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This paper describes a mathematical programing based approach for the direct limit load evaluation of a
structural system under simultaneous contact and limited displacement conditions. The contact model
we adopt can simulate either a classical unilateral (nonassociative) Coulomb friction situation or a cohe-
sive fracture idealization at the potential discontinuity interface between contacting bodies. The discrete
FE model is constructed using locking free mixed finite elements. The main feature and novelty of our
proposed approach is to compute in a single step the maximum load capacity of the structure, such that
both the imposed displacement limitations and the contact conditions are satisfied. In essence, the for-
mulation is a nontrivial extension of classical limit analysis. The analysis is cast in its most natural form,
namely in mixed static-kinematic variables, and leads to, what is known in the mathematical programing
literature, as a mathematical program with equilibrium constraints or MPEC. A nonlinear programing
(NLP) based algorithm is proposed to solve the MPEC. Two examples are provided to illustrate application
of the proposed scheme, and some comments regarding the various advantages of the adopted mathe-
matical programing framework are made.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The safety assessment of structures for which discontinuities
can arise has been the active subject of research interest over the
last decades. Damage to these structures typically occurs in a nar-
row region between two or more bodies in contact, and forms an
important consideration in various engineering applications.
Moreover, this class of structures can be challenging to analyze.
Some examples are: the failure of a concrete gravity dam promoted
by hydraulic pressure (e.g. Alfano et al., 2006; Bolzon, 2010; Bolzon
and Cocchetti, 2003); the frictional sliding contact of indented
material and conical indenter (Bellemare et al., 2007); the micro-
cracking damage of concrete-like, quasi-brittle materials (e.g. Ma-
ier et al., 1993; Tin-Loi and Que, 2001); the frictional contact
problem of homogeneous bodies (e.g. Christensen, 2002; Dong,
1999; Kanno and Ohsaki, 2011; Tin-Loi and Xia, 2001); and the
decohesion process of mortar joints in masonry structures (e.g.
Ferris and Tin-Loi, 2001; Giambanco et al., 2001; Gilbert et al.,
2006).

The analysis of structures that can form strong discontinuities is
typically carried out in an evolutive (step-by-step) fashion. With-
out doubt, a rich and full spectrum of load and deformation re-
sponses can be obtained, enabling, for instance, the behavior of
ll rights reserved.
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the structure at any prescribed load (or displacement) level to be
monitored. These step-by-step procedures will of necessity per-
form numerical integration of the constitutive laws describing
the inelastic, intrinsic path-dependent (nonholonomic) material
behavior of the structure using some iterative type (e.g. predic-
tor–corrector) algorithm often based on a consistent tangent con-
cept (e.g. Simo and Hughes, 1998; Simo and Taylor, 1985).
However, such a numerical method can involve extensive compu-
tational effort since the implementation of the current step is
based on the knowledge of the previous step. Moreover, the pres-
ence of physically instabilizing phenomena, such as strain soften-
ing, invariably adds to the already large number of iterations for
each, often very small, incremental step.

Motivated by the simplicity and, at the same time, usefulness of
so-called direct and simplified analyses typified by classical limit
(Kamenjarzh, 1996) and shakedown analyses, an increasingly
appealing alternative is to compute directly the maximum load
capacity the structure can sustain, even in the presence of such
nontraditional inclusions as nonassociativity, softening and ductil-
ity constraints.

In recent times, there has been considerable research effort in
the extension of key ideas underpinning the mathematical pro-
graming approach to classical discrete limit analyses, as pio-
neered by Maier and his colleagues (e.g. Maier, 1970, 1984;
Maier and Munro, 1982), to include such afore-mentioned con-
straints (e.g. Ardito et al., 2008; Bolzon, 2010; Bolzon and
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Cocchetti, 2003; Ferris and Tin-Loi, 2001; Tangaramvong and Tin-
Loi, 2011a). In all cases, the formulation no longer takes the form
of a classical convex nonlinear programing (NLP) problem, but
leads to an instance of the challenging class of mathematical pro-
graming problems known as a mathematical program with equi-
librium constraints or MPEC (Luo et al., 1996)—a problem type
anticipated some 30 years ago by Maier, who referred to these
as optimization under complementarity constraints (Maier,
1984; Maier and Munro, 1982). In our context, the complemen-
tarity constraints are precisely the equilibrium constraints, and
embody the necessary conditions that govern the inelastic consti-
tutive behavior of the structural system. Theoretically, such
MPECs, in view of their nonconvexity and nonsmoothness, can
pose both numerical and theoretical difficulties. However, our
computational experience is more positive, as it appears that for
practical engineering problems various NLP-based schemes can
reliably and efficiently process the MPEC (e.g. Ferris and Tin-Loi,
2001; Tangaramvong and Tin-Loi, 2011a).

The present paper provides a further contribution to the MPEC
approach for computing the limit-state capacity of structures. In
particular, we carry out a maximum load evaluation, within a small
deformation regime, of a structure subjected to conditions pertain-
ing, simultaneously, to contact and limited displacements. Elasto-
plastic material behavior can be robustly accommodated within
the mixed FE framework developed.

The main features of the proposed approach are as follows. First,
through the use of a high level mathematical programing frame-
work (GAMS—an acronym for General Algebraic Modeling System)
the handling of the nonlinear complementarity conditions (Brooke
et al., 1998), that arise due to material inelasticity and contact rela-
tions, does not require the use of any onerous outer level iterative
procedures. Second, the MPEC can be solved efficiently and reliably
by an iterative adaptation of a standard NLP solution scheme.
Third, the use of the bilinear mixed (plane stress or plane strain)
finite element (FE) developed by Capsoni and Corradi (1997a,b)
provides coarse mesh accuracy and avoids the well-known incom-
pressibility locking. Finally, the contact relations at the loci of po-
tential discontinuities can be written to either describe unilateral
and nonassociative Coulomb friction or a cohesive fracture law,
as illustrated by variants of two well-known problems, namely
regarding two elastoplastic bodies in contact (Dong, 1999) and a
concrete gravity dam subjected simultaneously to a nonlinear
exponential traction decay and a hydraulic uplift pressure (ICOLD,
1999).

