 3-Bruhat order:

(3,1,5,2,6,4)≤3 (3,1,6,2,5,4)≤3 (3,2,6,1,5,4)≤3 (3,5,6,1,2,4).

Here and after, we use a finite list(w(1), w(2), . . . , w(n)) to denote any permutationw ∈
Sn ⊂ S∞. In this example, the first three entries of the permutations do not decrease and the
other entries do not increase. Also, the second and third entries remain in the same relative
order for all permutations in the chain. This leads to a characterization of thek-Bruhat order
based on such invariants.

PROPOSITION 3.1 (THEOREM A OF [2]). For u, w ∈ S∞, u ≤k w if and only if

(1) u(i ) ≤ w(i ) for i ≤ k,
(2) u(i ) ≥ w(i ) for i > k,
(3) (u(i ) < u( j )⇒ w(i ) < w( j )) for i < j ≤ k or k< i < j .

The sufficiency of these conditions follows from the existence of a specific maximal chain
in the interval[u, w]k. We call it the CM-chain of[u, w]k.

DEFINITION 3.2 (CM-CHAIN). For u <k w, the CM-chain of the interval[u, w]k is
recursively defined as follows:

• If `(w) = `(u)+ 1 then the unique chainu <k w is the CM-chain of[u, w]k.
• If `(w) > `(u)+ 1, leta ≤ k < b be the unique integers such that

I u(a) < w(a) andw(a) = max{w(j ) : j ≤ k, u( j ) < w( j )},
II u(b) > u(a) ≥ w(b) andw(b) = min{w( j ) : j > k, u( j ) > u(a) ≥ w( j )}.

Let u1 = u(a b). The CM-chain of[u, w]k is

u = u0 <k u1 <k u2 <k · · · <k un = w,
whereu1 <k u2 <k · · · <k un is the CM-chain of[u1, w]k.

It is not obvious that conditionsI and II define unique integersa ≤ k < b. We refer
the reader to Section 3.1 of Ref. [2] for a complete proof of this fact. The symmetry in the
conditions (1)–(3) of Proposition 3.1 implies the following lemma.

LEMMA 3.3. Let m be any integer such that u, w ∈ Sm. Letω0 denote the longest element
(m,m− 1, . . . ,1) of Sm. Then the map�m : Sm → Sm defined by�m(u) = ω0uω0 is an
order-preserving involution. That is

u ≤k w ⇐⇒ �m(u) ≤m−k �m(w).

Lemma 3.3 suggests the definition of another specific maximal chain in the interval[u, w]k
image of the CM-chain under the map�.

‘ DEFINITION 3.2′ (DCM-CHAIN). The DCM-chain is obtained as in Definition 3.2, replacing
I andII by:

I ′ u(b) > w(b) andw(b) = min{w( j ) : j > k, u( j ) > w( j )},
II ′ u(a) < u(b) ≤ w(a) andw(a) = max{w(j ) : j ≤ k, u( j ) < u(b) ≤ w( j )}.’
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For example, ifu = (2,1,6,4,3,5)andw = (4,5,6,1,2,3), the first step of the procedure
for the CM-chain of[u, w]3 gives us(a, b) = (2,4). The full chain is given below, written
from bottom to top.

(4,5,6,1,2,3) (4,5,6,1,2,3) (4,5,6,1,2,3)
(3,5,6,1,2,4) (4,3,6,1,2,5) (3,5,6,1,2,4)
(2,5,6,1,3,4) (4,1,6,3,2,5) (3,4,6,1,2,5)
(2,4,6,1,3,5) (3,1,6,4,2,5) (2,4,6,1,3,5)
(2,1,6,4,3,5) (2,1,6,4,3,5) (2,1,6,4,3,5)

CM-Chain A Maximal Chain DCM-Chain

Consider a maximal maximal chain of[u, w]k,

u = u0 <k u1 <k u2 <k · · · <k un = w,
whereui+1 = ui (ai bi ). If this chain is the CM-chain, thenw(ai ) > w(aj ), orw(ai ) = w(aj )

andw(bi ) < w(bj ) for all 1 ≤ i < j ≤ n. Our first objective is to generate all the maximal
chains of[u, w]k.

