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Abstract Squeezing flow of a viscous fluid is considered. Two types of flows are discussed namely,

the axisymmetric flow and two dimensional flow. Similarity transform proposed by Wang (1976)

[13] has been used to reduce the Navier–Stokes equations to a highly non-linear ordinary differen-

tial equation which jointly describes both types of flows. Solution to aforementioned ordinary dif-

ferential equation is obtained by using Variation of Parameters Method (VPM). VPM is free from

the existence of small or large parameters and hence it can be applied to a large variety of problems

as compared to the perturbation method applied by Wang (1976) [13]. Comparison among present

and already existing solutions is also provided to show the efficiency of VPM. A convergence anal-

ysis is also carried out. Effects of different physical parameters on the flow field is discussed and

demonstrated graphically with comprehensive discussions and explanations.
ª 2014 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.
1. Introduction

Squeezing flow between parallel walls accrues in many indus-

trial and biological systems. Moving pistons in engines,
hydraulic brakes, chocolate filler and many other devices are
based on the principle of flow between contracting domains.
To develop these equipment andmachines better understanding
of such flow models which describe the squeezing flow between
parallel walls is always needed. Classical work in this regard can

be traced back to Stefan [1], who presented his work on squeez-
ing flow by using lubrication assumption. Later in 1986 Rey-
nolds [2] studied the case for elliptic plates, and Archibald [3]

considered the squeezing flow between rectangular plates. After
that several researchers have contributed their efforts to make
squeezing flow model more understandable [4–8].

Earlier studies on squeezing flows are based on Reynolds
equation however the scantiness of Reynolds equation for
some cases has been shown by Jackson [9]. More flexible and
useful similarity transforms are now available due to the

efforts of Birkhoff [10], Yang [11] and Wang and Watson

https://core.ac.uk/display/82174538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2014.02.002&domain=pdf
mailto:syedtauseefs@hitecuni.edu.pk
http://dx.doi.org/10.1016/j.aej.2014.02.002
http://www.sciencedirect.com/science/journal/11100168
http://dx.doi.org/10.1016/j.aej.2014.02.002


Figure 1 Schematic diagram of the problem.

Figure 2 Effects of S on F 0(g) in expanding motion of plates

(axisymmetric case).
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[12]. These similarity transforms reduce the Navier–Stokes
equation into a fourth order nonlinear ordinary differential
equation and have further been used in some other investiga-

tions as well [13–17].
Most of the real world problems are inherently in the form

of nonlinearities. Over the years much attention has been

devoted to develop new efficient analytical techniques that
can cope up with such nonlinearities. Several approximation
techniques have been developed to fulfill this purpose [18–

27]. Nowadays, researchers prefer those techniques which are
easy to implement, require less computational work and time
to provide reliable results. One of these analytical techniques
is Variation of Parameters Method (VPM) [28,29]. Main

advantages of VPM are that it does not depend on existence
of small or large parameters; it is free from round off errors,
calculation of so called Adomian’s polynomials, linearization

or discretization. It uses initial conditions that are easier to
be implemented and reduces the computational work while
still maintaining a higher level of accuracy. One can easily

access the recent applications of VPM in different available
studies [30–33].

In this study one may clearly see that VPM can successfully

be applied to solve the equations governing unsteady squeezing
flows between parallel plates. Comparison of the results ob-
tained by VPM to the numerical solution obtained by using
Runge–Kutta order 4 is also provided to show the effectiveness

of the technique. Obtained results are also compared with al-
ready existing studies. A convergence analysis is also carried
out to check the computational cost benefits of VPM. It is evi-

dent from this article that VPM provides better results with
less amount of laborious computational work.

2. Governing equations

Consider an incompressible flow of a viscous fluid between two
parallel plates separated by a distance z= ±l(1 � at)1/
2 =±h(t), where l is the position at time t= 0. For a > 0
plates are squeezed until they touch each other at t= 1/a for
a < 0 plates are separated. Let u, v and w be the velocity com-

ponents in x, y and z directions respectively, shown in Fig. 1.
Using transform introduced by Wang [13] for a two-dimen-
sional flow:

u ¼ ax
½2ð1� atÞ�F

0ðgÞ; ð1Þ

w ¼ �al

½2ð1� atÞ1=2�
FðgÞ; ð2Þ

where,

g ¼ z�
lð1� atÞ1=2

� : ð3Þ

Substituting, Eqs. (1)–(3) in unsteady two-dimensional
Navier–Stokes equations yield a non-linear ordinary differen-
tial equation of same form as discussed by [17],