As for organization of this paper, the next Section 2 presents all
the basic ingredients, namely statics, kinematics, constitutive laws
and contact conditions, governing the discrete FE model. The mod-
el appropriately assumes a path-independent (holonomic) behav-
ior since, within the context of proportionally applied load
regimes, holonomy provides a sufficiently accurate prediction of
the actual path-dependent behaviors (Tangaramvong and Tin-Loi,
2007). As a preliminary to the MPEC approach, these relations
are collected and manipulated in their most natural form to furnish
a mixed complementarity problem or MCP (Dirkse and Ferris,
1995; Rutherford, 1995). The proposed direct maximum load ap-
proach is then formulated as an MPEC. Several NLP-based algo-
rithms capable of solving the MPEC are then briefly described in
Section 3. In Section 4, two contact examples, one related to a
well-known frictional contact problem (Dong, 1999) and the other
to a benchmark concrete gravity dam (ICOLD, 1999), are provided
to illustrate application of our scheme. The accuracy of the MPEC
results is also validated using the associated stepwise holonomic
responses. Finally, some pertinent concluding remarks are drawn
in Section 5.

A word regarding notation is in order. Vectors and matrices are
indicated in bold. A real vector x of size m is indicated by x 2 Rm
and a real m� n matrix A by A 2 Rm�n. For brevity, a vector of func-
tions fðxÞ : Rm ! Rn is written simply as f 2 Rn.
2. Generic FE model

We consider a suitably discretized FE model of an elastoplastic
structure for which contact-like conditions can be enforced at
some a priori defined interface pairs. Such conditions can describe
not only Coulomb (and other) unilateral friction (Tangaramvong
and Tin-Loi, 2011a; Tin-Loi and Xia, 2001), but also a discrete cohe-
sive crack behavior (Bolzon and Cocchetti, 2003; Tin-Loi and Que,
2001).

The FE model we adopt is expressed in intrinsic, natural vari-
ables, in Prager’s generalized sense (Maier, 1970). More explicitly,
the scalar product of generalized stress Q i and strain pi vectors
represents virtual work of the element i. It is notable that rigid
body motions are precluded from such an element and the mate-
rial behavior is directly reflected by the elemental behavior.

The loads are proportionally prescribed through a single load
multiplier a and are applied as nodal forces; distributed loads are
simulated as a suitable number of equivalent concentrated forces.
Thus, within the global reference axis system, the unconstrained
nodal forces at a generic node i can be expressed as af i þ f i

d, namely
in terms of the load multiplier a, the given basic nodal forces fi and
the fixed nodal forces f i

d.
The constitutive model expressing intrinsic material and con-

tact behaviors is assumed, in the spirit of deformation theory of
plasticity, to follow a holonomic (path-independent) law. This sim-
plifying assumption entails reversibility of plastic strains and inter-
face translations, for which the existence of any local unloading is
prohibited. The governing relations can thus be conveniently writ-
ten in total quantities, rather than rate terms as for a nonholonom-
ic (path-dependent) model. The holonomy hypothesis is
reasonable since, within the assumed monotonically applied load-
ing regime, extensive unloading is unlikely to occur. Even if unloa-
dings do occur, the global responses of the structure based on
holonomic conditions are largely insensitive to such events, and
are essentially identical to those based on the exact nonholonomic
assumption (Tangaramvong and Tin-Loi, 2007).

2.1. Governing relations

In terms of well-known FE notation and description (e.g. Maier,
1970; Tangaramvong and Tin-Loi, 2011a), the governing holonom-
ic relations of the whole structural system (that has been suitably
discretized into n elements, d degrees of freedom, m natural gener-
alized stresses or strains, y plastic yield functions, c potential con-
tact points, and x contact conditions) can be written compactly as
follows:

CTQ ¼ af þ fd � CT
nrn � CT

t rt; ð1Þ
q ¼ Cu; ð2Þ
Q ¼ E q� pð Þ; ð3Þ

p ¼ @wT

@Q
k; ð4Þ

�wðQ ;p; rÞP 0; k P 0; wTk ¼ 0; ð5Þ
Vtf ¼ Ctu; ð6Þ
pn ¼ Vnf� Cnu P 0; rn P 0; pT

nrn ¼ 0; ð7Þ
pc ¼ �NT

nrn � NT
t rt þ rc P 0; f P 0; pT

c f ¼ 0: ð8Þ

In view of the assumption of a small deformation regime, both
equilibrium and compatibility conditions are linear. Equilibrium
between external forces af þ fd 2 Rd, resultant interface forces
rn; rt 2 Rc and member generalized stresses Q 2 Rm is described
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in (1). At a generic contact interface k 2 Cc , as shown in Fig. 1, the
resultant forces (namely a normal force rk

n acting along a normal
direction and a tangential force rk

t in a tangential direction) are
transmitted between a pair of contact points associated with the
two bodies I and II, where rk

n is positive in compression.
Cc ¼ f1; . . . ; cg collects a set of a priori known discrete contact
interfaces (or joints). Compatibility between the generalized
strains q 2 Rm and the nodal displacements u 2 Rd is expressed
in (2) through a constant compatibility matrix C 2 Rm�d.

The constitutive relations (3)–(5) describe a holonomic elasto-
plastic material behavior. In particular, (3) reflects linear elasticity
through an elastic (symmetric and positive definite) stiffness ma-
trix E 2 Rm�m. The associative flow rule in (4) expresses general-
ized plastic strains p 2 Rm as functions of plastic multipliers
k 2 Ry using the normality condition, thus ensuring that p is nor-
mal to the yield surface. The holonomic behavior is described by
complementarity conditions in (5) involving two sign-constrained
variables, namely yield functions w 2 Ry

6 0 and plastic multipli-
ers k P 0. Functions wðQ ;p; rÞ are assumed to be homogeneous
of order one, and thus can be expressed as functions of the general-
ized stresses Q , the generalized plastic strains p and the current
yield limits r. The complementarity conditions ðwTk ¼ 0Þ, it is
worth mentioning, establish a componentwise relationship
wj 6 0; kj P 0 and wjkj ¼ 0 for all j. Mechanically, they allow
reversibility of plastic strains, and ensure that plastic activation oc-
curs only when the stress point is on the yield surface.