PROPOSITION 3.4 (THEOREM E OF [2]). For u ≤k w and u′ ≤k′ w′, if wu−1=w′(u′)−1,
thenv 7→ vu−1u′ induces[u, w]k ∼= [u′, w′]k′ .

PROPOSITION 3.5 (THEOREM 3.1.5 OF [2]). Letw = ( j1, j2, . . . , jk, . . .) where, to the
right of jk, we put the complement of up(ζ ) in increasing order. We have that[ζ−1w,w]k is
nonempty.

With the above two propositions the function`u becomes clearer. The numberk in Propo-
sition 3.5 is the smallest possible for which[u, w]k is nonempty andw = ζu. The length
difference`(w) − `(u) is the same for all nonempty[u, w]k such thatw = ζu. With this in
mind, we can see that̀u(ζ ) = `(w) − `(u) for any nonempty[u, w]k such thatw = ζu.
Using Propositions 3.4 and 3.5, we see thatη � ζ if and only if there existsu andk such
that u ≤k ηu ≤k ζu. It follows from the definition that the order� is ranked bỳ u and
[1, ζη−1]� ∼= [η, ζ ]� via the mapξ 7→ ξη.

The operatorŝuαβ in (1.2) are defined so thatûαβη = ζ if and only if ζ coversη in �.
In particular, nonzero compositionsx̂ = ûαnβn · · · ûα2β2ûα1β1 such thatx̂η = ζ correspond
bijectively to maximal chains in[η, ζ ]�:

η � ûα1β1η � ûα2β2ûα1β1η � · · · � x̂η = ζ
We note that the isomorphism[1, ζη−1]� ∼= [η, ζ ]� implies

x̂η = ζ ⇐⇒ x̂1= ζη−1. (3.1)

Hence the operator̂x is completely defined by its value at 1.
The isomorphism[1, wu−1]� ∼= [u, w]k given byη 7→ ηu, induces an isomorphism on

chains. Given a maximal chain

u = u0 <k u1 <k u2 <k · · · <k un = w (3.2)

of [u, w]k, we adopt the following conventions.
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(3,5,1,2,4) (4,3,1,2,5)

(2,4,1,3,5) (3,1,4,2,5)

(4,5,1,2,3)

(4,1,2,3,5)

(2,1,4,3,5)

(3,4,1,2,5) (4,1,3,2,5) (4,2,1,3,5)(2,5,1,3,4)

FIGURE 1. The interval[(2,1,4,3,5), (4,5,1,2,3)]2.

• Let ai ≤ k < bi be such thatui+1 = ui (ai bi ).
• Let αi = ui−1(ai ) andβi = ui−1(bi ). Henceui = (αi βi )ui−1.

Under the isomorphism above, this defines a unique (nonzero) composition

x̂ = ûαnβn · · · ûα2β2ûα1β1 (3.3)

such thatwu−1 = x̂1. Conversely, given a nonzero composition as in (3.3) such that
wu−1 = x̂1, we define a unique maximal chain as in (3.2) whereui = (ûαi βi · · · ûα1β11)u.
This correspondence is used to encode maximal chains for the rest of the paper. Via this
identification, we will refer to a nonzero compositionx̂ such that̂x1 = wu−1 as a maximal
chain of[u, w]k.

In the next theorem we will show that every maximal chain of an interval is obtained from
the CM-chain via the relation (1.1). For example, letζ = (5,4,2,1,3). Proposition 3.5
gives u = (2,1,4,3,5) ≤2 (4,5,1,2,3) = ζu. From Definition 3.2, the CM-chain is
û34û23û45û14. Now if we apply the relations (1)–(3) of (1.1) to the CM-chain we obtain:

û34û23û45û14 ≡ û34û45û23û14 ≡ û34û45û14û23 ≡ û35û13û34û23 ≡ û35û23û12û24.

These are all the maximal chains of the interval[u, w]k as depicted in Figure 1. The first two
equivalences are instances of the relation (3) of (1.1), the last two are instances of relations (1)
and (2), respectively. The second chain is the DCM-chain.

THEOREM 3.6. If u ≤k w, then any two maximal chains in[u, w]k are connected by a
series of relations (1)–(3) of (1.1). Moreover, it is never possible to apply any of the relations
(4) or (5) of (1.1) to a maximal chain.

