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Abstract

Let A be an n × n matrix with real eigenvalues. Wolkowicz and Styan presented bounds
for the eigenvalues, using only n, tr A, and tr A2. We show that their lower bound for the
largest eigenvalue works also as a lower bound for the Perron root of A if A is nonnegative
and its eigenvalues are not necessarily real. We also show that this bound is optimal under
certain conditions. Finally, we solve completely the problem to find the optimal lower bound
for the Perron root using only n, tr A, and tr A2.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, we use the following notations:

A = (ajk) is a real or complex n × n matrix, n � 3;
λ1 = λ1(A), . . . , λn = λn(A) are the eigenvalues of A, ordered λ1 � · · · � λn

if they are real;
A � 0 means that A is real and nonnegative;
r = r(A) is the Perron root of A � 0;
a = tr A, b = tr A2.
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If a and b are real and a2 � nb (which happens, for example, if λ1, . . . , λn are
real or if A � 0), we denote

l = a

n
+
√

1

n(n − 1)

(
b − a2

n

)
, u = a

n
+
√

n − 1

n

(
b − a2

n

)
,

l′ = a

n
−
√

n − 1

n

(
b − a2

n

)
, u′ = a

n
−
√

1

n(n − 1)

(
b − a2

n

)
.

We may use also the notation l(A) etc.

Theorem 1 (Wolkowicz and Styan [10, Theorem 2.1]). If λ1, . . . , λn are real, then
l � λ1 � u and l′ � λn � u′. Equality holds on the left (right) of these inequalities
if and only if the n − 1 largest (smallest) eigenvalues are equal.

Theorem 2 (The first part of [10, Theorem 2.3]). If λ1, . . . , λn are real, then, for
1 � k � n,

λ1 + · · · + λk �
{

kl if k � 1
2n,

u + (k − 1)u′ if k � 1
2n.

Equality holds if and only if

λ1 = · · · = λn−1 for k < 1
2n,

λ1 = · · · = λn−1 or λ2 = · · · = λn for k = 1
2n,

λ2 = · · · = λn for k > 1
2n.

For the origin of Theorem 1, see Jensen and Styan [4] and Jensen [3]. Theorem
2 (without matrix formulation) is due to Mallows and Richter [6, Corollary 6.1]. We
omit the second part of [10, Theorem 2.3], since it follows directly from the first
part.

Let a and b be arbitrary real numbers satisfying a2 � nb. Then, for each inequal-
ity of Theorems 1 and 2, there exists a matrix A with tr A = a, tr A2 = b, λ1, . . . , λn

real, such that equality holds. This follows from the equality conditions stated in
these theorems. Therefore the eigenvalue bounds given by these inequalities are
optimal. In other words, they are the best possible bounds, using only n, a,
and b.

Wolkowicz and Styan [10, Section 3] extended Theorems 1 and 2 and related
results for the case when λ1, . . . , λn are not necessarily real. We pursue this topic
further by showing that if A � 0, then l is a lower bound for its Perron root r . We will
also show that l is optimal under certain conditions (Theorem 8). Finally (Theorem
10), we will solve completely the problem to find the optimal lower bound for r ,
using only n, a, and b.
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2. The lower bound l for r

If λ1, . . . , λn are not necessarily real, we can modify Theorem 2 to hold for their
real parts. In [10, Theorem 3.5], different bounds of the same kind are presented for
normal matrices.

Theorem 3. Order λ1, . . . , λn so that re λ1 � · · · � re λn. Assume that a = tr A

and b = tr A2 are real and that a2 � nb. Then

re λ1 + · · · + re λk �
{

kl if k � 1
2n,

u + (k − 1)u′ if k � 1
2n.

In particular,
re λ1 � l.

Equality holds if and only if λ1, . . . , λn are real and satisfy the equality conditions
of Theorem 2.

Proof. Since

a = tr A = re tr A = re λ1 + · · · + re λn,

b = tr A2 = re tr A2 = re λ2
1 + · · · + re λ2

n =
n∑

k=1

(re λk)
2 −

n∑
k=1

(im λk)
2,

we have
re λ1 + · · · + re λn = a, (re λ1)

2 + · · · + (re λn)
2 = β � b.