For a unilateral frictional contact problem, the conditions at any
one of the contact interfaces Cc are described by the three relations
(6)–(8). Compatibility between the relative tangential displace-
ments Ctu at the contact interfaces and the associated tangential
translations Vtf is specified in (6), where Ct 2 Rc�d; Vt 2 Rc�x and
f 2 Rx. The Signorini conditions enforcing nonpenetration at the
interfaces are represented by complementarity relations in (7),
where Vn 2 Rc�x; Cn 2 Rc�d and pn 2 Rc . Clearly, the interface trac-
tions ðrn P 0Þ in the normal direction are sign-constrained, thus
ensuring compression only for nonzero values. Finally, the contact
constitutive law is represented by a further complementarity rela-
tion in (8) and describes the conditions defining activation and
deactivation of the contact interfaces, where Nn; Nt 2 Rc�x and
rc;pc 2 Rx. It is worth noting that the described contact law be-
comes associative if the pair of transformation matrices Nn and
Vn (Nt and Vt) are identical, i.e. Nn ¼ Vn and Nt ¼ Vt .

For a cohesive crack problem, the two sets of relations (6) and
(8) are retained, and (7) must be replaced by

Vnf ¼ Cnu: ð9Þ

The compatibility relations in (9) permit tensile tractions in the nor-
mal direction, as is necessary during a cohesive crack propagation.
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Fig. 1. Generic contact interface k.
2.2. Holonomic state problem

The holonomic state problem is formulated by simply collecting
the four basic ingredients, namely statics (1), kinematics (2), mate-
rial laws (3)–(5) and contact relationships (6)–(8) for the frictional
contact problem or (6), (8), (9) for the cohesive fracture problem. In
terms of mixed static-kinematic variables ðQ ;u; k; rn; rt ; fÞ, the state
problems can then be written as follows.

For the frictional contact problem:

CTQ þ CT
nrn þ CT

t rt � af � fd ¼ 0;

Q � E Cu� @wT

@Q
k

� �
¼ 0;

�wðQ ;p; rÞP 0; k P 0; wTk ¼ 0;
� Ctuþ Vtf ¼ 0;

pn ¼ Vnf� Cnu P 0; rn P 0; pT
nrn ¼ 0;

pc ¼ �NT
nrn � NT

t rt þ rc P 0; f P 0; pT
c f ¼ 0:

ð10Þ

For the cohesive fracture problem:

CTQ þ CT
nrn þ CT

t rt � af � fd ¼ 0;

Q � E Cu� @wT

@Q
k

� �
¼ 0;

�wðQ ;p; rÞP 0; k P 0; wTk ¼ 0;
� Ctuþ Vtf ¼ 0;
� Cnuþ Vnf ¼ 0;

pc ¼ �NT
nrn � NT

t rt þ rc P 0; f P 0; pT
c f ¼ 0:

ð11Þ

Both of these systems (10) or (11) are square and involve com-
plementarity relations. They can be recognized as being special in-
stances of a class of important mathematical programing
problems, namely MCPs (e.g. Dirkse and Ferris, 1995; Rutherford,
1995). These problems are similar to the more well-known linear
complementarity problem or LCP (Cottle et al., 1992), except that
the MCP additionally contains free variables and can accommodate
nonlinear relations, such as the nonlinear yield ðwÞ and contact
ðpcÞ functions, in our case.

For a holonomic analysis under load control, the response of the
structure associated with a prescribed load multiplier a can be ob-
tained by solving either MCP (10) for the frictional contact problem
or MCP (11) for the cohesive crack problem. To obtain a full spec-
trum of holonomic structural responses, a series of MCP solves cor-
responding to various prescribed load levels a will need to be
carried out. Usually, the presence of nonlinear constitutive rela-
tions requires the use of some iterative type numerical technique
(e.g. Simo and Hughes, 1998; Simo and Taylor, 1985). In our case,
we avoid this by processing the problem directly as an MCP by
using the industry-standard solver GAMS/PATH (Dirkse and Ferris,
1995) available from within the powerful GAMS mathematical
programing framework (Brooke et al., 1998).

2.3. Direct maximum load evaluation as an MPEC

The current subsection outlines the main idea underpinning our
proposed direct maximum or limit load evaluation approach. It not
only preserves the advantageous single-step feature of the classical
limit analysis approach, but it can also cater for additional con-
straints that are associated with contact, fracture and serviceability
limits.

Our starting point is the appropriate MCP (10) or (11), for which
a is prescribed. If we now treat the driving parameter a as a vari-
able, we can easily set up an optimization problem to attempt its
maximization. The constraints of this maximization problem are
explicitly given by (10) or (11). Any additional constraints, such
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as displacement limits at specific points, can be simply added to
the problem.

The formulations for direct maximum load method can then be
written as the following (nonstandard) optimization problems in
variables ða;Q ;u; k; rn; rt ; fÞ.

For the frictional contact problem:

maximize a
subject to MCP ð10Þ

displacement and other constraints:
ð12Þ

For the cohesive fracture problem:

maximize a
subject to MCP ð11Þ

displacement and other constraints:
ð13Þ

Problems (12) and (13) are nonstandard in view of the comple-
mentarity (or so-called equilibrium constraints in mathematical
programing). They both belong to the challenging class of optimi-
zation programs, known in the literature as an MPEC (Luo et al.,
1996).

MPECs originated in the form of ‘‘bilevel’’ programs in the
1970s, and has since become an active area of study both for its
theoretical value and practical application in engineering and eco-
nomics (Ferris and Pang, 1997). The presence of the complemen-
tarity constraints makes an MPEC disjunctive, and its solution is
therefore often associated with severe computing costs, as would
be expected of any combinatorial problem. In addition, the feasible
region of the MPEC is not necessarily convex and may not even be
connected. The monograph of Luo et al. (1996) provides an in-
depth theoretical treatment (and some optimality conditions) of
MPECs. However, the development of algorithms, guaranteed to
converge and capable of processing successfully practical and
large-size MPECs likely to arise in realistic applications, has yet
to be achieved.