PROOF. We first show that any of the relations (1)–(3) of (1.1) that can be applied to a
maximal chain

x̂ = ûαnβn · · · ûα2β2ûα1β1 (3.4)

in [u, w]k results in another maximal chain. Moreover, the relations (4) and (5) can never be
applied to this chain. Given the maximal chain (3.4), letui = (ûαi βi · · · ûα1β11)u be as before,
for 0≤ i ≤ n. Then asui−1 ≤k ui is a cover,
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(i) ui = (αi βi )ui−1 = ui−1(ai bi ) with ai ≤ k < bi .
(ii) If αi < γ < βi , thenu−1

i−1(γ ) < ai or bi < u−1
i−1(γ ).

Consider applying the relations (1.1) to a segment of length two in the chain (3.4). We
may assume that the segment isûα2β2ûα1β1. Suppose{α1, β1} ∩ {α2, β2} = ∅, and assume
α1 < α2, as the other case is symmetric. There are three possible relative orders for the
numbersα1, β1, α2 andβ2. We consider each in turn. Ifα1 < α2 < β1 < β2, the situation in
relation (4) with strict inequalities, then condition (ii) fori = 1 impliesa2 = u−1

0 (α2) < a1,
and fori = 2 impliesa1 = u−1

1 (β1) < a2, a contradiction. Now supposeα1 < β1 < α2 < β2
or α1 < α2 < β2 < β1. An example of each case is found as a square in Figure 1. Then
(i) and (ii) impose no additional conditions ona1,a2, b1 and b2, so u0 ≤k u0(a2 b2) ≤k

u0(a2 b2)(a1 b1) = u2.
Suppose one of the relations (1) or (2) of (1.1) applies to a segment of length three. Again an

example of each case is found as a hexagon in Figure 1. Both arguments are similar, so suppose
that (1) applies. We haveα < β < γ < δ and the segment iŝuβγ ûγ δûαγ . By condition (ii),
the numbersα, β, γ , andδ appear inu in one of the following two orders

(. . . , β, . . . , α, . . . , γ, . . . , δ, . . .) or (. . . , β, . . . , α, . . . , δ, . . . , γ, . . .).

The argument in both case are similar. In the first case, the chain is

(. . . , γ, . . . , δ, . . . , α, . . . , β, . . .)

(. . . , β, . . . , δ, . . . , α, . . . , γ, . . .)

(. . . , β, . . . , γ, . . . , α, . . . , δ, . . .)

(. . . , β, . . . , α, . . . , γ, . . . , δ, . . .).

It is clear that
(. . . , γ, . . . , δ, . . . , α, . . . , β, . . .)

(. . . , γ, . . . , β, . . . , α, . . . , δ, . . .)

(. . . , γ, . . . , α, . . . , β, . . . , δ, . . .)

(. . . , β, . . . , α, . . . , γ, . . . , δ, . . .)

is also a chain. This is represented byûβδûαβ ûβγ , completing this case. To conclude our first
objective, we notice that the fourth relation, with equalities, or the fifth relation, are clearly
not possible fork-Bruhat orders, by Proposition 3.1 (1) and (2).

We now show that any two maximal chains in[u, w]k are connected by successive uses of
the relations (1.1). It suffices to show that any maximal chainx̂ is connected to the CM-chain.
For this we proceed by induction onn. If n = 1, then there is a unique maximal chain. Let
n > 1 and assume that the theorem holds for all intervals[u′, w′]k′ such that̀ (w′)−`(u′) < n.
That is, we may assume thatx̂ = ŷûα1β1 wherey is any maximal chain. Ifa1, b1 satisfy the
conditionsI andII of Definition 3.2 then choosinĝy to be the CM-chain of[u1, w]k completes
the proof because then̂x is the CM-chain of[u, w]k. If condition I fails, thenw(a1) is not
maximal withu(a1) < w(a1). In this case assume thatŷ is the CM-chain of[u1, w] so that
w(a2) > w(a1). We have two sub-cases to consider:
Case 1a:{α1, β1} ∩ {α2, β2} = ∅. We can use relation (3) of (1.1) and obtain

x̂ ≡ ûαnβn · · · ûα1β1ûα2β2.