FivðgÞþS �gFðgÞ�3F00ðgÞ�F0ðgÞF00ðgÞþFðgÞF000ðgÞð Þ¼0; ð4Þ

where S= al2/2m is the non-dimensional Squeeze number, and
m is the kinematic viscosity. Boundary conditions for the prob-
lem are such that on plates the lateral velocities are zero and

normal velocity is equal to velocity of the plate, that is

Fð0Þ ¼ 0; F00ð0Þ ¼ 0; Fð1Þ ¼ 1; F0ð1Þ ¼ 0: ð5Þ

Similarly for the axisymmetric case, transforms introduced
by Wang [13] are

u ¼ ax
½4ð1� atÞ�F

0ðgÞ; ð6Þ

v ¼ ay
½4ð1� atÞ�F

0ðgÞ; ð7Þ

w ¼ �al
½2ð1� atÞ�FðgÞ: ð8Þ

Using Eqs. (6)–(8) in unsteady axisymmetric Navier–Stokes

equations we get a nonlinear ordinary differential equation of
the form

FivðgÞ þ S �gFðgÞ � 3F00ðgÞ þ FðgÞF000ðgÞð Þ ¼ 0: ð9Þ

Thus, we have to solve non-linear ordinary differential
equation of the form

FivðgÞþS �gFðgÞ�3F00ðgÞ�bF0ðgÞF00ðgÞþFðgÞF000ðgÞð Þ¼0; ð10Þ

subject to the boundary conditions given in Eq. (5).
In Eq. (10), b = 0 corresponds to axisymmetric flow while

b = 1 gives two-dimensional case.

3. Solution procedure

Following the standard procedure proposed for VPM [28–33],
we can write Eq. (10) as



Figure 3 Effects of S on F 0(g) in contracting motion of plates

(axisymmetric case).

On unsteady two-dimensional and axisymmetric squeezing flow 465
Fnþ1ðgÞ¼A1þA2gþA3

g2

2
þA4

g3

6
þ
Z g

0

g3

3!
�g2s

2!
þgs2

2!
þ s3

3!

� �

S �sFðsÞ�3F00ðsÞ�bF0ðsÞF00ðsÞþFðsÞF000ðsÞð Þð Þds:

Using boundary conditions given in Eq. (5), above equation

can be written as
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where A2 and A4 are constants which can be computed by

using boundary conditions F(1) = 1 and F0(1) = 0,
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Table 1 Comparison of VPM and numerical solutions for axisymm

Sfl F0 0(1) present results (VPM)

�0.9952 �2.401
�0.4997 �2.7151
�0.1 �2.9254
0 �3.000
0.11576 �3.0622
0.4138 �3.2165
2.081 �3.9610
Similarly, other iterations of the solution can also be
computed.

4. Results and discussions

It is important to note that for b = 0, the series solution pre-
sented in Eq. (11) reduces to provide the solution for an axi-

symmetric case while for b = 1 we have solution to two
dimensional squeezing flows.

Influence of squeeze number S over axisymmetric flow is

shown in Figs. 2 and 3. It is worth mentioning that S< 0 cor-
responds to the squeezing flow of plates while S> 0 describes
receding motion of the plates. Fig. 2 depicts the influence of

nonnegative S on F0(g). Increase in S increases F0(g) near the
plates while in center a delayed streamline flow is observed.
When plates leave each other a vacant space is created and

fluid near that portion fills that empty region. This phenome-
non is perhaps responsible for an accelerated flow near the
plates. While for contracting motion (S< 0) influence of S
on flow is shown in Fig. 3. It can be seen that with absolute

increase in S, F0(g) decreases near plates while in center it ap-
pears to be an increasing function of absolute S. It can also be
observed from Fig. 3 that for negative S increasing absolute S

results in back flow and there might be separation. Further, the
problem is also solved numerically by using well known RK-4
method. A comparison between VPM, numerical and the solu-

tion obtained by Wang [13] is carried out. Numerical values
for velocity F0 0(1) are tabulated in Table 1 for this purpose.
An excellent agreement can clearly be seen in both the solu-
tions for low values of S. The problem with Wang’s solution

is that it is only valid for very small values of perturbation
parameter where its higher powers vanish or else perturbation
method cannot be applied. Variation of Parameters Method

removes this restriction and is free of existence of small or
large parameters. Table 2 is drawn to discuss the convergence
of VPM solution and a comparison with HAM [17] is also car-

ried out. It can be observed that for axisymmetric case, VPM
converges quite rapidly. Only fourth order approximations are
enough to obtain a convergent solution. On the other hand,

HAM [17] requires six iterations of the solution to converge.
Numerical values for F(g) are tabulated for different values
of S to check the convergence efficiency.

For two-dimensional case, effects of S on F0(g) are shown in

Figs. 4 and 5. It is clear that the effects are similar as compared
to axisymmetric flow but variation in two dimensional case is
more prominent.

Table 3 presents the value of F00(1) for different values of S
for two-dimensional case. A comparison is made with the
solutions obtained by Wang [13]. Again an excellent agreement
etric (b = 0) with existing results.