In spite of these difficulties, we have had considerable success
in solving MPECs that arise in various engineering mechanics
applications (e.g. Tangaramvong and Tin-Loi, 2011a,b; Tin-Loi
and Que, 2001). Although we cannot guarantee convergence
(let alone a global optimum), we have been able to obtain practi-
cally significant and in most cases verifiable solutions. The partic-
ular approach we have used involves reformulating the MPEC as a
standard NLP problem by suitably transforming the complemen-
tarity conditions. Some of these iterative NLP-based schemes are
described in the following section.
3. MPEC solution approaches

The generic solution approach we adopt to solve an MPEC, such
as the one given in (12) or (13), exploits the use of some parametric
reformulation that transforms the MPEC into a standard NLP prob-
lem. In essence, the nonconvex complementarity constraints are
parameterized by a positive scalar l, such that the original comple-
mentarity conditions become increasingly satisfied as l is in-
creased (or decreased, depending on the particular
implementation). The reformulated MPEC therefore needs to be
solved as a series of NLP subproblems with the aim of satisfying
complementarity.

Such schemes are attractive since each subproblem is a stan-
dard NLP problem, and any general purpose NLP solver can be
used. In our study, we used the GAMS/CONOPT solver (Drud,
1994).

Several such MPEC reformulations have been developed. The
three we have implemented are named after the way complemen-
tarity is treated. They are: penalization, smoothing and relaxation.
For simplicity of exposition, let us write the complementarity con-
dition as a P 0; b P 0 and ab ¼ 0.

(a) Penalization transfers all complementarity terms to the
objective function, and penalizes them as �lab. The penalty
parameter l is increased at each NLP iterate (e.g. Bolzon and
Cocchetti, 2003; Tangaramvong and Tin-Loi, 2011b) until the
required tolerance on the complementarity term has been
reached.

(b) Smoothing replaces a complementarity condition using
some smoothing equation. The particular one we prefer is
the well-known Fischer-Burmeister function (Kanzow,
1996): wlða; bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ 2l

q
� ðaþ bÞ. The function wl

has the property that wlða; bÞ ¼ 0 if and only if a P 0,
b P 0 and ab ¼ l. The parameterization wl is a smoothing
of the mapping wl¼0 implying that it is differentiable for
nonzero l. Again a series of NLP subproblems are solved
while iteratively reducing the smoothing parameter l (e.g.
Tangaramvong and Tin-Loi, 2011a; Tin-Loi and Que, 2001).

(c) Relaxation replaces complementarity by its relaxed version
ðab 6 lÞ. Smaller values of l are successively applied to
the NLP subproblems (e.g. Ferris and Tin-Loi, 2001; Tanga-
ramvong et al., 2011).

The best method appears to be problem dependent. Moreover,
from the large number of numerical examples we have tested, all
these three NLP-based approaches had no difficulty in solving the
MPECs given in (12) and (13). The penalty approach performed
better in terms of efficiency and robustness, and is thus our pre-
ferred scheme.

The penalty subproblems for our MPECs can be written as
follows.

For the friction contact problem:

maximize a� l �wTkþ pT
c fþ pT

nrn
� �

subject to CTQ þ CT
nrn þ CT

t rt � af � fd ¼ 0;

Q � E Cu� @wT

@Q
k

� �
¼ 0;

�wðQ ;p; rÞP 0; k P 0;
� Ctuþ Vtf ¼ 0;
pn ¼ Vnf� Cnu P 0; rn P 0;

pc ¼ �NT
nrn � NT

t rt þ rc P 0; f P 0;
displacement and other constraints:

ð14Þ

For the cohesive fracture problem:

maximize a� l �wTkþ pT
c f

� �
subject to CTQ þ CT

nrn þ CT
t rt � af � fd ¼ 0;

Q � E Cu� @wT

@Q
k

� �
¼ 0;

�wðQ ;p; rÞP 0; k P 0;
� Ctuþ Vtf ¼ 0;
� Cnuþ Vnf ¼ 0;

pc ¼ �NT
nrn � NT

t rt þ rc P 0; f P 0;
displacement and other constraints:

ð15Þ

A negative penalty, either �l �wTkþ pT
c fþ pT

nrn
� �

or
�l �wTkþ pT

c f
� �

is used because of the maximization requirement.
The penalty algorithm attempts to iteratively solve NLP (14) or

(15) for successively higher values of l until a preset tolerance on
the complementarity (e.g. �wTkþ pT

c fþ pT
nrn 6 10�6 or

�wTkþ pT
c f 6 10�6) has been achieved.
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4. Illustrative examples

Two examples, often used as benchmark structures (albeit with
differing properties), are provided in this section to illustrate appli-
cation of the proposed direct limit load approach.

The first example (Dong, 1999) concerns two blocks in unilateral
frictional contact. In addition to purely elastic blocks as used in the
source example, we also considered the case of two plane strain
blocks made of a von Mises elastoplastic material. The second
example considers the failure analysis of the well-known concrete
gravity dam referenced by the International Committee on Large
Dams (ICOLD, 1999). This example has often been used as a bench-
mark to test various numerical algorithms (e.g. Alfano et al., 2006;
Bolzon, 2010; Bolzon and Cocchetti, 2003). In our study, Mode I
quasibrittle fracture was assumed along a priori known potential
damaging interfaces. Two cases, namely one realistically account-
ing for hydraulic uplift pressure and the other assuming a perfect
drainage (thus eliminating uplift pressure) were analyzed.

For both examples, the accuracy of the direct limit load evalua-
tion was validated through a comparison with the associated step-
wise holonomic structural responses. Such stepwise holonomic
analyses, it is worth mentioning, provide not only a sufficiently accu-
rate prediction of the actual path-dependent structural behavior
(Tangaramvong and Tin-Loi, 2011b), but can also be carried out very
efficiently through an active set strategy (e.g. Ardito et al., 2008; Tan-
garamvong and Tin-Loi, 2011b) that considers only the yield func-
tions likely to be active during the specified incremental step.