The hypothesis ony andw(a2) > w(a1) implies thatûα2β2 is the first step of the CM-chain
of [u, w]k. We can use our induction hypothesis on[ûα2β2u, w]k and obtain̂x ≡ ẑûα2β2, the
CM-chain of[u, w]k.
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Case 1b:α2 < β2 = α1 < β1. As y is the CM-chain of[u1, w]k, we have

β2 = α3 < β3 = α4 < · · · < βm−1 = αm,

for m ≥ 3, whereβm = w(a2) > w(a1) ≥ β1. Let 3≤ s ≤ m be such thatαs < β1 < βs.
We can apply the relations (1.1) and obtain

x̂ = ûαnβn · · · ûαmβm · · · ûαsαs · · · ûα2β2ûα1β1

≡ ûαnβn · · · ûαmβm · · · ûαs+1αs+1ûαsβ1ûβ1βsûα2β1ûαs−1βs−1 · · · ûα3β3

≡ ûαnβn · · · ûαmβm · · · ûαs+1αs+1ûαsβ1ûαs−1βs−1 · · · ûα3β3ûβ1βsûα2β1

≡ ẑûα2β1.

where, by the induction hypothesis,ẑ is the CM-chain of[ûα1β2u, w]k. Hereûα2β1 is the first
step in the CM-chain of[u, w]k. Hencex̂ ≡ ẑûα2β1, the CM-chain of[u, w]k.

If condition I holds but conditionII fails, thenw(b1) is not minimal. In this case assume
thaty is the DCM-chain of[u1, w]. Here, we must have thatw(b2) < w(b1) and again we
have two sub-cases to consider:
Case 2a:{α1, β1} ∩ {α2, β2} = ∅. We can use the relation (3) of (1.1) and the induction
hypothesis to obtain

x̂ ≡ ûαnβn · · · ûα1β1ûα2β2 ≡ ẑûα2β2,

whereẑ is the CM-chain of[ûα2β2u, w]k. If ûα2β2 is the first step in the CM-chain of[u, w]k
we are done. If not, then conditionI ′ on ûα2β2 implies that only conditionI can fail in ẑûα2β2

and we are back to cases 1a or 1b.
Case 2b:α1 < β1 = α2 < β2. As y is the DCM-chain of[u1, w]k, we have

α2 = β3 > α3 = β4 > · · · > αm−1 = βm,

for m ≥ 3, whereαm = w(b2) > w(b1) ≥ α1. Let 3≤ s ≤ m be such thatβs > α1 > αs.
We can apply the relations (1.1) and obtain

x̂= ûαnβn · · · ûαmβm · · · ûαsαs · · · ûα2β2ûα1β1≡ ûαnβn · · · ûαmβm · · · ûαs+1αs+1ûα1βsûαsβ1ûα1β2ûαs−1βs−1 · · · ûα3β3≡ ûαnβn · · · ûαmβm · · · ûαs+1αs+1ûα1βsûαs−1βs−1 · · · ûα3β3ûαsβ1ûα1β2≡ ẑûα1β2,

(3.5)

whereẑ is the CM-chain of[ûα1β2u, w]k. If ûα1β2 is the first step in the CM-chain of[u, w]k,
then we are done. If not, then conditionI ′ on ûα1β2 implies that only the conditionI can fail
in ẑûα2β2 and again we are back to cases 1a or 1b. 2

We now complete the characterization of compositionsx̂ = ûαnβn · · · ûα1β1 corresponding
to maximal chains for some[u, w]k. If x̂ corresponds to a maximal chain in[u, w]k, then
wu−1 = x̂1. Hencew = ζu for ζ = x̂1= wu−1. Conversely, Proposition 3.5 shows that for
anyζ ∈ S∞ we can findu andw such thatw = ζu and[u, w]k is nonempty for somek. In the
following, we say that a composition̂x = ûαnβn · · · ûα1β1 is u-reduced if̂x1 6= 0. Theorem 3.6
gives us a way of generating allu-reduced sequences forζ ∈ S∞; they are all connected via
the relations (1)–(3) of (1.1). To complete our study, we characterize the compositionsx̂ such
that x̂ = 0.