Applying Theorem 2 to B = diag (re λ1, . . . , re λn) and noting that l(B) is a
strictly increasing function of β, the inequality follows. The equality conditions are
obvious. �

Theorem 4. The lower bounds for re λ1 + · · · + re λk presented in Theorem 3 are
optimal.

Proof. If a and b are arbitrary real numbers satisfying a2 � nb, there exists a matrix
A with tr A = a, tr A2 = b, such that equality holds in the relevant inequality of
Theorem 3. This follows from the equality conditions stated in this theorem. �

Since the Perron root of a nonnegative matrix is greater than the real part of any
other eigenvalue, Theorem 3 implies the following

Corollary 5. If A � 0, then r � l.

If a2 � nb, then we have only the trivial result

re λ1 + · · · + re λk � k

n
a.



304 J.K. Merikoski, A. Virtanen / Linear Algebra and its Applications 388 (2004) 301–313

In particular,

re λ1 � a

n
.

Equality holds if and only if re λ1 = · · · = re λn(= a/n). These lower bounds are
clearly optimal if we know only n and a. The fact that tr A2 = b does not now give
further information, since if we know a, we can make b (with a2 � nb) arbitrary.
Simply take

λ1 = a

n
+ xi, λ2 = · · · = λn−1 = a

n
, λn = a

n
− xi,

where

x =
√

a2 − nb

2n
.

An alternative proof of Corollary 5 is to define the geometric symmetrization of A

as G = (gjk) with gjk = √
ajkakj . If A is irreducible, then by Schwenk [8, p. 261]

r(G) � r(A),

which holds also in the reducible case by a continuity argument. Since tr G = a,
tr G2 = b, we have r(G) � l by Theorem 1, and so the corollary follows.

Another alternative proof is to apply to the spectral radius ρ(A) an inequality of
Horne [2, Theorem 1 (5)] reformulated as

ρ(A) � max(|l|, |u′|),
and to note that, for A � 0, we have r = ρ(A) (and l = |l| � |u′|).

Corollary 5 motivates us to ask whether r � u holds. The answer is negative. In
fact, we can say more.

Proposition 6. If A � 0, there exists no upper bound for r, using only n, a, and b.

Proof. Suppose that such an upper bound f (n, a, b) exists. For t � 0, let

At =

0 t 0

0 0 t

t 0 0


 .

Then r(At ) = t , a = b = 0, and so t � f (3, 0, 0). This is a contradiction, since
the left-hand side can be made arbitrarily large, while the right-hand side is a
constant. �

3. Optimality of l (A �� 0)

If A � 0, then
√

b/n is a trivial lower bound for r . We compare l with it.
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Lemma 7. Let a and b be real numbers satisfying a2 � nb. The following condi-
tions are equivalent:

(a) l �
√

b
n
,

(b) na2

(n−2)2 � b,

(c) l � |l′|,
(d) There exists A � 0 with eigenvalues l = l(A) of multiplicity n − 1 and l′ = l′(A)

of multiplicity one.

Proof. To show (a) ⇔ (b) ⇔ (c) is elementary, but not quite easy. We omit it. We
have (d) ⇒ (c) by the Perron–Frobenius theorem. If l′ � 0, then (c) ⇒ (d) is trivial.
If l′ < 0, this implication follows by considering

A = lIn−2 ⊕
(

l + l′
√−ll′√−ll′ 0

)

where In−2 denotes the identity matrix of order n − 2. �

Now we can answer partially the question of optimality.

Theorem 8. Let A � 0. Then l is optimal (i.e., the best possible lower bound for r,

using only n, a, and b, and the information that A � 0) if and only if the equivalent
conditions of Lemma 7 are satisfied.

Proof. Let a and b be real numbers satisfying a2 � nb. If (d) in Lemma 7 holds,
then there exists A � 0 with tr A = a, tr A2 = b, such that l(A) = r(A), and there-
fore l is optimal. If (a) does not hold, then every A � 0 with tr A = a, tr A2 = b

satisfies

l(A) <

√
b

n
� r(A),

and therefore l is not optimal.
To find the optimal bound in the case when l is not optimal, denote

Nk = n − 4k
n − k − 1

n − 1
, 0 � k �

⌊
n − 1

2

⌋
,

lk = n − 2k − 1

n − 1

a

Nk

+
√

1

Nk(n − 1)

(
b − a2

Nk

)
,

K =
{
k ∈

{
0, . . . ,

⌊
n − 1

2

⌋} ∣∣∣∣ na2

(n − 2k)2
� b

}
,

κ = max K.
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Note that N0 = n, l0 = l. Also note that K /= ∅, since 0 ∈ K . If k � κ , then lk is
real, since

Nk(n − 1) = (−1 − 2k + n)2 + n − 1 > 0

and

b − a2

Nk

� na2

(n − 2k)2
− a2

Nk

= a2 4k2

(n − 2k)2

1

Nk(n − 1)
� 0. �

Theorem 9. Let A � 0. If

na2

(n − 2k)2
� b; i.e., k ∈ K,

then r � lk.

