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Abstract Almost all work on model-based diagnosis (MBD) potentially presumes faults are per-

sistent and does not take intermittent faults (IFs) into account. Therefore, it is common for diag-

nosis systems to misjudge IFs as permanent faults (PFs), which are the major cause of the

problems of false alarms, cannot duplication and no fault found in aircraft avionics. To address this

problem, a new fault model which includes PFs and IFs is presented based on discrete event systems

(DESs). Thereafter, an approach is given to discriminate between PFs and IFs by diagnosing the

current fault. In this paper, the regulations of (PFs and IFs) fault evolution through fault and reset

events along the traces of system are studied, and then label propagation function is modified to

account for PFs and the dynamic behavior of IFs and diagnosability of PFs and IFs are

defined. Finally, illustrative examples are presented to demonstrate the proposed approach, and

the analysis results show the fault types can be discriminated within bounded delay if the system

is diagnosable.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.
Open access under CC BY-NC-ND license.
1. Introduction

Fault diagnosis is a crucial and challenging task in the auto-
matic control of large complex systems.1,2 However, diagnosis
systems such as built-in test equipments (BITE) have not
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performed as efficiently as expected. The primary contributor
to its inefficiency is misjudging intermittent faults (IFs) as per-

manent faults (PFs), which is the major cause of the problems
of false alarms (FAs), cannot duplication (CND) and no fault
found (NFF). It has negatively impacted maintenance costs

and mission readiness.3–7 When a fault is detected, and is as-
sumed permanent (without analyzing whether it is or not),
two steps are usually carried out: (A) locating the fault; and

(B) correcting the fault. Correction is accomplished by repair-
ing the fault or by replacing the faulty module with a fault-free
one. It is common for modules to be replaced as faulty but la-
ter usually proved to be IFs.8 IFs are defined as failures that

can automatically recover once they have occurred. It may
be activated or deactivated by some external disturbance, such
SAA & BUAA.Open access under CC BY-NC-ND license.
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as high G loading, vibration, thermal extremes, or some com-
bination of stress. Therefore, if the disturbance ends then the
failure will disappear. Instead PFs, once they appear, do not

disappear.9 IFs are known to be the great majority of causes
of errors. Even in an optimal environment, these faults can oc-
cur 10–30 times as often as the PFs.8,10 Furthermore, due to

technology scaling, lower supply voltage and increased
clock frequency, this problem will become more severe and
prominent.9,11

From the viewpoint of repair, it is urgent and critical to dis-
criminate IFs from PFs when a fault occurs. If the current fault
is diagnosed to be an IF, the right fault treatment actions can
be taken timely. In the way, a lot of maintenance cost can be

saved by avoiding unnecessary shutdown and repair.5,6 This
is the topic of this paper. We will use the term ‘‘diagnosis’’
to designate this specific problem: deciding whether the current

fault is a PF or IF.
A considerable amount of research has been devoted to

fault diagnosis.1,2,4,5,12–20 Among these methodologies, dis-

crete event systems (DESs) approaches, on which this paper
focuses, have been recognized as a promising framework
due to the significance of event-driven models in large and

complex systems, the well developed theory that allows
systematic construction of a diagnostic system, and the com-
putational efficiency that enables online diagnosis for large
systems.1,2 Nevertheless, almost all work on model-based

diagnosis (MBD) potentially presumes faults are persistent
and does not take IFs into account.21,22 The time-varying fail-
ures such as transient failures are considered in Ref.23 and the

diagnosis of temporal misbehavior which is based on
Markov-processes is present. However, the failure probability
is difficult to obtain. In recent years, IFs diagnosis has at-

tracted more and more attention. Ref.19 extends the approach
in Ref.2 to diagnose IFs. IFs diagnosis based on DESs in
industrial processes is studied in Ref.16. Refs.14,15 present a

state-based modeling of faults (and implicitly their resets)
and focuses on the diagnosis of the number of occurrences
of faults. In order to assess IFs probabilities, Refs.21,22

present an overall framework. Exactly computing the proba-

bilities of IFs can be found in Refs.12,13. Ref.17 presents an
approach to diagnose IFs dynamics. However, these ap-
proaches usually potentially presume that the faults to be

diagnosed are IFs, namely, assume the fault types are known
a priori (even if not explicitly stated). This assumption is not
necessarily true, which is not required in this paper. Since

fault events are usually unobservable and it is difficult to
recognize the fault types of the current fault (within bounded
delay). To the best of our knowledge, this problem has not
been addressed so far within the context of DESs.

