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a b s t r a c t

We study the reachability of a shape-dependent operator based on a potential flow and
give a complete characterization of the image space. We draw a connection between the
structure of the image space and the set of stagnation points, i.e. the set of surface points
where the tangential velocity vanishes. We use conformal pull-back to a reference domain
and reduce the problem to the question of whether there exists a diffeomorphism which
pulls back one top-dimensional differential form to another. For volume forms this question
has been answered by Moser 1965, but since we do allow singularities we have to prove
a modified version. This leads to a volume condition, which must be fulfilled on every
connected component of the nonzero set of the form.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In this work we study a shape-dependent operator based on a potential flow problem and answer a controllability
question by deriving a complete characterization of its image space. An approach to a similar controllability problem, but
treated with different instruments, can be found in [1]: the authors prove approximate controllability for a shape design
problem on the discrete level, by showing that the linearized operator has a dense image (cf. [2]) and applying the inverse
function theorem. For our approachwe stay on the continuous level and deal with the shape dependence through conformal
pull-back to a reference domain. We can then derive an integral condition which characterizes the image. Our goal is to add
insight to the theoretical background of shape optimization by identifying which states are reachable for a specific design
problem.

For an introduction to the general theory of shape optimization we refer the reader to [3–5]. There are many ways to
treat shape variations, e.g. using the speedmethod [4], level sets [6] or the pull-back to a reference domain. Free-form shape
design uses a pull-back to derive a parameterization of the domain: see [7] for a classic approach and [8] for a state-of-
the-art application which also utilizes model reduction techniques. We employ a pull-back by conformal mappings which
have been used in shape and airfoil design for a long time. For an introduction to general techniques and applications to
a wide range of shape design problems from engineering and applied science we refer the reader to [9]. See [10,11] for
concepts of airfoil design and applications of conformal mappings. An advantage is that the conformal pull-back results in a
simple formulation which is suitable for our analysis. Furthermore, the Riemann mapping theorem [9] assures that the use
of conformal mappings is not a restriction to the space of admissible shapes.

The work is organized in the following way. In Section 2 we establish notation from differential geometry, which is
necessary for applying a classic result from Moser [12]. A good introduction to differential geometry applied to boundary
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Fig. 1. Sketch of the reference domain Ω0 , the conformal map Φα to the conformal domain Ωα and the boundary isometry Λα .

value problems can be found in [13]. In Section 3 we define our shape design problem and reformulate it on the reference
domain by conformal pull-back: we consider an object placed in an external potential flow and the goal is to investigate
which tangential velocities are reachable through deformations of that object. As we are going to see, the space of reachable
velocities is essentially restricted by the immutable set of stagnation points, i.e. the set of points where the velocity on the
reference geometry vanishes. In Section 4 the problem is reduced to a result fromMoser [12]. However, we cannot use this
result itself, and have to prove a modified version which accounts for singularities. Theorem 6 states our main result and
gives a complete characterization of the image space of the shape problem.

2. Preliminaries

For any smooth and compactΩ ⊂ R2, let the Euclideanmetric be denoted by g0. For a functionα ∈ C∞(Ω) the conformal
metric gα is defined such that gα = e2αg0. The boundary Γ of Ω is a smooth and compact one-dimensional manifold. Let
nα denote the outward pointing unit normal vector field on the boundary with respect to the metric gα and let τα be the
unit tangential vector field pointing left of nα (see Fig. 1). In the following we use concepts from differential geometry. A
good introduction to this field and the application of Hodge decomposition to boundary value problems can be found in the
book by Schwarz [13], uponwhich this brief introduction and the notation are based. Let Γ (TΩ) denote the space of smooth
vector fields on the n-dimensional manifold Ω . For k ∈ 0, . . . , n let Ωk(Ω) denote the space of k-forms, where 0-forms in
Ω0(Ω) can be directly identified with functions from C∞(Ω), and between vector fields and 1-forms a natural isomorphism
Gα is given through the metric gα by