Theorem 10. Let A � 0, k ∈ K. The following conditions are equivalent:

(a) lk is optimal (i.e., the best possible lower bound for r, using only n, a, and b,

and the information that A � 0),

(b) lk = lκ ,

(c) lk �
√

b
n
.

The proofs of Theorems 9 and 10 are quite long and technical. They are presented
in Appendix A.

If a = 0, then κ = 	n−1
2 
, and we obtain

Corollary 11. Let A � 0. If a = 0, then the optimal lower bound for r is

√

b
n

if n is even,√
b

n−1 if n is odd.

Szulc [9, Theorem 1] presented the following lower bound for the Perron root:

r � ρS =
{
ρS1 if n is even,

max{ρS1 , ρS2} if n is odd,

where

ρS1 = min
k

akk +
√

tr (A − mink akkI )2

n
,

ρS2 = min
k

akk +
√√√√ 2

n − 1

∑
1�j<k�n

ajkakj .
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If a = 0, then all diagonal elements of A are zero and b = 0 + tr (A − 0I )2 =
2
∑

1�j<k�n ajkakj . It follows that in this case ρS = lκ . Hence Corollary 11 shows
that ρS is optimal when a = 0.

4. Examples

We compare our bounds with the following simple bounds:

ρF = max(mink rk, mink ck) (Frobenius, see e.g. [1, p. 492]),
ρ0 =

√
b
n

(Lemma 7),

ρS (Szulc [9], see above),

ρK = 1
n

∑
j

∑
k gjk (Kolotilina [5]).

Here r1, . . . , rn (c1, . . . , cn) are the row (column) sums and G = (gjk) is the geo-
metric symmetrization of A.

Example 1

A =

1 1 2

2 1 x

2 3 5


 , x � 0.

If x = 3, then A is singular and therefore all its eigenvalues are real. Hence Wol-
kowicz and Styan [10, Example 2] could apply Theorem 1 in the case x = 3. We can
study the general case.

If x < 18, then κ = 0 and the optimal lower bound for r using n, a, b is

l = 7 + √
9x + 34

3
.

If x � 18, then κ = 1 and the optimal bound is

l1 = √
3x − 5.

The bounds listed above are

ρF =
{
x + 3 if x < 1,

4 if x � 1,

ρ0 = √
2x + 13,

ρS1 = 1 +
√

6x+28
3 ,

ρS2 = 1 + √
3x + 6,

ρK = 2
√

3x+2
√

2+11
3 .
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1. l and l1 vs. ρF
We have l > ρF for all x and l1 > l > ρF for all x > 18. Giving x → ∞, we see
that l and l1 can be made infinitely much better than ρF.

2. l and l1 vs. ρ0
We note that l � ρ0 ⇔ x � 18 ⇔ l1 � ρ0, confirming Theorem 10.

3. l and l1 vs. ρS

We have l � ρS1 ⇔ x � 3 1
3 and l1 � ρS1 ⇔ x � 2(29+6

√
11)

3 ≈ 32.6.
Since ρS1 is obtained from ρ0 by shifting, we include also the shifted bound

L1 = t + l1(A − tI ), t = mink akk . Now L1 = ρS2 (this is true whenever n is
odd and at least n − 1 diagonal elements of A are equal). We obtain

ρS =
{

ρS1 if x � 3 1
3 ,

ρS2 if x � 3 1
3 ,

and


ρS < l if x < 3 1
3 ,

ρS = L1 = l if x = 3 1
3 ,

ρS = L1 > ρS1 > l if x > 3 1
3 .

Note that l = t + l(A − tI ) for all t .
4. l and l1 vs. ρK

We have l < ρK for all x and l1 > ρK ⇔ x >
2(951+286

√
2+6

√
23,738+12,452

√
2)

75 ≈
68.7.