To address the problem mentioned above, in this paper, an
approach based on DESs is given to diagnose the current fault
without the assumption of knowing its types a priori. It is an

effective and novel way to discriminate between PFs and IFs
when a fault occurs. The rest of the paper is organized as
follows.

In Section 2, an extended fault model which includes both
PFs and IFs is given. Two new notions of diagnosability are
defined in Section 3. In Section 4, the construct of the diagno-

ser which is built from system model is presented. Illustrative
examples are carried out to demonstrate the proposed
approach in Section 5. Finally, we give a conclusion and some
future work in the last section.
2. Modeling of system and faults

2.1. System model

We assume that the reader is familiar with automata theory
and regular languages. The system to be diagnosed is modeled

as an automaton.2

G ¼ X;R; d; x0ð Þ ð1Þ

where X is the state space, R the set of events, d the partial
transition function, and x0 the initial state of the system. Mod-

el G accounts for the normal and failed behavior of the system
which is described by the prefix-closed language L(G) gener-
ated by G. We denote L(G) by L. L is a subset of R*, where
R* denotes the Kleene closure of the set R, and L is assumed

to be live. Some of the events in R are observable, while the rest
are unobservable. Thus, R is partitioned as R = Ro [ Ruo,
where Ro represents the set of observable events and Ruo rep-

resents the set of unobservable events. See Ref.2 for a method-
ology on how to construct the system model from models of
system components and sensor readings.

The faults are typically partitioned as PFs, IFs and tran-
sient faults (TFs) according to their duration. IFs and TFs
are time-varying faults. TFs are temporary external faults

which are mainly generated by environmental conditions, like
cosmic radiation and electromagnetic interferences.9,11 Since it
cannot be traced to a defect in a particular part of the system
and, normally, their adverse effects rapidly disappear and do

not occur too frequently. Therefore, TFs are ignored in this
paper; TFs diagnosis can be found in Ref.24.

The fault model presented in Refs.2,19 is either geared to-

wards the diagnosis of PFs or the diagnosis of IFs. We thus ex-
tend the fault model to include both PFs and IFs in the context
of diagnosing the current fault. Since IF behavior often occurs

intermittently, with fault event followed by corresponding ‘‘re-
set’’ event for this fault, followed by new occurrences of fault
event, and so forth, it includes the current IF (CIF) and the re-
set IF (RIF).18 When a CIF occurs, it looks like a PF. In this

regard, we denote the current fault event by fiD, it means there
is a trace of s that ends with fiD, where D stands for ‘‘to be
diagnosed’’, we denote the CIF event and RIF event by fiIC
and ri respectively. Therefore, fiD is either PF event fiP or fiIC.
Since the effect of the set of fault events on the system is the
same, we are only concerned about whether fiD is from the

set of PFs or the set of IFs. Therefore, the set of fault events
Rf is partitioned into the set of PF events RfiP and the set of

IF events RfiI . RfiP is assumed to be composed of m different

fiP;RfiP ¼ ff1P; f2P; � � � ; fmPg. RfiI is composed of the set of fiIC
RfiIC and the set of ri Rri , RfiI ¼ fRfiIC [ Rrig. RfiI is assumed

to be composed of n different fiIC and ri,
RfiIC ¼ ff1IC; f2IC; � � � ; fnICg, Rri ¼ fr1; r2; � � � ; rng. Each fiIC has

its corresponding ri, where ri cannot happen until fiIC occurs
at least once. This assumption points out the fact that IFs

can automatically recover once they have occurred. Without
loss of generality, we also assume that Rf = fiP [ fiIC ˝ Ruo.
Our main concern in this paper is to diagnose fiD within

bounded delay.
In order to study the regulations of fault evolution, we

introduce four new notions of labels to identify special
changes in the status of system as in Ref.2. We define the

set of PF labels DFP ;DFP ¼ fFP
1 ;F

P
2 ; � � � ;FP

mg. We define
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the set of IF labels DFI , the set of CIF labels

DFIC ;DFIC ¼ fFIC
1 ;F

IC
2 ; . . . ;FIC

n g; the set of RIF labels

DFIR ;DFIR ¼ fFIR
1 ;F

IR
2 ; . . .FIR

n g; DFI ¼ DFIC [ DFIR . We define

the set of current fault labels DFD ;DFD ¼ DFP [ DFIC , and the
complete set of possible labels D ¼ fNg [ DFP [ DFI .

