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Abstract Plasma high density lipoprotein (HDL)-cholesterol
levels are inversely correlated with the incidence of cardiovascu-
lar diseases. HDL is mainly assembled in the liver through the
ATP-binding cassette transporter (ABCA1) pathway. In hu-
mans, plasma HDL-cholesterol levels are positively correlated
with plasma adiponectin (APN) concentrations. Recently, we re-
ported that APN enhanced apolipoprotein A-I (apoA-I) secretion
and ABCA1 expression in HepG2 cells. In the present study, we
investigated HDL assembly in APN-knockout (KO) mice. The
apoA-I protein levels in plasma and liver were reduced in
APN-KO mice compared with wild-type-mice. The ABCA1
expression in liver was also decreased in APN-KO mice. APN
deficiency might cause the impaired HDL assembly by decreas-
ing ABCA1 expression and apoA-I synthesis in the liver.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Plasma high density lipoprotein (HDL)-cholesterol levels are

negatively correlated with the incidence of coronary artery dis-

ease (CAD). It is thought that HDL prevents the development

of atherosclerosis by removing excess cholesterol from ather-
Abbreviations: ABCA1, ATP-binding cassette transporter A1;
ABCG1, ATP-binding cassette transporter G1; APN, adiponectin;
apoA-I, apolipoprotein A-I; apoB-100, apolipoprotein B-100; CAD,
coronary artery disease; CM, chylomicron; FC, free cholesterol; HDL,
high density lipoprotein; HPLC, high performance liquid chromatog-
raphy; KO, knockout; LDL, low density lipoprotein; MTP, micro-
somal triglyceride transfer protein; PL, phospholipids; RCT, reverse
cholesterol transport; TC, total cholesterol; TG, triglyceride; VLDL,
very low density lipoprotein; WT, wild-type
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oma and transporting it back to the liver in the protective sys-

tem, so-called ‘‘reverse cholesterol transport’’ (RCT) [1].

The ATP-binding cassette transporters (ABCA1 and

ABCG1), which are expressed in the liver, small intestine

and peripheral tissues, are thought to be rate-limiting factors

for HDL assembly in RCT system [2,3]. ABCA1, the responsi-

ble gene for familial HDL deficiency including Tangier disease

[4–6], promotes apoA-I-mediated cholesterol efflux, which is

the initial step in RCT system, decreasing cholesterol accumu-

lation in macrophages and initiating HDL formation in the li-

ver [2]. ABCG1 also stimulates cholesterol efflux to mature

HDL in macrophages [3].

Adiponectin (APN), a bioactive peptide secreted from adi-

pocytes is one of the important molecules to inhibit the devel-

opment of atherosclerosis. Several clinical studies have

demonstrated that plasma levels of APN are extremely low

in patients with the metabolic syndrome which clusters risk

factors for CAD such as visceral obesity, dyslipidemia,

impaired glucose tolerance and hypertension. Plasma APN

concentrations are positively correlated with plasma HDL-

cholesterol levels [7–11]. Although these findings suggest that

APN might have an ability to prevent the development of ath-

erosclerosis by the acceleration of RCT system, the underlying

mechanisms for it has not been clarified yet. Recently, we re-

ported that human recombinant APN enhanced the expression

of ABCA1 and accelerated the synthesis of apoA-I in a human

liver cell line, HepG2 cells, suggesting that APN might increase

HDL assembly in the liver [12]. Therefore, in the present study,

we investigated the HDL assembly in APN knockout (APN-

KO) mice.
2. Materials and methods

2.1. Animals
Adiponectin-knockout (APN-KO) mice were generated as described

previously and backcrossed to wild-type (WT) C57BL/6J mice [13].
Both APN-KO and WT mice (male) were housed in temperature
and humidity controlled facility with a 12-h light/dark cycle and fed
a normal chow diet (MF, OrientalBio Laboratories, Chiba, Japan)
and sacrificed for analysis at the age of 8–10 weeks old. The experimen-
tal protocol was approved by the Ethics Review Committee for Animal
Experimentation of Osaka University School of Medicine.
blished by Elsevier B.V. All rights reserved.
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2.2. Lipid profile by high performance liquid chromatography (HPLC)
analysis

One hundred microliter of blood from anesthetized mice (at the age
of 8–10 weeks) were drawn from retro-orbital plexus ad libitum and
plasma was immediately isolated from the collected blood by centrifu-
gation at 4 �C. The lipid profile of plasma was analyzed by an online
dual enzymatic method using high performance liquid chromatogra-
phy (HPLC) at Skylight Biotech Inc. (Akita, Japan), according to
the procedure as described by Usui et al. [14]. The plasma concentra-
tions of total cholesterol (TC), triglyceride (TG), free cholesterol (FC)
and phospholipids (PL) of four fractioned groups [chylomicron (CM):
lipoprotein particle size >80 nm, very low density lipoprotein (VLDL):
30 < particle size <80 nm, low density lipoprotein (LDL): 16 < particle
size <30 nm and HDL: 8 < particle size < 16 nm] were determined by
using enzymatic reagents (Kyowa Medex, Tokyo, Japan).