Example 2

A =




4 1 1 2 2
1 5 1 1 1
1 1 6 1 1
2 1 1 7 1
2 1 1 1 8


 .

The matrix A is symmetric and hence has real eigenvalues. Wolkowicz and Styan
[10, Example 5] obtained the bound

l ≈ 7.45 � r(A) ≈ 11.17.

Now κ = 0 and hence l is the best possible lower bound using only n = 5, tr A = 30,
and tr A2 = 222. In particular, ρ0 ≈ 6.66 < l.

Using the information that A � 0 and mink akk = 4, we obtain a better lower
bound ρS = ρS1 ≈ 7.52 � r(A) (note that ρS2 ≈ 6.83 < l) and, since κ(A − 4I ) =
1, a still better lower bound

L1 = l1(A − 4I ) + 4 ≈ 7.72 � r(A).
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However, ρF = 9 and ρK = 10.8 are much better lower bounds in this example.
Since A is symmetric,

ρK = 1

n

∑
j

∑
k

ajk.

It is well-known [7] that this bound is often good.

Example 3. We compare l = l0 with lκ when n = 4. Since r(cA) = cr(A) and
lk(cA) = clk(A), we can assume without loss of generality that tr A = 1 and tr A2 =
b � 1/4. Then

κ =
{

0 if 1/4 � b < 1,

1 if 1 � b,

l = l(b) = 1
12

(
3 + √

12b − 3
) (

b � 1
4

)
,

l1 = l1(b) = 1
4

(
1 + √

4b − 3
)

(b � 1).

For all b > 1,

l(b) < l1(b) <
√

3l(b),

l1(b)/ l(b) increases, and limb→∞ l1(b)/ l(b) = √
3:

b l(b) l1(b) l1(b)/ l(b)

1 0.50 0.50 1.00
10 1.15 1.77 1.54

100 3.13 5.23 1.67
1000 9.38 16.06 1.71

10,000 29.12 50.25 1.73

Note that for each b � 1/4 there exists such A that tr A = 1, tr A2 = b, and
r(A) = lκ . For example, let b = 10,000. Then

A =




0 x 0 0
x 0 0 0
0 0 x + y

√−xy

0 0
√−xy 0


 ≈




0 50.25 0 0
50.25 0 0 0

0 0 1 49.75
0 0 49.75 0


 ,

where x = (1 + √
39,997)/4, y = (3 − √

39,997)/4, satisfies tr A = 1, tr A2 =
10,000, and r(A) = l1 ≈ 50.25.

Example 4. We compare lκ with ρ0 when n = 10. Without loss of generality, we
can assume that tr A2 = 10 and tr A = a (0 � a � 10). Then ρ0 = 1 and

κ

0 � a � 2 4
2 < a � 4 3
4 < a � 6 2
6 < a � 8 1
8 < a � 10 0
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Denote here lk = lk(a). Now lκ (a) = 1 = ρ0 for a = 0, 2, . . . , 10. By calculating
maxa∈[0,2] l4(a), maxa∈]2,4] l3(a), etc., we find that

ρ0 = 1 � lκ (a) �
√

10/3 ≈ 1.054ρ0 for all a ∈ [0, 10].
To see that lκ (a) = √

10/3 is attained, let A = (ajk), where ajk = √
10/3 for

(j, k) ∈ {(1, 1), (3, 4), (4, 3), (5, 6), (6, 5), (7, 8), (8, 7), (9, 10), (10, 9)}
and ajk = 0 otherwise. Then

ρ0 = 1 < 1.054 ≈ l4(A) = r(A) = √
10/3.

Discussion. Our bounds are in some cases better than other well-known simple
bounds, see Examples 1 and 2. The bound l1 may clearly improve l, see Example 3.
If n is not very small, then lκ improves ρ0 only marginally, see Example 4, but we
still found interesting to settle the question of optimality.

Appendix A. The proofs of Theorems 9 and 10

We recall the notations

K(b) = K =
{
k ∈

{
0, . . . ,

⌊
n − 1

2

⌋} ∣∣∣∣ na2

(n − 2k)2
� b

}
,

κ(b) = κ = max K(b),

Nk = n − 4k
n − k − 1

n − 1
, 0 � k �

⌊
n − 1

2

⌋
,

lk(b) = lk = n − 2k − 1

n − 1

a

Nk

+
√

1

Nk(n − 1)

(
b − a2

Nk

)
.