2.2. Regulations of fault evolution

As stated above, since IFs can automatically recover once they
have occurred, they usually test well, or NFF during ground
test. IFs behavior which is activated and deactivated through

fiIC and ri is shown in Fig. 1.
In Fig. 1, IFs behavior usually follows a square wave pat-

tern. The fault amplitude varies, time between faulty behavior

varies, and the duration time of faulty behavior may vary as
well. The high parts of the wave caused by fiIC represent points
in time with an IF and on-going, and the low parts caused by ri
represent an IF but not currently on-going. Each high-low pat-

tern represents one cycle in the wave. Since fault events are
usually unobservable and the behavior of the current IFs
and PFs is similar, it may be unclear whether it is intermittent

or persistent when a fault first occurs.25 In general, IFs typi-
cally tend to worsen with time, and it eventually becomes sub-
stantial enough that it can be detected with conventional test

equipment. The regulations of fault evolution are described
by labels associated with fiP, fiIC and ri is shown in Fig. 2.

In Fig. 2, e denotes empty trace, the notation

x; fFD
1 ;F

IR
2 ;F

IC
3 ;F

P
4 g

� �
is assumed to mean that along a trace

that leads to state x the events f1D, f2IC, r2, f3IC, r3, f4P have oc-
curred, r2 is the last one to occur among f2IC and r2, and f3IC is

the last one to occur among f3IC and r3. As well as fiIC leads the
system to an intermittent and on-going state, those of ri return
it to intermittent but not currently on-going state, and fiP leads

whatever state of the system to a permanent failure state. Next,
we define the extended label function ELP(x) that will be ap-
plied to traces and sub-traces in L.
Fig. 1 An example of fault behavior of IFs.

Fig. 2 Regulations of fault evolution through fault and reset

events.
Definition 1. The extended label function ELP(x):R* fi 2D is

defined as follows:26

ELPðxÞ ¼ fNg if 8i : ðfiD R xÞ
FD
i 2 ELPðxÞ if ðfiD 2 xÞ ^ ðri R xÞ

FP
i 2 ELPðxÞ if ðfiP 2 xÞ

FIc
i 2 ELPðxÞ if 9s; s0 : ðx ¼ ss0Þ
^ð½s 2 wðRfiIC Þ� ^ ðri 2 sÞ ^ ðri R s0ÞÞ

FIR
i 2 ELPðxÞ if 9s; s0 : ðx ¼ ss0Þ
^ð½s 2 wðRriÞ� ^ ðfiIC R s0ÞÞ

We write wðRfiICÞ to denote the set of all traces of L that end

with the fault event fiIC. That is wðRfiICÞ ¼ fsfiIC 2 Lg. Simi-

larly, we write wðRriÞ to denote the set of all traces of L that

end with the reset event ri. That is wðRriÞ ¼ fsri 2 Lg. Hence,

if ELP(x) is {N}, i.e., ‘‘normal’’, then no event from the set
of fault events and the set of reset events have occurred along

the trace x. If ELP(x) contains the label FD
i , then fiD has oc-

curred along x but ri has not occurred along x. If ELP(x) con-

tains the label FP
i , then fiP has occurred along x. If ELP(x)

contains the label FIC
i , then both fiIC and ri have occurred at

least one time or possibly multiple times along x, but the last
of the two to have occurred in x is fiIC. If ELP(x) contains the

label FIC
i , then both fiIC and ri have occurred at least one time

or possibly multiple times along x, but the last of the two to

have occurred in x is ri.
In a sum, by integrating the evolution of PFs events and IFs

events, the information of labels, the observable events, along

with some other condition, we can diagnose the current fault
event.

3. Notions of diagnosability

The objective of the diagnosis problem is to detect the occur-
rence of an unobservable failure in the system, based on the
information available from the record of observed events.

The diagnosability is used to analyze whether the system is
diagnosable or not. It depends on the structure of system
and the locations of sensors. The notion of diagnosability pro-

posed in Ref.2 does not capture all the key issues associated
with the diagnosis of IFs. Ref.19 introduced the notions of
diagnosability for IFs. Roughly speaking, a language is said

to be diagnosable if it is possible to detect (within bounded de-
lay) occurrences of certain specific unobservable events,
namely, the fault event. In order to analyze the diagnosability

of systems considered in this paper, we defined the notion of
Type-P diagnosability and the notion of Type-I diagnosability.