Gα : Γ (TΩ) → Ω1(Ω) : X → Gα(X) := gα(X, ·). (1)

Furthermore, we need the Hodge operator ⋆α : Ωk(Ω) → Ωn−k(Ω) which maps a k-form to its dual, the exterior derivative
d : Ωk(Ω) → Ωk+1(Ω) and the co-differential operator δα : Ωk(Ω) → Ωk−1(Ω). The exterior derivative is independent of
the metric gα while the other two operators are metric dependent. Let µα ∈ Ωn(Ω) denote the Riemannian volume form
corresponding to gα , which is defined by µα(X1, . . . Xn) =


det(gα(Xi, Xj)). Then, for f ∈ C∞(Ω) the identity ⋆α f = fµα

holds. Only n-forms can be integrated, so to integrate a function f ∈ C∞(Ω) we have to take its Hodge dual first, ⋆α f ,
or compose it with a volume form fµα , which is the same thing. For the Euclidean metric g0 the following identities hold
between the k-form operators and vector field operators.

Proposition 1 ([13]).
(a) Let Ω ⊂ R2 be a two-dimensional domain. For a vector field X ∈ Γ (TΩ) let ∇ · X and ∇ × X be the well-known divergence

and curl operators with respect to the Euclidean metric, then ∇ · X = δ0(G0(X)) and ∇ × X = ⋆0 d(G0(X)) hold. Note that
since dim(Ω) = 2, ∇ × X can be interpreted as a function in C∞(Ω).

(b) Let Γ ⊂ R2 be a one-dimensional boundary manifold with tangential vector field τ0; then for ω ∈ C∞(Γ ) the identity
∂τ0ω = ⋆0 dω holds, where ∂τ0 denotes the derivative in direction τ0.

Proposition 2 ([13]).
(a) Let Ω ⊂ R2 be a two-dimensional domain. For ω ∈ Ωk(Ω) the following relations hold between the operators corresponding

to the metrics gα and g0:

⋆α ω = e(2−2k)α ⋆0 ω δαω = e2(k−2)αδ0e−2(k−1)αω n0 = eαnα τ0 = eατα. (2)

(b) Let Γ ⊂ R2 be the one-dimensional boundary manifold; then for ω ∈ Ωk(Γ ) the identity ⋆α ω = e(1−2k)α ⋆0 ω holds.

3. Definition of the shape operator

In the following let Ω0 ⊂ R2 be a smooth and compact fixed reference domain with holes. For simplicity of notation we
consider only the case with one hole, but the generalization to multiple holes is straightforward. Let the outer and inner
boundaries be denoted by Γ out

0 and Γ in
0 , respectively (compare Fig. 1).

Proposition 3 (See [9]). For ∆ being the Euclidean Laplace operator, let α ∈ C∞(Ω0) with ∆α = 0; then there exists a domain
Ωα ⊂ R2 and a diffeomorphismΦα : Ω0 → Ωα withΦ∗

αg0 = gα , whereΦ∗
α denotes the pull-back operator. The diffeomorphism

is called a conformal map and Ωα is conformal to Ω0 with respect to the conformal parameter α.
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Note that Φα and Ωα are only uniquely defined up to global translations and rotations of the domain. Thus, in the
following Ωα stands for the whole equivalence class of domains which are conformal to Ω0 with respect to the conformal
parameter α, but the operations that we are considering are well-defined for these equivalence classes.

We want to study a potential flow problem and investigate which tangential velocities are reachable on the inner
boundary. Therefore, let v0 ∈ Γ (TΩ0)|Γ out

0
be a smooth vector field defining the outer inflow boundary condition. This

vector field cannot be arbitrary and must be chosen compatible in such a way that a solution to the potential flow problem
exists. In the following setup, if v0 is compatible for the domain Ω0 it is also compatible on every Ωα ∈ D , for D defined
below. Then, let uα ∈ Γ (TΩα) be the unique solution (see Eq. (6)) of the potential flow problem