THEOREM 3.7. Let x̂ = ûαnβn · · · ûα1β1 be a composition. If̂x1 = 0, thenx̂ ≡ 0 modulo
the relations (1.1).
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PROOF. We proceed by induction onn. Whenn = 2, x̂1 = 0 implies that relation (4)
applies tox̂. Supposen ≥ 3 and the theorem holds for all compositions of length< n. Let
ŷ = ûαn−1βn−1 · · · ûα1β1 and we may assume thatŷ1= τ 6= 0.

We first characterize thosew such thatτ−1w ≤k w, for somek. Let up(τ ) anddw(τ)
be defined as above, and letfix(τ ) be the set of fixed points ofτ . By Proposition 3.1,u =
τ−1w ≤k w if and only if

• up(τ ) ⊆ {w(i ) : 1≤ i ≤ k} ⊆ up(τ ) ∪ fix(τ ),
• for i < j ≤ k or k < i < j , if u(i ) < u( j ) thenw(i ) < w( j ).

The second condition implies that ifα < γ are inup(τ ) ∪ fix(τ ) andτ−1(α) > τ−1(γ ),
then max{w−1(α), w−1(γ )} ≤ k impliesw−1(α) < w−1(γ ). Similarly, if γ < β are in
dw(τ)∪fix(τ )andτ−1(γ ) > τ−1(β) thenk < min{w−1(β), w−1(γ ) ≤ k} impliesw−1(γ ) <

w−1(β). With this and the definition of�, we see that̀u((αn, βn)τ ) 6= `u(τ )+1 implies one
of the following holds:

(a) αn ∈ dw(τ),
(b) βn ∈ up(τ ),
(c) αn < γ < βn, whereτ−1(αn) > τ−1(γ ), or τ−1(γ ) > τ−1(βn).

We complete the proof by showing that each case (a), (b), or (c) impliesûαnβn ŷ ≡ 0 modulo
the relations (1.1).

If (a) holds: By Theorem 3.6 we may assume thatŷ is any maximal chain. Let̂y = ẑûα1β1.
Note that ifαn ∈ dw(ẑ1) then the induction hypothesis applies and we are done. We can thus
assume thatαn = α1. But this must be true for any maximal chainŷ. As α1 = min(dw(τ))
for the DCM-chain, we haveαn = min(dw(τ)). Now let ŷ be the CM-chain, and con-
sider its initial segment̂uαmβm · · · ûα1β1 whereβ1 = α2 < β2 = α3 < · · · < βm−1 = αm

and βm = max(up(τ )). If |up(τ )| > 1, thenm < n − 1. Consider the next operator
ûαm+1βm+1. As α1 = min(dw(τ)), we haveα1 < αm + 1, and asβm = max(up(τ )), we have
βm+1 < βm. Thus we may apply a sequence of the relations (1)–(3) of (1.1), as in (3.5), to
obtain ŷ ≡ ẑ′ûαm+1β

′ for someẑ′ andβ ′. As αn = α1 ∈ dw(ẑ′1), the induction hypothesis
applies to concludêuαnβn ẑ′ ≡ 0. Thus we may assume that (a) holds and|up(τ )| = 1. That is,
β1 = α2 < β2 = α3 < · · · < βn−2 = αn−1 andαn = α1. If βn < αn−1 orβn > βn−1 then we
apply relation (3) to obtain̂uαnβn ŷ ≡ ûαn−1βn−1ûαnβn ûαn−2βn−2 · · · ûα1β1 ≡ ûαn−1βn−1ŷ′, and
ŷ′ ≡ 0 by the induction hypothesis. Ifβn = αn−1 then we may apply relation (2) to obtain
ûαnβn x̂ ≡ ûαn−2βn−2ûαnαn−2ûαn−2βn−1 · · · ûα1β1, which is equivalent to0 as before. Finally, if
αn−1 < βn ≤ βn−1 thenûαnβn ûαn−1βn−1 ≡ 0.

If (b) holds: This case is similar to (a), the map�n from Lemma 3.3 can be used to interchange
the roles of conditions (a) and (b).