Definition 2. Type-P diagnosability

A prefix-closed and live language L is said to be Type-P
diagnosable with respect to projection P, which ‘‘erases’’ the
unobservable events in a trace,2 if the following holds:

½8i 2 f0; 1; . . . ;mg�ð9ni 2 NÞ½8s 2 WðRFD
i
Þ� � f8t 2 L=Sg½ktk

� ni ) DP�

where the diagnosability condition DP is

x 2 fP�1L PðstÞg ) ½FP
i 2 ELPðxÞ�
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Type-P diagnosability, where P stands for ‘‘PFs’’, implies
that along every continuation t of s one can diagnose the
occurrence of a fault of the type FP

i within bounded delay.

Definition 3. Type-I diagnosability

A prefix-closed and live language L is said to be Type-I

diagnosable with respect to projection P, if the following holds:

½8i 2 f0; 1; . . . ; ng�ð9ni 2 NÞ½8s 2 wðRFD
i
Þ� � 8t 2 L

s

� �
½ktk � ni

) DI�

where the diagnosability condition DI is

9kt0k 6 ktk : x 2 fP�1L Pðst0Þg
) ½FIC

i 2 ELPðxÞ� _ ½FIR
i 2 ELPðxÞ�

where ||t0|| and ||t|| are the length of trace t0 and t, respectively.
Type-I diagnosability, where I stands for ‘‘IFs’’, implies that

along every continuation t of s one can diagnose the occur-
rence of a fault of the type FIC

i within bounded delay. There-
fore, a language L is Type-P or Type-I diagnosable if it is

possible to diagnose the fault using the record of observed
events within bounded delay. Alternately speaking, diagnos-
ability requires that every fault event leads to observations dis-
tinct enough to enable unique diagnosis of the fault within

bounded delay.

4. Extended diagnosers

The notion of a diagnoser automaton was originally intro-
duced in Ref.2. A diagnoser automaton, or simply diagnoser,
serves two purposes: (A) online detection and isolation of

PFs by observing the system behavior; and (B) off-line analysis
of the diagnosability properties of the system regarding PFs.
The latter is based on an examination of the structure of the

diagnoser in order to determine the presence or absence of cer-
tain types of cycles termed indeterminate cycles. We focus on
the latter in this paper, albeit their structure needs to be mod-

ified to diagnose both PFs and the dynamics of IFs. It turns
out that the diagnoser is still at the core of the approach pres-
ent in this paper. We construct the extended diagnoser GE

d to
include IFs information in the same way as in Ref.2.

The diagnoser GE
d for G is also an automaton:

GE
d ¼ ðQd;Ro; dd; q0Þ ð2Þ

where Qd, Ro, dd, q0 have the usual interpretation. The state
space of GE

d is composed of the states qd of the diagnoser that
are reachable from q0 under dd. Therefore, qd of GE

d is of the

form:

qd ¼ fðx1; l1Þ; ðx2; l2Þ; � � � ; ðxn; lnÞg; xi 2 Xo; li # D ð3Þ

where Xo ¼ fx0g [ fx 2 X : x has an observable event into itg.
The diagnoser GE

d can be thought of as an extended obser-

ver, and gives estimates of the current state of the system after
the occurrence of every observable event. In addition, it carries
information about potential past fault occurrence in the form
of labels of fault types. If all state components, which are pairs

(xi, li) and are constructed by state and the labels attached to

the state, in a state xi of G
E
d have label FP

i in common, this

means that whenever GE
d in state xi, we can ascertain the occur-

rence of a fault of type FP
i , even though we may not be certain
about what state G is in. We call such states FP
i -certain. On the

other hand, if some state components of xi of G
E
d contain label

FP
i but others do not, then in state xi we are uncertain about

the occurrence of a fault of type FP
i . It could have occurred,

since the label FP
i is current, but it need not have, since FP

i does

not appear in all state components. We call such states FP
i -

uncertain. Similarly, we can get concepts FI
i -certain states

and FI
i -uncertain states.10 We assumed the system G is normal

to start with, hence, we define q0 = {(x0,{N})}. The label prop-
agation LP must be extended in order to include IFs recover-
ies, since the LP in Ref.2 does not account explicitly for the

dynamic behavior of IFs. We define the extended label propa-
gation function ELPd(x, l, s) as follows.
Definition 4. The extended label propagation functions
ELPd:Xo·2D· Ro

*. Given x e Xo, l e D, s e Lo(G, x), ELPd

propagates the label l over s, stating from x0 and following

the dynamics of G. It is defined as follows:

ELPdðx; l; sÞ ¼ fNg
if ðl ¼ fNgÞ ^ ðfiD R sÞ

FD
i 2 ELPdðx; l; sÞ
if 8i : ð1ÞðFD

i 2 lÞ ^ ðri R sÞ; or
ð2ÞðFP

i R lÞ ^ ðFI
i R lÞ ^ ðRfiD 2 sÞ ^ ðri R sÞ

8i 2 f0; 1; � � � ;mg
FP
i 2 ELPdðx; l; sÞ
if ðFP

i 2 lÞ ^ ðRfiPi 2 sÞ
8i 2 f0; 1; � � � ; ng
FIC
i 2 ELPdðx; l; sÞ
if ð1Þ½l ¼ fNg _ l ¼ FD

i � ^ ELPdðx; l; sÞ ¼ fFIC
i g; or

ð2ÞðFIR
i 2 lÞ ^ ½ELPdðx; l; sÞ

¼ fFD
i g _ ELPdðx; l; sÞ ¼ fFIC

i g�; or
ð3ÞðFIC

i 2 lÞ ^ ½ELPdðx; l; sÞ ¼ fNg _ ELPdðx; l; sÞ
¼ fFD

i g _ ELPdðx; l; sÞ ¼ fFIC
i g�

FIR
i 2 ELPdðx; l; sÞ
if ð1Þl ¼ fNg _ ELPdðx; l; sÞ ¼ fFIR

i g; or
ð2ÞðFIR

i 2 lÞ ^ ½ELPdðx; l; sÞ
¼ fNg _ ELPdðx; l; sÞ ¼ fFIR

i g�; or
ð3ÞðFD

i 2 lÞ ^ ðFIC
i 2 lÞ ^ ELPdðx; l; sÞ ¼ fFIR

i g

One can find that Definition 9 is consistent with Definition

1. The formal construction procedure of the diagnoser along
with the precise definition of indeterminate cycles can be found
in Ref.17 and are therefore omitted due to space limitations of

the paper. To ensure Type-P and Type-I dignosability, the fol-
lowing results are given to provide necessary and sufficient
conditions.

Ref.2 presents the formal construction procedure of the

diagnoser, along with necessary and sufficient conditions for
diagnosability. These conditions are based on the examination
of the indeterminate cycles in the diagnoser. See Ref.2 for a

precise definition of indeterminate cycles. Indeterminate cycles
in Gd are cycles of uncertain states that have corresponding cy-
cles in G involving their failed states. It turns out that G is

diagnosable if GE
d does not contain indeterminate cycles for

any fault types. Roughly speaking, the occurrence of an inde-

terminate cycle in the diagnoser means that there exist two
traces in L, of arbitrarily along length, where one trace



Fig. 3 Construction of extended diagnose.

Fig. 4 Example of a system that is neither Type-P nor Type-I

diagnosable.
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contains a fault event of a certain type and the other trace does
not. Clearly, the presence of such a pair of traces in L implies
that is L not diagnosable. The construction and computation

of the new states of the diagnoser are similar to those of
Ref.2 and therefore omitted. However, a little difference should
be pointed out. In contrast to denote the current fault by fi in

Ref.2, we denote it by fiD. The fault types of fiD can be recog-
nized according to the subsequent observable events. Let us
demonstrate the construction procedure for diagnoser using

a simple example. Consider the system G shown in Fig. 3.
The set of observable events in Ro = {a, b, c, s}, and there
are three faults types F2, F2 and F3. F1 and F2 are IFs, with
the corresponding fault and reset events {f1IC, r1} and

{f2IC, r2}, respectively. The initial state of GE
d is {1, {N}},

denoted by 1N for the sake of simplicity. Similar compact
notation is used in all the figures in this paper.

In Fig. 3, it is difficult to recognize the types of the current

fault at the first time on States 4, 7 and 11; we denote it by f1D,
f2D and f3D respectively. The effect of ELPd manifests itself
when State 8 is first reached after observed trace ab, yielding
the label FIC

1 due to the r1 transition between States 5 and 6,

therefore, the fault event f1D is f1IC. We can recognize the fault
event f2D is f2IC similarly. The State 12 keeps persistent after
observed trace ks, according to the assumption made in

Section 2, the fault event f3D thus is thought to be f3P. As
the system settles in the cycle 5-6-7-8-9-10-5, the diagnoser will

alternate between the states fð2; fNgÞ; ð5; fFIC
1 FIR

2 gÞ;
ð12; fFD

3 gÞg and fð3; fNgÞ; ð8; fFIR
1 FIC

2 gÞg.