Both the direct limit load approach and the stepwise holonomic
analysis were implemented as MATLAB codes, linked to the GAMS
mathematical programing environment through a MATLAB-GAMS
interface (Ferris, 1998). The solvers adopted were CONOPT and
PATH for the NLP and MCP runs, respectively. For all MPEC runs,
the penalty algorithm was started with an initial parameter of
l ¼ 1 that was iteratively increased (l ¼ 10l) for each iteration
until a complementarity tolerance of 10�6 has been achieved. For
comparison, we also solved both examples with the smoothing
and relaxation algorithms which, similarly, used an initial param-
eter of l ¼ 1, an iterative parameterized reduction of l ¼ l=10
and a complementarity tolerance of 10�6. The CPU times reported
are for a 3-GHz Pentium personal computer with 4 GB RAM, run-
ning WinXP.

The 4-node bilinear mixed FE of Capsoni and Corradi (1997a,b)
was used to model both examples. This special element, developed
using mixed variational principles, has been constructed such that
various (four kinematic and two static) fields are modeled inde-
pendently. The element satisfies both ellipticity and inf-sup condi-
tions (Bathe, 2001) without any adjustable factor, and hence
ensures stability and optimality of the developed discretization
scheme. Some of its prominent features are: locking free behavior,
stress redistribution capability during plastic spreading, weak dis-
tortion sensitivity and coarse mesh accuracy.

Our implementation of this mixed FE follows the work of Cap-
soni and Corradi (1997a,b) and is briefly described, in the follow-
ing, for the sake of completeness.

For each generic element i, the stress field expresses the in-
plane stresses riTðxÞ 2 R3 ¼ ½rx;ry;rxy� as functions of the general-
ized stresses Q iT 2 R5 ¼ ½Q T

0 Q T
1 � by

ri ¼ siðxÞQ i; ð16Þ

where

siðxÞ ¼ 1
X

I3 s1ðxÞ½ � 2 R3�5;

x 2 R2 ¼ ðn;gÞ contains standard natural coordinates ranging from
�1 to 1; I3 2 R3�3 is a 3� 3 identity matrix, s1ðxÞ 2 R3�2 a stress
matrix, and X an element area. Q 0 2 R3 and Q 1 2 R2 define, respec-
tively, constant and higher-order stress modes such that the gener-
alized stresses Q i preclude overall rigid body motions.

Similarly, the generalized total strains qi 2 R5 (and the general-
ized plastic strains pi 2 R5) conjugate with Q i consist of constant
q0 2 R3 (and p0 2 R3) and higher-order q1 2 R2 (and p1 2 R2)
strain modes. Locking is ruled out by appropriately selecting the
plastic strain field so that the incompressibility condition is en-
forced for the constant plastic strain modes. Thus, the particular
in-plane plastic strains piTðxÞ 2 R3 ¼ ½px;py;pxy� can be written
as functions of pi:

piðxÞ ¼ hi
3ðxÞpi; ð17Þ

where

hi
3ðxÞ ¼ I3 h1ðxÞ þ h2ðxÞR½ � 2 R3�5:

h1ðxÞ 2 R3�2 defines a strain matrix, h2ðxÞ 2 R3�2 an enhanced
strain matrix, and R 2 R2�2 a linear transformation matrix. Descrip-
tions of key quantities, such as s1ðxÞ, h1ðxÞ; h2ðxÞ and R, together
with elemental compatibility Ci and elastic stiffness Ei matrices in
(1)–(3) are given in Appendix A.

When plasticity is involved, the von Mises yield criterion for
plane strain problems (typically describing the failure of tensile-
weak materials) are enforced at 2� 2 Gauss points of each element
i. The governing yield functions wiðQ i;pi; riÞ 2 R4 in (5) for a per-
fectly plastic member i are thus

wi ¼
Z

X
LTðxÞ

ffiffiffiffiffiffiffiffiffiffiffi
siðxÞ

q
tJdx� ri

6 0; ð18Þ

where

siðxÞ ¼ 1
2

Q iT siTðxÞM1siðxÞ
� �

Q i �Q iT siTðxÞM2hi
3ðxÞ

� �
pi

þpiT hiT
3 ðxÞM3hi

3ðxÞ
� �

pi; ri ¼
Z

X
LTðxÞr0tJdx;

M1 ¼ ATmA; M2 ¼ EllT; M3 ¼
E2

ð1�2mÞ2
llT;

m¼
2 �1 0
�1 2 0
0 0 6

2
64

3
75; A¼

1� m �m 0
�m 1� m 0
0 0 1

2
64

3
75; l¼

1
1
0

2
64
3
75:

J is a determinant of the Jacobian matrix and t an elemental
thickness (assumed to be of unit value).

A row matrix LðxÞ ¼ ½ L1ðxÞ L2ðxÞ L3ðxÞ L4ðxÞ � collects
LgðxÞ ¼ 0:25ð1þ 3ngnÞð1þ 3gggÞ for all g 2 f1; . . . ;4g, where ng ;gg

are the Gauss point coordinates ð�1=
ffiffiffi
3
p
Þ. The equivalent in-plane

functions wi in (18) describe the influences of transverse yield
components through a fictitious kinematic hardening. This de-
creases the computational burden caused by the presence of
non-vanishing transverse plastic strains pz (Capsoni and Corradi,
1995).

The normality condition in (4) for element i can be written by

@wiT

@Q i ¼
Z

X

siTðxÞM1siðxÞ
� �

Q i � siTðxÞM2hi
3ðxÞ

� �
pi

2
ffiffiffiffiffiffiffiffiffiffiffi
siðxÞ

p LðxÞtJdx: ð19Þ
4.1. Example 1: two blocks in frictional contact

This example consists of two plane strain rectangular blocks I
and II (see Fig. 2a), supported by a smooth vertical wall and hori-
zontal ground (Dong, 1999); v defines the horizontal displacement
at the right edge of the top surface of block II.