If (c) holds: Assume thatτ−1(αn) > τ−1(γ ). The other case,τ−1(γ ) > τ−1(βn), is argued
in a similar fashion using the map�n. We may also assume that (a) does not hold, hence we
haveτ−1(γ ) < τ−1(αn) ≤ αn < γ < βn and, in particular,γ ∈ up(τ ). Let γ be minimal
with these properties. We may assume thatŷ is the CM-chain and we let̂y = ûαn−1βn−1ẑ and
ẑ1= σ ∈ S∞. In this caseβn−1 = min(up(τ )) ≤ γ . If βn−1 < γ then the minimality ofγ
impliesβn−1 ≤ αn. We have four sub-cases:

(i) If βn−1 = γ andαn−1 ≤ αn, thenûαnβn ûαn−1βn−1 ≡ 0 is an instance of relation (4) of
(1.1).
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(ii) If βn−1 = γ andαn−1 > αn, thenûαnβn ŷ ≡ ûαn−1βn−1ûαnβn ẑ. As τ−1(γ ) < αn andx
is the CM-chain, we must haveβn−2 = αn−1. Soαn < αn−1 = βn−2 < γ < βn and
σ−1(βn−2) = τ−1(γ ) < αn. By the induction hypothesiŝuαnβn ŷ ≡ 0.

(iii) If βn−1 < αn, then ûαnβn ŷ ≡ ûαn−1βn−1ûαnβn ẑ, whereσ−1(βn−2) = τ−1(γ ). The
induction hypothesis applies and againûαnβn ẑ≡ 0.

(iv) If βn−1 = αn, then aŝy is the CM-chain, the minimality ofγ implies thatβm = γ < βn

for some 1≤ m≤ n− 2, with

αn = βn−1 > αn−1 = βn−2 > · · · > αm+2 = βm+1 > αm+1.

For some 1≤ s ≤ m we also have

γ = βm > αm = βm−1 > · · · > αs+1 = βs,

whereαs = τ−1(γ ) < τ−1(αn) = αm+1. If s > 1 we may appeal to the induction
hypothesis and obtain̂uαnβn ŷ ≡ 0. Thus we may assume thats = 1. Also, asα1 <

αm+1 < βm+1 ≤ αn < γ = βm we may apply relations (1)–(3) as in (3.5) to obtain

ûαm+1βm+1ûαmβm · · · ûα1β1 ≡ ûα′mβ ′m · · · ûα′1β ′1ûαm+1βm+1,

whereγ = βm = β ′m, β ′m−1 = α′m, β ′m−2 = α′m−1, . . ., β ′1 = α′2 andα′1 = α1. Hence,
we can use the induction hypothesis onûαnβn · · · ûαm+2βm+2ûα′mβ ′m · · · ûα′1β ′1, to obtain

ûαnβn · · · ûαm+2βm+2ûα′mβ ′m · · · ûα′1β ′1 ≡ 0,

and this concludes our proof. 2

PROOF OF THEOREM 1.2.

(a) This is a direct consequence of Proposition 3.4 and Proposition 3.5.
(b) Theorem 3.6 and Theorem 3.7 imply that the operatorsûαβ satisfy the relations (1.1).

Equation (3.1) gives the characterization part.
(c) This is a consequence of (b), Theorem 3.6, and Theorem 3.7.
(d) Injection is from part (b) and (c). Surjection is given by Proposition 3.5.
(e) Follows from the definitions of� andûαβ .
(f) This is a direct consequence (a)–(f) above. 2

4. A DESCRIPTION OF cζλ .

We give a description of the constantscζλ appearing in Eqn. (1.3) using the elements ofM.
This will be useful in some subsequent work [3, 4]. It can also be used by the interested reader
to derive combinatorial proofs of many of the geometrical identities of Ref. [2].