We omit the proofs of the following three simple lemmas.

Lemma 12. Let k � κ. For k <
⌊

n−1
2

⌋
,

lk(b) =
√

b

n

if and only if

b = na2

(n − 2k)2
or b = na2

(n − 2k − 2)2
.

For k = ⌊
n−1

2

⌋
, exclude the last equality.

Lemma 13. Let k �
⌊

n−1
2

⌋
. If

b = na2

(n − 2k − 2)2
,
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then κ = k + 1 and

lk(b) =
√

b

n
= lk+1(b).

Lemma 14. Let k � κ. If κ <
⌊

n−1
2

⌋
, then the following conditions are equivalent:

(a) |a − (n − 2k − 1)lk| � lk,

(b) a
n−2k

� lk � a
n−2k−2 ,

(c) na2

(n−2k)2 � b � na2

(n−2k−2)2 ,

(d) κ = k or
(
κ = k + 1 and b = na2

(n−2k−2)2

)
.

If κ = ⌊
n−1

2

⌋
, exclude the latter inequality in (b) and (c), and the bracketed sentence

in (d).

A simple calculation shows that (n − 1)l2
k + (a − (n − 2k − 1)lk)

2 = b for 0 �
k � κ . Lemma 14 implies that if k < κ , then |a − (n − 2k − 1)lk| � lk , and so

b = (n − 1)l2
k + (a − (n − 2k − 1)lk)

2 � nl2
k .

If k = κ , we have |a − (n − 2k − 1)lk| � lk , and, similarly, b � nl2
k .

Hence we have

Lemma 15. If k < κ, then

r �
√

b

n
� lk,

and if k = κ, then√
b

n
� lk.

Next we prove that lκ � r . We begin with the following lemma.

Lemma 16. If λ1, . . . , λn are real, then r � lκ .

Proof. Assume, on the contrary, that λ1 < lκ . Then λn > −lκ . By Lemma 14, lκ �
a − (n − 2κ − 1)lκ � −lκ . Hence the vector (λ1, . . . , λn) is strictly majorized by
the vector (l

(n−κ−1)
κ , a − (n − 2κ − 1)lκ , −l

(κ)
κ ) where x(p) denotes x, . . . , x

(p times). Since the function (x1, x2, . . . , xn) �→ ∑
x2
i is strictly Schur-convex, then

b =
∑
j

λ2
j < (n − 1)l2

κ + (a − (n − 2κ − 1)lκ )2 = b,

a contradiction. �



312 J.K. Merikoski, A. Virtanen / Linear Algebra and its Applications 388 (2004) 301–313

Using Lemma 13, it is easy to see that the function g(y) = lκ(y)(y) is continuous
when y � a2/n. Since lk(y) is increasing for a fixed k � κ(y), it follows that g

increases on the interval
[

a2

n
, ∞[

.
Let

β = (re λ1)
2 + · · · + (re λn)

2.

Since re λ1 + · · · + re λn = a, then r = maxj re λj � g(β) by Lemma 16. Further,
since β � b, we have g(β) � g(b) = lκ . We can now state Lemma 16 without assum-
ing the reality of the eigenvalues.

Lemma 17. Let A � 0. Then r � lκ .

Theorem 9 follows from Lemmas 15 and 17. Lemmas 12 and 15 imply that if
lk(b) /= lκ (b), then lk(b) <

√
b/n. To complete the proof of Theorem 10, we need

the following lemma.

Lemma 18. Let a and b be real numbers satisfying a2 � nb. Then there exists A �
0 with tr A = a, tr A2 = b, such that r(A) = lκ .

Proof. Let x = lκ , y = a − (n − 2κ − 1)x, and

B =
(

0 x

x 0

)
⊕ · · · ⊕

(
0 x

x 0

)
(κ times).

If y � 0, define

A = diag
(
x(n−2κ−1), y

) ⊕ B,

and if y < 0,

A = diag
(
x(n−2κ−2)

) ⊕
(

x + y
√−xy√−xy 0

)
⊕ B.

Now tr A = a and tr A2 = b. Further, by Lemma 14, x � |y|, and hence A � 0 and
r(A) = x = lκ . �
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