A constant uniformly distributed force of 19.62 kN mm�1) was
vertically applied at upper surface GF of block I, whilst at surface
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Fig. 3. Example 1: general friction law at generic frictional contact k.
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BC of block II a horizontal uniform load of 9:81a kN mm�1 was pro-
portionally prescribed.

At the interface DE connecting blocks I and II, unilateral nonas-
sociative ð/ – uÞ Coulomb ðu ¼ 0Þ frictional surfaces were
adopted as in Fig. 3, where / and u denote the friction and dilat-
ancy angles, respectively. Thus, for a contact interface k, the gov-
erning three relations (6)–(8) become

Nk
n ¼

� sin /

� sin /

	 

; Nk

t ¼
cos /

� cos /

	 

; Vk

n ¼
0
0

	 

; Vk

t ¼
1
�1

	 

;

rk
c ¼

0
0

	 

: ð20Þ

For the elastic range, an isotropic elastic material with an elastic
modulus of E ¼ 206 kN mm�2 and a Poisson ratio of m ¼ 0:3 was
assumed.

Two sets of analysis cases, each with three friction coefficients
(namely tan / ¼ 0:25; 0:5 and 1) were carried out as follows: (a)
elastic only, and (b) elastic-perfectly plastic von Mises material
with a yield stress of r0 ¼ 25 kN mm�2.

Our FE model (Fig. 2b) consists of 94 elements, 235 degrees of
freedom, 470 natural generalized stresses (or strains), 376 plastic
yield functions, 9 contact points and 18 contact conditions.

(a) Purely elastic. The results of stepwise holonomic analyses
with an incremental step of 0:1 are displayed in Fig. 4 as a� v
responses. The computed results agree well with the reported ones
(Dong, 1999). As is clear, the initial responses are linear (elastic)
and subsequently deviate from linearity as the translations are
progressively activated at the contact points along DE, until the
maximum load capacities were reached at a ¼ 0:667; 1:333 and
2:667 for tan / ¼ 0:25;0:5 and 1, respectively.

For an imposed displacement constraint of v 6 25 mm, we then
carried out a direct limit load analysis, based on our MPEC formu-
lation (12), for each of the three frictional coefficients. The three
MPEC algorithms computed identical limit load results of
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Fig. 2. Example 1: two blocks in frictional contact (a) geometry and loading, (b)
mixed FE model.

1 2 3 4 5 6 7 8 9
0

1

2

3

4

interface number

sl
id

in
g 

di
sp

la
ce

m
en

t (

tanφ = 1.0

Fig. 5. Example 1: distribution of sliding interface translations at limit load of
elastic blocks.
alim ¼ 0:667; 1:044 and 1:073 for tan / ¼ 0:25; 0:5 and 1, respec-
tively. The computing times for each of the three frictional values
were only a few seconds, namely 1 s, 3 s and 2 s for the penalty,
smoothing and relaxation algorithms, respectively. Their accuracy
is clearly validated by the associated stepwise holonomic re-
sponses, as shown in Fig. 4 (MPEC results are plotted as open dots).
It should be noted that for the two higher friction values of
tan / ¼ 0:5 and 1:0, the inclusion of this displacement constraint
degrades the maximum load capacity of the structure concerned,
whilst this does not influence the limit load for the low friction
ðtan / ¼ 0:25Þ case as the maximum load was reached before the
establishment of the imposed displacement limit. Sliding interface
translations associated with the limit load for each frictional case
are shown in Fig. 5.
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Fig. 7. Example 1: plastic locations at limit load of elastoplastic blocks (a)
tan / ¼ 0:25, (b) tan / ¼ 0:5 and (c) tan / ¼ 1:0, where � denotes plastic zone.
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Fig. 8. Example 1: distribution of sliding contact translations at limit load of
elastoplastic blocks.
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(b) Elastoplastic. The results of the stepwise holonomic analyses
with a finite step of 0:1 are plotted in Fig. 6, again as a� v curves.
The influence of material nonlinearity is apparent for the higher
friction values of tan / ¼ 0:5 and 1:0. For these instances, plastic
failure occurred before failure by sliding at the interface, at the
limit loads of a ¼ 1:028 and 1:038 for tan / ¼ 0:5 and 1:0, respec-
tively. For tan / ¼ 0:25, on the other hand, collapse is still governed
(as in the purely elastic case) by sliding so that the limit load
remained at a ¼ 0:667.

For the displacement constraint of v 6 25 mm, each of the three
proposed single-step MPEC approaches successfully computed the
maximum loads of alim ¼ 0:667; 0:862 and 0:881 corresponding,
respectively, to the friction coefficients of tan / ¼ 0:25; 0:5 and
1:0. The computing times reported were: 8 s (penalty), 66 s
(smoothing) and 17 s (relaxation) for tan / ¼ 0:25 ; 5 s (penalty),
63 s (smoothing) and 16 s (relaxation) for tan / ¼ 0:5; and 4 s
(penalty), 83 s (smoothing) and 15 s (relaxation) for tan / ¼ 1.
Clearly, for this example, the penalty approach is the most efficient
and robust MPEC solution scheme. The obtained results are plotted
as open dots on their associated stepwise holonomic curves in
Fig. 6. Locations at which plasticity developed as well as sliding
contact translations corresponding to the limit load for each of
the frictional cases are drawn in Figs. 7 and 8, respectively.

4.2. Example 2: concrete gravity dam

The second example concerns the safety assessment of the con-
crete gravity dam (ICOLD, 1999) shown in Fig. 9a, where v denotes
an opening displacement at the left end of the foundation interface
and h a top sway displacement at the left corner of the structure.
The concrete dam is supported by a rigid rock foundation, for
which both bulk concrete and foundation rock are impervious. Its
structural safety is assessed as the maximum (overflow) overtop-
ping water level, defined by a (unit-m), that can be sustained by
the dam structure whilst simultaneously satisfying imposed ser-
viceability constraints of v 6 0:06 m and h 6 0:08 m. At the inter-
face Cc between the concrete dam and the solid foundation (see
Fig. 9a), cohesive fracture can be caused by hydraulic pressure
(water weight of cw ¼ 10 kN m�3) and is resisted by the concrete
self-weight of cc ¼ 24 kN m�3 and the interface strength. An isotro-
pic elastic material with E ¼ 24� 106 kN m�2 and m ¼ 0:15 was as-
sumed. This homogeneous plane strain structure was modeled
with the bilinear mixed FE described.