∇ × uα = 0 ∇ · uα = 0 on Ωα

uα|Γ out
α

= Φα∗v0 n · uα|Γ in
α

= 0
(3)

where Φα∗ denotes the push-forward operator induced by Φα . We want to define on the basis of the flow problem (3) a
shape operator S which maps any domain Ωα ∈ D to the tangential velocity on the inner boundary given by τ0 · uα|Γ in

α
. A

fundamental question is how todefine the observation space for shape-dependent problems, because not only does τ0·uα|Γ in
α

depend on Ωα ∈ D but so also does the solution space C∞(Γ in
α ) itself, whereas the observation space must be independent

of Ωα . A natural choice is to define it on the fixed reference domain, i.e. C∞(Γ in
0 ). However, we still have to define a map

pulling the solution from C∞(Γ in
α ) to C∞(Γ in

0 ). Using the pull-back by Φα would be possible, but here we use instead an
isometry Λα : Γ in

0 → Γ in
α (see Fig. 1), that is a conformal map on the boundary with conformal parameter 0. The advantage

of using the isometry is that it preserves the length ratio and thus we get a result closer to our expectation. An isometry can
only exist if both boundaries have the same length and is only unique if we introduce the following equivalence relation on
C∞(Γ in

0 ):

f ∼ g ⇔ ∃ isometry Ψ ∈ Diff(Γ in
0 ) : Ψ ∗f = g (4)

for f , g ∈ C∞(Γ in
0 ). This means that f and g are equivalent if there exists an isometry Ψ : Γ in

0 → Γ in
0 such that f is pulled

back to g . Using this equivalence relation we define the observation space by O := C∞(Γ in
0 )/ ∼. This assures that the shape

operator which we are going to introduce is well-defined and independent of the actual choice of Λα .
We define D = {Ωα = Φα(Ω0)|α ∈ A, |Γ in

0 | = |Γ in
α |} to be the space of all domains which are conformal to Ω0

and where the inner boundaries have the same length as the reference boundary Γ in
0 . Here A := {α ∈ C∞(Ω0)|∆α =

0, α|Γ out
0

= 0} denotes the space of conformal parameters where the condition ∆α = 0 justifies through Proposition 3 that
a conformal mapping exists and the condition α|Γ out

0
= 0 prevents the outer boundary from being scaled. However, the

shape of the outer boundary is not preserved. Then, we can define the shape operator by

S : D → O = C∞(Γ in
0 )/ ∼

Ωα → Λ∗

α(τ0 · uα)|Γ in
α

.
(5)

In order to characterize the image space of this operator, let us translate the potential flow equation into a problem
on the fixed reference domain Ω0. Therefore, let ω0

α = G0(uα) ∈ Ω1(Ωα) and let η0 = G0(v0) ∈ Ω1(Ω0)|Γ out
0

be the outer
boundary condition corresponding to v0. From the identities of Proposition 1we see that Eq. (3) is equivalent to the problem
formulated on 1-forms

dω0
α = 0 δ0ω

0
α = 0 on Ωα

ω0
α|Γ out

α
= Φα∗η0 ω0

α(n0)|Γ in
α

= 0
(6)

where the existence of a unique solution ω0
α for compatible outer boundary conditions is shown in [13]. According to our

naming convention, the lower index indicates that ω0
α is the solution on the domain Ωα and the upper index shows that

the corresponding metric is g0. Using the pull-back operator Φ∗
α and defining ωα

0 = Φ∗
αω0

α , this problem is equivalent to the
following one on the fixed computational domain Ω0:

dωα
0 = 0 δαωα

0 = 0 on Ω0

ωα
0 |Γ out

0
= η0 ωα

0 (nα)|Γ in
0

= 0. (7)

By Proposition 2 we can write this in terms of the Euclidean operators

dωα
0 = 0 δ0ω

α
0 = 0 on Ω0

ωα
0 |Γ out

0
= η0 ωα

0 (n0)|Γ in
0

= 0. (8)

This shows that ωα
0 is actually independent of α, i.e. ωα

0 = ω0
0 for all α ∈ A. This enables us to write S in a local form, i.e. the

dependence on the conformal parameter α is only local and not global through the PDE:

S(Ωα) = Λ∗

α(τ0 · uα)|Γ in
α

= Λ∗

α(ω0
α(τ0)|Γ in

α
) = Λ∗

αΦα∗ω
α
0 (τα)|Γ in

0
= Λ∗

αΦα∗(e
−α(τ0 · u0)|Γ in

0
). (9)

In the first place this local property is why it is possible to give an explicit characterization of the image space of the
shape-dependent operator S. Many constructive airfoil design algorithms are based on this property.
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4. Characterizing the image of S

We now prove our modification of Moser’s result [12] to general top-dimensional forms, including forms with
singularities. In this case a mapping can only exist if the two forms have similar zero sets. For simplicity and with our
application to the shape operator in view we restrict ourselves to one-dimensional manifolds, i.e. n = 1, but it should be
possible to extend the result to arbitrary dimensions. Moser’s theorem requires the total volume on the whole manifold to
be invariant. We get a similar volume condition on every connected component of the nonzero sets of the forms.

Definition 4 (Nonzero Components). For ϱ ∈ Ω1(Γ ) let C(ϱ) = {Γi ⊂ Γ compact and connected, |ϱ|Γi\∂Γi ≠ 0, ϱ|∂Γi = 0}
where ∂Γi denotes the boundary points of Γi. Note that by this definition, Γi ∈ C(ϱ) itself is a manifold with boundary. This
set consists of all subsets Γi ⊂ Γ which connect two adjacent zeros of ϱ.

Theorem 5. Let Γ be a one-dimensional boundary manifold and let τ0 denote its tangential vector field. Then, let ϱ0 ∈ Ω1(Γ )
with transversal zeros only, i.e. if ϱ0(x) is zero, then its derivative in direction τ0 is nonzero in x. Let ϱ1 = eβϱ0 for β ∈ C∞(Γ ),
such that


Γi

ϱ0 =


Γi
ϱ1 hold for every Γi ∈ C(ϱ0). Then there exists a conformal map Θ : Γ → Γ with Θ∗ϱ1 = ϱ0.

Proof. Define ϱt = (1 − t)ϱ0 + tϱ1 for all t ∈ [0, 1] and let ρt = ⋆0 ϱt ∈ C∞(Γ ) be the corresponding Hodge dual. For
every Γi ∈ C(ϱ0) let ωΓi ∈ C∞(Γi) be the solution of

dωΓi = −(ϱ1 − ϱ0) on Γi (10)

ωΓi |∂Γi = 0. (11)

Because of the volume condition


Γi
ϱ0 =


Γi

ϱ1, this solution exists and is unique due to a result from [13]. Let ω be the
composition of all partial solutions, i.e. ω|Γi = ωΓi for Γi ∈ C(ϱ0). Then, ω is continuous on Γ due to Eq. (11) and since the
derivative of ω, that is the right hand side of Eq. (10), is smooth, ω is smooth on the whole boundary Γ , i.e. ω ∈ C∞(Γ ). Let
x0 ∈ Γ be a zero of ρ0. Then, by construction ω(x0) = 0 holds and the following limit exists:

lim
x→x0

∂τ0ω

∂τ0ρt
(x) = lim

x→x0

⋆0 dω
∂τ0ρt

(x) = lim
x→x0

−(eβρ0 − ρ0)

((1 − t) + teβ)∂τ0ρ0 + t∂τ0(eβ)ρ0
(x) = 0 (12)

because limx→x0 ρ0 = 0 and limx→x0 ∂τ0ρ0 ≠ 0. Since this holds for every zero of ρ0 we can define ξt = ω/ρt ∈ C∞(Γ )
by L’Hôpital’s rule (see [14]). Since ξt is also smooth in the variable t it is smooth on the compact space [0, 1] × Γ . Then,
its first derivative is bounded and therefore ξt is Lipschitz continuous in t and x (see [15]). This of course means that ξt is
Lipschitz continuous in x with a uniform constant in t . Define Xt := ξtτ0 ∈ Γ (TΓ ) and by the Lipschitz continuity there
exists a unique flowΘt such thatΘ0 = id and ∂tΘt = Xt , due to the Picard–Lindelöf Theorem (see [15]). Then, the following
holds:

ϱt(Xt) = ρtµ0(ξtτ0) = ρt


g0(ξtτ0, ξtτ0) = ρtξt = ω. (13)

And finally,

d
dt

Θ∗

t ϱt = Θ∗

t (LXt ϱt + ∂tϱt) = Θ∗

t (diXt ϱt + (ϱ1 − ϱ0))

= Θ∗

t (dϱt(Xt) + (ϱ1 − ϱ0)) = Θ∗

t (dω + (ϱ1 − ϱ0)) = 0 (14)

whereLXt denotes the Lie derivative. Thus, we have created a diffeomorphismwithΘ∗
t ϱt = ϱ0 and in particularΘ∗

1ϱ1 = ϱ0.
Since every diffeomorphism on a one-dimensional manifold is conformal, this completes the proof. �

We have prepared everything and can prove our main result characterizing the image space of S.

Theorem 6. Assume that S(Ω0) = τ0 · u0|Γ in
0

has only transversal zeros. Then, ν ∈ im(S) if and only if:

(a) ν = eβθ∗(τ0 · u0) ∈ C∞(Γ in
0 ) for some β ∈ C∞(Γ in

0 ), θ ∈ Diff(Γ in
0 );

(b)

θ(Γ )

(τ0 · u0)µ0 =


Γ
νµ0 for all Γ ∈ C(ν).

Interpretation of Theorem 6: (a) assures that ν and τ0 · u0 have similar zero sets and θ pulls every zero of τ0 · u0 back to
a zero of ν; (b) guarantees that τ0 · u0 and ν have the same volume between two adjacent zeros. From this theorem we see
that im(S) is essentially restricted by the zero set of τ0 · u0, i.e. the set of stagnation points.

Proof. Let ν ∈ C∞(Γ in
0 ) fulfilling (a) and (b) be given. We have to show that ν ∈ im(S). Therefore, define ϱ0 =

θ∗ ⋆0(τ0 · u0|Γ in
0

) and ϱ1 = ⋆0 ν. Then, (a) leads to

ϱ1 = ⋆0 ν = ⋆0 eβθ∗(τ0 · u0|Γ in
0

) = eβe−αθ θ∗ ⋆0(τ0 · u0|Γ in
0

) = eβ−αθ ϱ0 (15)
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for αθ ∈ C∞(Γ in
0 ) being the conformal parameter of θ ∈ Diff(Γ in

0 ), and (b) yields
Γ

ϱ0 =


Γ

θ∗ ⋆0(τ0 · u0|Γ in
0

) =


θ(Γ )

(τ0 · u0)µ0 =


Γ

νµ0 =


Γ

ϱ1 (16)

for all Γ ∈ C(ϱ0). Thus, by Theorem 5 there exists a smooth map Θ ∈ Diff(Γ in
0 ) with Θ∗ϱ1 = ϱ0. Then, Ψ := θ−1

◦ Θ ∈

Diff(Γ in
0 ) implies Ψ ∗ ⋆0 ν = ⋆0(τ0 · u0) and, with α0 being the conformal parameter of the boundary map Ψ , this yields on

Γ in
0

⋆0(τ0 · u0) = Ψ ∗ ⋆0 ν = ⋆α0 Ψ ∗ν = ⋆0 eα0Ψ ∗ν ⇒ Ψ∗(e−α0τ0 · u0) = ν. (17)

We have to split Ψ into a global conformal map Φα and a boundary isometry Λα . Let α ∈ C∞(Ω0) be the solution of

∆α = 0 α|Γ out
0

= 0 α|Γ in
0

= α0. (18)

Then, α ∈ A and by Proposition 3 there exists a corresponding conformal map Φα : Ω0 → Ωα and conformal domain
Ωα . Define Λα := Φα ◦ (Ψ |Γ in