F0 0(1) present results (RK-4) F0 0(1) Wang [13]

�2.401 �2.410
�2.7151 �2.7161
�2.9254 �2.9252
�3.000 �3.000
�3.0622 �3.0622
�3.2165 �3.2160
�3.9610 �3.9610



Figure 4 Effects of S on F 0(g) in expanding motion of plates

(two-dimensional case).

Figure 5 Effects of S on F 0(g) in contracting motion of plates

(two-dimensional case).

Table 3 Comparison of VPM and numerical solutions for

two-dimensional (b = 1) case with existing results.

Sfl Present results (VPM) Present results (RK-4) Wang [13]

�0.9780 �2.1915 �2.1915 �2.235
�0.4977 �2.6193 �2.6193 �2.6272
�0.09998 �2.9277 �2.9277 �2.9279
0 �3.000 �3.000 �3.000
0.09403 �3.0663 �3.0663 �3.0665
0.4341 �3.2943 �3.2943 �3.2969
1.1224 �3.708 �3.708 �3.714

Table 2 Convergence of VPM solution, numerical values of F(g) for axisymmetric case (b = 0) and comparison with HAM solution.

S g VPM solution (4th order approximation) Numerical (RK-4) HAM [17] (6th order approximation)

�1.5 0.2 0.319526 0.319526 0.319526

0.4 0.603830 0.603830 0.603830

0.6 0.822876 0.822876 0.822875

0.8 0.956801 0.956801 0.956800

�0.5 0.2 0.302582 0.302582 0.302582

0.4 0.578082 0.578082 0.578082

0.6 0.800780 0.800780 0.800780

0.8 0.947702 0.947702 0.947702

0.5 0.2 0.290322 0.290322 0.290322

0.4 0.559252 0.559252 0.559252

0.6 0.784303 0.784303 0.784303

0.8 0.940703 0.940703 0.940703

1.5 0.2 0.281010 0.319526 0.319526

0.4 0.544779 0.603830 0.603830

0.6 0.771371 0.822876 0.822875

0.8 0.935936 0.956801 0.956800

2.5 0.2 0.273682 0.273682 0.273682

0.4 0.533246 0.533246 0.533247

0.6 0.760847 0.760847 0.760848

0.8 0.930280 0.930280 0.930281
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is found as expected for smaller values of S. However for lar-

ger values of S Wang’s solution is more likely to be divergent
due to restriction necessary for validity of perturbation
solution. In Table 4 convergence of VPM solution for two-
dimensional case is discussed and a comparison with HAM
[17] is also carried out. It can be observed that for two-dimen-
sional case, VPM converges at fifth order approximations. On
the other hand, HAM [17] requires seven iterations for a con-
vergent solution. Again, numerical values for F(g) are tabu-

lated for different values of S to check the convergence
efficiency.

5. Conclusions

In this article, a relatively novel analytical technique called the
Variation of Parameters Method has been employed to solve

squeezing flow problem for axisymmetric and two-dimensional
flows. Convergence analysis is carried out to check the compu-
tational efficiency of VPM. Comparison is also carried out be-

tween current and existing solutions. It can be concluded from
the tables and discussions that the VPM can easily and effi-
ciently be applied to solve higher order non-linear equations

for real world problems. Unlike other analytical techniques,
VPM do not require existence of small or large parameters,
calculation of any kind of polynomials and attains the conver-
gence at fewer number of iterations which reduces the compu-

tational cost. Graphs are plotted to discuss the behavior of
squeeze number S on velocity profile.



Table 4 Convergence of VPM solution, numerical values of F(g) for two dimensional case (b = 1) and comparison with HAM

solution.

S g VPM solution (5th order approximation) Numerical (RK-4) HAM [17] (6th order approximation)

�1.5 0.2 0.333618 0.333618 0.333617

0.4 0.624358 0.624358 0.624358

0.6 0.839325 0.839325 0.839324

0.8 0.962984 0.962984 0.962983

�0.5 0.2 0.305545 0.305545 0.305545

0.4 0.582470 0.582470 0.582470

0.6 0.804392 0.804392 0.804392

0.8 0.949108 0.949108 0.949108

0.5 0.2 0.288260 0.288260 0.288260

0.4 0.556143 0.556143 0.556143

0.6 0.781671 0.781671 0.781671

0.8 0.939640 0.939640 0.939640

1.5 0.2 0.276432 0.276432 0.276432

0.4 0.537752 0.537752 0.537752

0.6 0.765249 0.765249 0.765249

0.8 0.932471 0.932471 0.932471

2.5 0.2 0.267791 0.267791 0.267791

0.4 0.524045 0.524045 0.524045

0.6 0.752605 0.752605 0.752605

0.8 0.926703 0.926703 0.926704
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