In view of the isotropic elastic material assumption, the two plas-
ticity relations (4) and (5) are eliminated, and thus the governing di-
rect limit load formulation (13) takes the following reduced form:

maximize a

subject to CTQ þ CT
nrn þ CT

t rt � af � fd ¼ 0;
Q � ECu ¼ 0;
� Ctuþ Vtf ¼ 0;
� Cnuþ Vnf ¼ 0;

pc ¼ �NT
nrn � NT

t rt þ rc P 0; f P 0; pT
c f ¼ 0;

displacement conditions:

ð21Þ
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Fig. 9. Example 2: concrete gravity dam (a) geometry and loading, (b) mixed FE model.
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Fig. 10. Example 2: stepwise holonomic a� v responses.
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The complementarity conditions in (21) describe crack propa-
gation along the potential interface Cc .

We assumed that any fracture at interface Cc follows a cohesive
Mode I model. For a generic interface point k, the adopted quasi-
brittle fracture law is

pk
c ¼ rk

n þ rk
c P 0; fk P 0; pk

cf
k ¼ 0; for all k 2 Cc; ð22Þ

where the traction force rk
n in (22), it is recalled, is positive in com-

pression, the tensile traction capacity rk
cðf

kÞ is written in terms of an
auxiliary variable fk and can be expressed by the following expo-
nential traction decay:

rk
c ¼ roe�bfk

; ð23Þ

where ro and b denote the initial tensile strength and its degrading
rate, respectively. Clearly, as the damage ðfk > 0Þ progresses gradu-
ally, the strength rk

c at an interface k decays dramatically. As is often
the case of an imperfect drainage system, hydraulic uplift pressure
must be further considered (see Fig. 9a) at the foundation base,
when a cohesive crack opening has been established ðfk > 0Þ. This
uplift pressure pk

cðf
kÞ is represented by an equivalent external force

appropriately applied at the relevant interface point k, and takes the
following form:

pk
c ¼ poð1� e�qfkÞ; ð24Þ

where po is the water pressure at the foundation level and q indi-
cates uplift pressure distribution. Obviously, q ¼ 0 defines no uplift
pressure, whilst q!1 a uniform pressure distribution.

Two uplift pressure distributions, namely a perfect drainage
ðq ¼ 0Þ and an intermediate value of q ¼ 33:33, were studied.
The prescribed cohesive fracture relations in (22)–(24) were ap-
plied to all interface points of Cc , where the parameters ro ¼ 300
kN-m �2 and b ¼ 3333 were adopted throughout.

The FE model (Fig. 9b) consists of 500 elements, 1158 degrees of
freedom, 2500 generalized stresses (or strains), 91 contact points
and 91 contact conditions.

Two analyses, namely a stepwise holonomic analysis with an
incremental overflow step of 2 m and the proposed direct MPEC
limit load approach under displacement constraints of v 6 0:06
m and h 6 0:08 m, were carried out. In the presence of softening,
physically instabilizing and difficult to capture phenomena such
as bifurcation, snapback and snapthrough behaviors can occur.
We have therefore incorporated a special enumerative scheme
(Tin-Loi and Tseng, 2003) to detect and capture such events (if they
exist) in our stepwise holonomic algorithm.

For a perfect drainage ðq ¼ 0Þ, the computed stepwise holo-
nomic a� v (and a� h) responses are shown as dashed lines in
Figs. 10 and 11. The diagrams indicate an initial steep increase in
the overall load capacity, followed later by a gradual flattening as
a ¼ 47:306 was approached. The analysis was terminated at an
excessive displacement of v ¼ 0:15 m and a ¼ 44:377, when the
overflow hydraulic pressure at the upstream face extensively pro-
moted crack openings along the interface Cc.

The direct, single-step analysis was successfully solved as an
MPEC. The three MPEC algorithms gave identical limit load results
of alim ¼ 37:767, but at different computational expenses, namely
16 s, 117 s and 45 s for the penalty, smoothing and relaxation ap-
proaches, respectively. The computed result is plotted as an open
dot on the associated stepwise holonomic responses in Figs. 10
and 11. The limit overflow water level obtained clearly satisfies
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Fig. 12. Example 2: distribution of crack opening displacements at limit overflow
level along Cc .
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the displacement limits (thin lines). The corresponding crack open-
ing distribution (dashed line) along the interface Cc is shown in
Fig. 12.

For the imperfect drainage case, namely q ¼ 33:33, the com-
puted stepwise holonomic a� v and a� h curves (solid lines in
Figs. 10 and 11, respectively) initially showed similar responses
to those of the perfect drainage case (dashed lines). Differences la-
ter occur due to the nonlinear softening behavior assumed. The
hydraulic uplift pressure acting in the crack opening induced sig-
nificant reduction in the overall load capacity of the dam. A maxi-
mum overtopping water level of a ¼ 23:643 (with v ¼ 0:012 m and
h ¼ 0:039 m) was attained, some 87% less when compared with the
perfect drainage result. This, incidentally, emphasizes the need to
incorporate hydraulic uplift pressure for a realistic safety assess-
ment of the gravity dam to be achieved.