Recall that the Schur polynomialSλ(x1, x2, . . . , xk) equalsSv(λ,k) for a unique Grassman-
nian permutationv(λ, k). We have

SuSv(λ,k) =
∑
w

cwuv(λ,k)Sw. (4.1)

First we consider a special case of (4.1). The Schubert polynomialSv((n),k) =
hn(x1, x2, . . . , xk) is the homogeneous symmetric polynomial onk variables. Lascoux and
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Schützenberger [7] formulated a Pieri-type formula forSuSv((n),k). In Ref. [1], proven in
Ref. [13], we have reformulated this rule. Using Theorem 1.2, we can state it here as follows:

SuSv((n),k) =
∑

x̂ = ûαnβn · · · ûα1β1 6≡ 0
α1<α2<···<αn

S(x̂1)u. (4.2)

There are now other proofs of (4.2), some of which are combinatorial [12, 15]. Letp =
(p1, p2, . . . , pr ) be a sequence ofr integers such thatp1+ p2+ · · · + pr = n. We say that a
u-compositionx̂ = ûαnβn · · · ûα1β1 weakly fits pif

α1 < α2 < · · · < αp1,

αp1+1 < αp1+2 < · · · < αp1+p2,
...

αn−pr+1 < αn−pr+2 < · · · < αn,

and for alli , we havepi ≥ 0. LetHp(ζ ) = {x̂ ∈ Ru(ζ ) : ζ = x̂1 and x̂ weakly fits p}. Note
thatHp(ζ ) = ∅ if some pi < 0.

REMARK 4.1. From (4.2),Hp(wu−1) is the coefficient ofSw in the product

SuSv((p1),k)Sv((p2),k) · · ·Sv((pr ),k)

when all pi > 0.

Now consider the Jacobi identity [11]: forλ = (λ1, λ2, . . . , λr ) a partition ofn,

Sv(λ,k) = Sλ(x1, x2, . . . , xk) = det
(
hλi+ j−i (x1, x2, . . . , xk)

)
1≤i, j≤r , (4.3)

whereh0(x1, x2, . . . , xk) = 1, hn(x1, x2, . . . , xk) = Sv((n),k) for n > 0, andhn = 0 for
n < 0. Forσ ∈ Sr , let λσ = (λσ (1), λσ (2), . . . , λσ (r )), whereλσ (i ) = λσ(i ) + i − σ(i ).
Denote byε(σ ) the sign of the permutationσ ∈ Sr . Expanding the determinant (4.3) in (4.1),
and using (4.2), we obtain

SuSv(λ,k) =
∑
σ∈Sr

ε(σ )SuSv((λσ (1)),k)Sv((λσ (2)),k) · · ·Sv((λσ (r )),k)

=
∑
w∈S∞

(∑
σ∈Sr

ε(σ )

∣∣∣Hλσ (wu−1)

∣∣∣)Sw.

Thus
cwuv(λ,k) =

∑
σ∈Sr

ε(σ )

∣∣∣Hλσ (wu−1)

∣∣∣ .
This is a consequence of Theorem 1.2. From this we deduce the following proposition.

PROPOSITION 4.2.

(1) cwuv(λ,k) = 0 if u 6≤k w, and

(2) if u ≤k w then cwuv(λ,k) depends only onλ andwu−1.

Hence,cζλ := cwuv(λ,k) is well defined for anyu ≤k w with ζ = wu−1. We have
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FIGURE 2. The interval[(3,1,2,5,6,4), (4,2,5,6,3,1)]4.

THEOREM 4.3. cζλ =
∑
σ∈Sr

ε(σ )
∣∣Hλσ (ζ )∣∣.

Let us illustrate Theorem 4.3 by an example. Letζ = (2,5,4,1,6,3). Using Proposition 3.5
we have(3,1,2,5,6,4) = u ≤4 ζu = (4,2,5,6,3,1). In Figure 2, we have drawn the
interval [u, ζu]4 and we have labeled each covering edge in the interval by the indexα of
the correspondinĝuαβ . Here we have removed the commas and parentheses to represent the
permutations in a more compact form. Note that there are 14 maximal chains in this interval.