2.3. Western blot analysis
Mice plasma or proteins isolated from the liver were separated by

SDS–polyacrylamide gel electrophoresis and transferred to PVDF
membranes (Bio-Rad, Germany). Incubations of antibodies with the
membranes were performed in TBS including 0.1% Tween 20 and
2% skim milk at 4 �C overnight. Detection of the immune complexes
was carried out by ECL Advance Western Blot Detection System
(Amersham Biosciences, UK). Anti-mouse apoA-I antibody (Biode-
sign, USA), anti-mouse apolipoprotein B48/100 (apoB) antibody (Bio-
design, USA), anti-mouse ABCA1 antibody (Novus, USA) and anti-
mouse ABCG1 antibody (Santa Cruz, USA) were used for the assay.

2.4. cDNA synthesis and quantitative PCR
One microgram of total RNA isolated from tissues was primed with

50 pmol of oligo (dT) 20 and reverse-transcribed with SuperScript III
(Invitrogen, USA) for first strand cDNA synthesis, according to the
protocol of the manufacturer. Real-time quantitative PCR was per-
formed according to the protocol of DyNamo HS SYBR Green quan-
titative PCR kit. Relative gene expression was quantified using
GAPDH as an internal control.
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Fig. 1. Plasma lipid profile of APN-KO mice. Blood samples from anesthetiz
drawn from retro-orbital plexus ad libitum. (A) Plasma TC, TG and PL lev
those of WT mice. (B) Lipid composition of lipoproteins (CM, VLDL, LDL
APN-KO mice compared with WT mice. Values are expressed as means ± S
2.5. Primers used in this study
The primes for mouse ABCA1 were ABCA1-forward: 5 0-TGGG-

AACTCCTGCTAAAAT-30 and ABCA1-reverse: 5 0-CCATGT-
GGTGTGTAGACA-3 0, for mouse apoA-I, apoA-I-forward:
5 0-GTGGCTCTGGTCTTCCTGAC-3 0 and apoA-I-reverse: 5 0-
ACGGTTGAACCCAGAGTGTC-3 0, for mouse apoB, apoB-forward:
5 0-TGGGATTCCTCTGCCATCTCGAG-30 and apoB-reverse: 5 0-
GTAGAGATCCATCACAGGACAATG-3 0, for mouse GAPDH,
GAPDH-forward: 5 0-ACTCCACTCACGGCAAATTC-3 0 and GAP-
DH-reverse: 5 0-TCTCCATGGTGGTGAAGACA-30.
2.6. Statistical analysis
Values were expressed as means ± S.D. Statistical significance was

assessed by Student’s t-test for paired values and set at P < 0.05.
3. Results

3.1. Plasma VLDL-TG levels were increased in APN-KO mice,

while there was no significant difference in plasma levels of

HDL-cholesterol between WT and APN-KO mice

Blood samples from anesthetized APN-KO (n = 6) and WT

(n = 6) mice at the age of 8–10 weeks were drawn from retro-

orbital plexus ad libitum and plasma was immediately isolated

by centrifugation at 4 �C. The lipid profile of plasma was ana-

lyzed by automatic HPLC and enzymatic methods. The plas-

ma levels of TG, in particular VLDL-TG, were significantly

increased in APN-KO mice compared with WT mice

(Fig. 1). However, there was no significant difference in plasma

TC, HDL-cholesterol and PL levels between APN-KO and

WT mice.
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3.2. ApoA-I levels in plasma and the liver were decreased in

APN-KO mice

Recently, we reported that APN increased the secretion of

apoA-I and decreased the release of apolipoprotein B-100

(apoB-100) from HepG2 cells. Therefore, first, plasma levels

of apolipoproteins (apoA-I and apoB-100) in APN-KO mice

were investigated by Western blot. As shown in Fig. 2A, plas-

ma levels of apoA-I were slightly decreased in APN-KO mice

compared with WT mice, while plasma concentrations of

apoB-100 were increased in APN-KO mice. Furthermore, both

the mRNA and protein levels of apoA-I in the liver were def-

initely reduced in APN-KO mice compared to WT mice

(Fig. 2B and C). However, there was no significant difference

in the mRNA levels of apoB-100 in the liver between APN-

KO and WT mice.