5. Illustrative examples

This approach can be applicable to systems that fall naturally

in the class of DESs; moreover, for the purpose of diagnosis,
continuous variable dynamic systems can often be viewed as
DESs at a higher level of abstraction. This approach does

not require detailed in-depth modeling of the system to be
diagnosed. The states of the discrete-event model reflect the
normal and the failed status of the system components while

the failure events form part of the event set. The problem is
to detect the occurrence of these events. In this regard, we
Fig. 5 Example of a system that is T
use several illustrative examples to demonstrate the proposed
approach in this section. For simplicity, we assume that the
system is normal to start with, the observable set inP

O ¼ fa; b; k; s; qg.
In Fig. 4, there are two fault events in States 5, 16, respec-

tively. The set of States 2, 4 and 17, 19 both form a cycle, the

set of States 7, 9 and 12, 14 both form a cycle too, States
q1 � q3 and q4, q5, form a FP

i -indeterminate and FI
i -indetermi-

nate cycle respectively in GE
d . Given the results quoted in the

preceding section, we conclude that the system is neither
Type-P diagnosable nor Type-I diagnosable.
ype-P but not Type-I diagnosable.
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In the system of Fig. 5, the set of States 7, 9 and 12, 14

forms a cycle, respectively, and States q4 and q5 form a FI
i -

indeterminate cycle in GE
d . States q1 � q3 form a cycle in GE

d

and are not FP
i -certain. However, there are no cycles involving

states that carry the label FP
i in the cycle in GE

d , namely, States

17 and 18, 20–23. Therefore, there is no FP
i -indeterminate cycle

and the system is Type-P diagnosable but not Type-I

diagnosable.
We now provide an example of a system which is Type-I

diagnosable. In Fig. 6, the set of States 2, 4 and 19, 21 both

form a cycle, States q4 and q5 form a FP
i -indeterminate cycle

respectively in GE
d . However, there are no FI

i -indeterminate cy-
cles in GE

d . Therefore, the system is Type-I diagnosable but not
Type-P diagnosable.

We now give an example of a system which is Type-P and
Type-I diagnosable. In Fig. 7, there are no FP

i (FI
i )-indetermi-

nate cycles in GE
d , therefore, the system L is Type-P diagnos-

able and Type-I diagnosable. Moreover, we can diagnose f1D
is f1IC when the trace abcsq is observed; according to the
assumption made in Section 2, we can also diagnose f2D is

f2P when the trace abcdqs is observed.
Fig. 6 Example of a system that is

Fig. 7 Example of a Type-P
6. Conclusions and future work

IFs are expected to become especially problematic and pose a
great challenge to fault diagnosis. With scaling of semiconduc-

tor devices, this problem will become more severe and promi-
nent. Misjudging IFs as PFs has plagued the diagnosis system
since the use of diagnosis technology. In this paper we have ad-

dressed the problem of fault discrimination (discriminating be-
tween PFs and IFs) for FAs mitigation purpose. In particular,
a novel approach based on DESs is given to discriminate be-
tween PFs and IFs without the assumption of knowing its

types a priori. For the examples we considered, we find that
it is able to discriminate the fault types within bounded delay
if the system is diagnosable.

Recently, some significance work has developed to the diag-
nosis problem. A related approach is proposed by Ref.27, where
the notion of supervision pattern is introduced. It is general en-

ough to express and solve in a unified way a broad class of diag-
nosis problem, e.g., diagnosing PFs, multiple faults, and some
problem of IFs. However, the approach remains to be explored

in the context of fault discrimination, since they do not account
nor Type-P but Type-I diagnosable.

and Type-I diagnosable system.
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explicitly for PFs and dynamic behavior of IFs in the same fault
model. We hope to investigate the problem of fault discrimina-
tion with that approach in future work. It should be noted that

the approach proposed in this paper requires the construction of
the global model of the system, which is almost invariably
impossible for complex DESs (owing to the explosion of the

state space). Ref.28 has described a context-sensitive diagnosis
approach; the interpretation of the system behavior is based
on the abstraction hierarchy, where different diagnosis rules

and different subsystems are defined in the hierarchy. It is a
powerful approach and enhances the expressive power of diag-
nosis of complex DESs. It is a topic worthy of further research.
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