Theorem 4.3 gives us that

cζ(2,2,1)=
∣∣H(2,2,1)(ζ )∣∣− ∣∣H(1,3,1)(ζ )∣∣− ∣∣H(2,0,3)(ζ )∣∣+ ∣∣H(1,0,4)(ζ )∣∣

+ ∣∣H(−1,3,3)(ζ )
∣∣− ∣∣H(−1,2,4)(ζ )

∣∣ .
The setsH(−1,3,3)(ζ ) andH(−1,2,4)(ζ ) are both empty because the indices contain a negative
component. Looking at Figure 2, we findH(2,2,1)(ζ ) = {û12û35û23û56û34, û34û45û12û56û24}
andH(1,3,1)(ζ ) = H(2,0,3)(ζ ) = ∅. Hencecζ(2,2,1) = 2. Now for λ = (2,1,1,1) and
σ ∈ S4, the sequencesλσ that do not contain a negative component are(2,1,1,1), (2,1,0,2),
(2,0,2,1), (2,0,0,3), (0,3,1,1), (0,3,0,2), (0,0,4,1) and(0,0,0,5). For our example,
we have

∣∣H(2,1,1,1)(ζ )∣∣ = 5,
∣∣H(2,1,0,2)(ζ )∣∣ = 2,

∣∣H(2,0,2,1)(ζ )∣∣ = 2 and all the others are
empty. Hencecζ(2,1,1,1)= 5− 2− 2= 1. Using (1.3) for this example, we obtaincζλ = 0 for
the otherλ, because 14= 5 ∗ 2+ 4 ∗ 1 is the total number of maximal chains.

Most of the geometrical identities of Ref. [2] can now be proven combinatorially using
Theorem 4.3, but some of them are still very surprising. For example, Theorem H of Ref. [2]

states that forγ = (1,2,3, . . . ,n) and ζ in Sn, cζλ = cγ ζγ
−1

λ . We do not know how to
show this combinatorially. Here, Eqn. (1.3) implies that|Ru(ζ )| = |Ru(γ ζγ

−1)|. This
suggests the existence of a bijectionϕ: Ru(ζ ) −→ Ru(γ ζγ

−1). Note that the two Posets
[1, ζ]� and[1, γ ζγ−1]� are not necessarily isomorphic. For example, letζ = (2,4,1,3),
the interval[1, γ ζγ−1]� is a hexagon and[1, ζ]� is not, it is akite. On the other hand,

as the Jacobi identity (4.3) is invertible, the equalitycζλ = cγ ζγ
−1

λ implies that|Hp(ζ )| =
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|Hp(γ ζγ
−1)| for any p. Is it possible to construct the bijectionϕ such thatϕ(Hp(ζ )) =

Hp(γ ζγ
−1)?

We should point out that Theorem 4.3 needs to be improved. It is a useful combinatorial
description of thecζλ but it is unsatisfactory. It would be more elegant to have a formula that
does not involve signs. There are still many open questions about the Grassmannian Bruhat
order. We shall conclude with a list of them:

(i) As suggested by Eqn. (1.3), can we find a representation of the symmetric groupS`u (ζ )

onQRu(ζ ) with character given by
∑
λ cζλχ

λ?
(ii) Can we find a partition ofRu(ζ ) similar to the one discussed after Eqn. (2.2)?

(iii) Can we describe the polynomialPn(t) =
∑
ζ∈Sn

t`u (ζ )?

(iv) What are the properties of the partial order�. e.g. What is its Möbius function? Is any
interval Cohen–Macauley? (We should mention here that the intervals containhexagons
in general, hence they are not shellable in the classical sense.)

(v) Is it possible to find a faithful representation ofM as operators on the polynomial ring
Z[x1, x2, x3, . . .]?
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Universite Marne-la-Valée, 1996.

16. }}R. Winkel, On the multiplication of Schubert polynomials,Adv. App. Math.,20 (1998), 73–97.

Received 19 November 1998 and accepted 23 December 1998

N. BERGERON

Department of Mathematics and Statistics,
York University,

Toronto, Ontario,
Canada, M3J 1P3

E-mail: bergeron@mathstat.yorku.ca

F. SOTTILE

Department of Mathematics,
University of Wisconsin,

Van Vleck Hall,
480 Lincoln Drive,

Midisson, WI 53706-1388,
U.S.A.

E-mail: sottile@math.wisc.edu


	INTRODUCTION
	ORDERS AND MONOIDS ONS1
	k-BRUHAT ORDERS AND THE MONOID M
	FIGURE 1.

	A DESCRIPTION OF c   .
	FIGURE 2.

	ACKNOWLEDGEMENTS
	REFERENCES