3.3. ABCA1 expressions were reduced in APN-KO mice

Finally, we investigated in APN-KO mice the expression lev-

els of ABC transporters (ABCA1 and ABCG1) to generate

HDL in the liver. Both the protein (Fig. 3A) and mRNA

(Fig. 3B) levels of ABCA1 were significantly decreased in the

liver of APN-KO mice compared with WT mice. However,

there was no significant difference in the levels of ABCG1 pro-

tein between APN-KO and WT mice (Fig. 3A).
Fig. 2. ApoA-I levels in plasma and the liver were decreased in APN-KO mic
by western blot. Plasma apoA-I levels were slightly decreased in APN-KO mic
were increased in APN-KO mice. (B) The mRNA and (C) the protein expre
protein of apoA-I levels were significantly reduced in the liver of APN-KO m
determined by quantitative PCR was quantified using GAPDH as an internal
4. Discussion

In the present study, we demonstrated for the first time that

the expression levels of apoA-I in plasma and the liver were de-

creased in APN-KO mice as expected from our previous report

[12]. Furthermore, we found that the ABCA1 expressions were

also reduced in APN-KO mice. These data suggest that low

plasma APN concentrations might suppress HDL assembly

in the liver, suggesting that the subjects with low serum APN

show low plasma HDL-cholesterol levels. However, there

was no significant difference in plasma HDL-cholesterol levels

between APN-KO and WT mice fed a normal chow diet de-

spite the decrease of apoA-I levels in plasma and the liver of

APN-KO mice. There might be some difference in the lipid

composition of HDL particles, for example, in the apoA-I

mass of HDL particles between APN-KO and WT mice.

Abnormal HDL particles with low apoA-I concentrations

might have a decreased ability in promoting cholesterol efflux

to prevent against atherosclerosis.

Recently, Otabe et al. reported that overexpression of hu-

man APN in transgenic mice results in suppression of visceral

fat accumulation and reduction of plasma fasting glucose,

insulin and leptin levels compared with WT mice [15]. How-

ever, these differences were observed only when mice were
e. (A) Analysis of plasma apolipoprotein (apoA-I and apoB-100) levels
e (n = 3) compared with WT mice (n = 3), while plasma apoB100 levels
ssion levels of apoA-I or apoB-100 in the liver. Both the mRNA and
ice (n = 5) compared with WT mice (n = 5). Relative gene expression

control. Values are expressed as means ± S.D. *P < 0.05, vs. WT mice.



Fig. 3. ABCA1 expressions were reduced in the liver of APN-KO
mice. Both the protein (in A) and mRNA (in B) levels of ABCA1 were
significantly reduced in the liver of APN-KO mice (n = 5) compared
with WT mice (n = 5). Relative gene expression determined by
quantitative PCR was quantified using GAPDH as an internal control.
Values are expressed as means ± S.D. *P < 0.05, vs. WT mice.
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fed a high fat/high sucrose diet, but not a normal chow diet. In

our study, the lipid profiles of APN-KO mice were examined

with feeding only a normal chow diet. The effect of APN on

some parameters including HDL-cholesterol levels might be

dependent on the nutritional condition. Therefore, possibly,

low plasma HDL-cholesterol might be observed in APN-KO

mice fed with over nutrition like a high cholesterol/high fat

diet. These issues will be studied in the near future.

We found that apoB-100-containing lipoproteins (VLDL

and LDL)-TG, in particular, VLDL-TG levels were increased

in APN-KO mice. Recently, it is clinically focused that the

accumulation of TG-rich lipoprotein like VLDL in plasma is

also strongly linked to CAD as well as that of an atherogenic

lipoprotein, LDL [16]. Therefore, plasma VLDL accumulation

might be in part associated with the development of athero-

sclerosis in APN deficiency.

Although plasma VLDL-TG levels were significantly in-

creased in APN-KO mice, there was no significant difference

in the apoB-100 expression in the liver between APN-KO

and WT mice. As shown in our previous and Neumeier’s re-

ports [12,17], in vitro, the apoB secretion from HepG2 cells

or primary human hepatocytes was enhanced by recombinant

APN, while the mRNA expression levels of apoB were not

influenced by APN. Therefore, APN might be involved in

the assembly or secretion of VLDL in the liver, but not in

apoB-100 synthesis. Microsomal triglyceride transfer protein

(MTP) is well known to be an intracellular lipid transfer pro-

tein, closely associated with VLDL output from the liver

[18,19]. We need to examine the effect of APN on MTP expres-

sion (or activity) in the liver.

In summary, we clarified that apoA-I synthesis and ABCA1

expression in the liver were suppressed in APN-KO mice. APN

might play an important role in preventing the development of
atherosclerosis by the acceleration of HDL assembly in RCT

system.
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