All three MPEC approaches for the imposed displacement condi-
tions similarly gave alim ¼ 23:643. Once again, the penalty algo-
rithm consumed significantly less computing resources, namely
only 20 s, as compared to the smoothing (110 s) and relaxation
(43 s) approaches. The result is shown as an open dot on the asso-
ciated stepwise holonomic curves in Figs. 10 and 11. For this case,
the imposed serviceability requirements did not affect the maxi-
mum overtopping water capacity of the structure concerned, since
the peak water level was actually reached prior to the attainment
of limited displacements. The crack opening displacement distri-
bution along interface Cc corresponding to this limit is shown as
a solid line in Fig. 12.
5. Concluding remarks

This paper presents a direct optimization approach to evaluate
the maximum load of structures that are subjected to simulta-
neous contact and displacement limitation conditions. The pro-
posed scheme preserves the distinctive and appealing feature of
classical limit analysis in that it furnishes efficiently and robustly,
in a single step analysis, an upper bound to the maximum load of
the structure. Two contact-like mechanics applications, namely
unilateral Coulomb frictional contact of multi elastoplastic bodies
and a cohesive fracture along potential failure interfaces, have
been the focus of this study. Such problems are difficult to handle
by marching (step-by-step) analyses: the former involves nonasso-
ciative Coulomb friction (no dilation during sliding), whilst the lat-
ter involves the instabilizing, softening effects caused by the decay
of tractions within the process zone.

The governing formulation for our extended limit analysis ap-
proach takes the form of a challenging class of mathematical pro-
grams, known as an MPEC. It is well-known that the presence of
complementarity constraints (in our case arising from the plastic
constitution and contact requirements) can pose formidable com-
putational challenges for its solution. However, drawing on our
previous computational experience in the solution of MPECs in
engineering mechanics, we successfully processed the MPEC,
transformed into a standard, but iterative, NLP problem using a
suitable parametric reformulation. Of these transformation
schemes, the penalty NLP-based algorithm appears to be the most
robust and effective and successfully solved all problem instances
we have tried.

Two examples, often used in the contact and fracture literature,
are given to illustrate application of the MPEC approach. All FE
models have been constructed using our implementation of a plane
strain mixed FE, the key ideas of which were developed by Capsoni
and Corradi (1997a,b). Such an element offers various benefits, the
main ones being a locking free capability and coarse mesh accu-
racy. The MPEC results have been validated for their accuracy
through a comparison with the corresponding stepwise holonomic
responses.

Straightforward yet fruitful extension of the present work in-
cludes application of the MPEC approach to other important engi-
neering mechanics problems, such as mixed mode fracture; 3D FE
problems; and elastoplastic plates and shells often used as energy
absorbers or bumpers and for which the effects, on maximum load
capacity, of potentially large deformations or energy dissipation
may need to be assessed.
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Appendix A. Descriptions of key quantities for mixed FE
(Capsoni and Corradi, 1997a,b)

For an isoparametric 4-node bilinear element i, the actual and
natural coordinates are defined as X 2 R2 ¼ ðX;YÞ and
x 2 R2 ¼ ðn;gÞ, respectively. Both the nodal and natural coordi-
nates for each element i are collected in the vector forms:

Xi ¼

X1

X2

X3

X4

2
6664

3
7775; Yi ¼

Y1

Y2

Y3

Y4

2
6664

3
7775; ni ¼

�1
1
1
�1

2
6664

3
7775; gi ¼

�1
�1
1
1

2
6664

3
7775: ðA:1Þ

The Jacobian matrix JðxÞ 2 R2�2 is
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J ¼
J11 J12

J21 J22

	 

; ðA:2Þ

where J11 ¼ 0:25XT
i ðni þ gcÞ; J12 ¼ 0:25YT

i ðni þ gcÞ, J21 ¼ 0:25XT
i ðgiþ

ncÞ; J22 ¼ 0:25YT
i ðgi þ ncÞand cT ¼ ½1 �1 1 �1 �. Then, the deter-

minant JðxÞ of the Jacobian matrix can be written as

J ¼ J0 þ nJn þ gJg; ðA:3Þ

where J0 ¼ YT
i m0Xi; Jn ¼ YT

i mnXi; Jg ¼ YT
i mgXi;m0 2 R4�4 ¼ ðgin

T
i

�nig
T
i Þ=16; mn 2 R4�4 ¼ ðcnT

i � nicTÞ=16 and mg 2 R4�4 ¼ ðgic
T

�cgT
i Þ=16. We further define the transformation matrix

TðxÞ 2 R3�3 as

T ¼
J2

11 J2
21 2J11J21

J2
12 J2

22 2J12J22

J11J12 J21J22 J11J22 þ J12J21

2
64

3
75: ðA:4Þ

It is noted that a superscript 0 denotes the values of the relevant
quantities calculated at the element centroid, e.g. J0 ¼ Jð0;0Þ and
T0 ¼ Tð0;0Þ.

Therefore, the key matrices s1ðxÞ; h1ðxÞ and h2ðxÞ in (16) and
(17) are defined by

s1ðxÞ ¼ T0

3g� Jg=J0 0

0 3n� Jn=J0

0 0

2
64

3
75; ðA:5Þ

h1ðxÞ ¼
J0

J
ðT0Þ�T

g 0
0 n

0 0

2
64

3
75; ðA:6Þ

h2ðxÞ ¼
J0

J
ðT0Þ�T

n 0
0 g
0 0

2
64

3
75: ðA:7Þ

The description of R in (17) satisfies the following relationship:

lTðh1ðxÞ þ h2ðxÞRÞ ¼ 0; ðA:8Þ

where lT ¼ ½1 1 0 �.
The element compatibility matrix Ci 2 R5�8 in (1) and (2) is

Ci ¼
bn 0 bg J0

11c J0
21c

0 bg bn J0
12c J0

22c

" #T

; ðA:9Þ

where the vectors a;bn; bg; c 2 R1�4 are obtained by

a bn bg c
� �T ¼ a Xi Yi c½ ��1 ðA:10Þ

and aT ¼ ½1 1 1 1 �. Finally, the element stiffness matrix
Ei 2 R5�5 in (3) is given as follows:

Ei ¼
XtD 0

0 E11 � E12E�1
22 E21

	 

; ðA:11Þ

where Eab 2 R2�2 ¼
R

X hT
aðxÞDhbðxÞtJdx and D 2 R3�3 is the classical

element elastic matrix of an isotropic (plane stress or plane strain)
material. The complete expressions and derivations for this mixed
FE can be found in Capsoni and Corradi (1997a,b).
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