0
)−1

: Γ in
0 → Γ in

α , which is an isometry since for all x ∈ Γ in
0 ,

d
dτ0

Λα(x) = ∂τ0Φα(Ψ −1(x))

∂τ0Ψ (Ψ −1(x))

−1
= eα(Ψ −1(x))e−α(Ψ −1(x)) = 1. (19)

Because there exists an isometry between Γ in
0 and Γ in

α , these boundaries have the same length and, together with α ∈ A,
this shows that Ωα ∈ D . To prove ν ∈ im(S) it remains to show that the constructed Ωα is mapped to ν:

S(Ωα) = Λα
∗Φα∗(e

−α(τ0 · u0)|Γ in
0

) = Ψ∗(e−α0τ0 · u0) = ν. (20)

The ‘‘only if’’ part can easily be seen by setting θ := (Φα|Γ in
0

)−1
◦ Λα and β := θ∗(−α). �

5. Conclusion

The focus of thiswork is on contributing to a better understanding of shape design problems by analyzing the reachability
of a shape-dependent operator. We have done this by drawing a connection between im(S) and the set of stagnation points.
Basically more stagnation points lead to more restrictions and therefore a smaller image space. However, such an explicit
characterization may be challenging in a general setting because our approach does strongly rely on the fact that we are
using potential flow and can take advantage of the local property (cf. Eq. (9)). With the application in view, this approach
can be used in a constructiveway to design objectswith a specific surface velocity: For a given velocity fulfilling the condition
from Theorem 6 one can compute the corresponding conformal parameter α, reconstruct the conformal map Φα and derive
the domain Ωα which realizes the desired velocity. This can be done in a single step without iterations.

Acknowledgment

This work was supported by the German Federal Ministry of Education and Research (BMBF) grant no. 03MS606F.

References

[1] D. Chenais, E. Zuazua, Controllability of an elliptic equation and its finite difference approximation by the shape of the domain, Numerische
Mathematik 95 (2003) 63–99.

[2] A. Osses, J. Puel, On the controllability of the Laplace equation observed on an interior curve, Revista Matemática Complutense 11 (1998) 403–441.
[3] O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer, 1984.
[4] J. Sokolowski, J. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis, vol. 16, Springer-Verlag, 1992.
[5] B. Mohammadi, O. Pironneau, Applied Shape Optimization for Fluids, Oxford University Press, USA, 2001.
[6] G. Allaire, F. Jouve, A. Toader, Structural optimization using sensitivity analysis and a level-set method, Journal of Computational Physics 194 (2004)

363–393.
[7] T. Sederberg, S. Parry, Free-form deformation of solid geometric models, ACM Siggraph Computer Graphics 20 (1986) 151–160.
[8] T. Lassila, G. Rozza, Parametric free-form shape design with pde models and reduced basis method, Computer Methods in Applied Mechanics and

Engineering 199 (2010) 1583–1592.
[9] R. Schinzinger, P. Laura, Conformal Mapping: Methods and Applications, Dover Pubns, 2003.

[10] I. Abbott, A. Von Doenhoff, Theory of Wing Sections: Including a Summary of Airfoil Data, Dover Pubns, 1959.
[11] R. Eppler, Airfoil Design and Data, Springer, Berlin, 1990.
[12] J. Moser, On the volume elements on a manifold, Transactions of the American Mathematical Society 120 (1965) 286–294.
[13] G. Schwarz, Hodge Decomposition—A Method for Solving Boundary Value Problems, Springer, 1995.
[14] H. Heuser, Lehrbuch der Analysis. Teil 1, in: Mathematische Leitfäden, Vieweg+Teubner Verlag, 2009.
[15] P. Hartman, Ordinary Differential Equations, in: Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, 2002.


	Characterizing the image space of a shape-dependent operator for a potential flow problem
	Introduction
	Preliminaries
	Definition of the shape operator
	Characterizing the image of  S 
	Conclusion
	Acknowledgment
	References


