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Ramanujan’s congruence p(5n + 4) s 0 (mod 5) for ordinary partitions is well- 
known. This congruence is just the first in a family of congruences modulo 5; 
namely, p(5”n + 6,) = 0 (mod 5’) for a 2 1 where 6, represents the reciprocal of 24 
modulo 5”. A similar family of congruences exists for ordinary partitions module 7. 
In this paper we prove the corresponding congruences for generalized Frobenius 
partitions with 5 and 7 colors module 5 and 7, respectively, by establishing 
an equality between these two classes of generalized Frobenius partitions and 
certain ordinary partitions. The proofs are based on some elegant identities of 
Ramanujan. 0 1989 Academic Press, Inc. 

In 1984 Andrews Cl] introduced the idea of generalized Frobenius 
partitions, F-partitions for short. These are two-lined arrays 

(;: ;::::;;)y 

where the entries in each row are nonnegative integers arranged in non- 
increasing order. The number being partitioned by such an array is 
n = XI=, (a,+ bi + 1). We will consider F-partitions with k colors where 
the entries in each row are distinct and are taken from k copies of the non- 
negative integers distinguished by color and in each row the entries are 
ordered according to the rule that xi c yj if x < y or if x = y and i < j where 
i and j are integers in the interval [ 1, k] indicating the color of the non- 
negative integer. The number of such F-partitions of n with k colors is 
denoted by cq5,Jn) and we note that cq5i(n) = p(n), the number of ordinary 
partitions of n. We denote the number of F-partitions of n using k colors 
whose order is k under cyclic permutation of the k colors by x(n)= 
Cd, (k, n) I44 4+&+0 

In this paper we will prove the following theorem which establishes a 
relationship between colored F-partitions with 5 and 7 colors and ordinary 
partitions. 
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THEOREM. qb,(n) = 5p(5n - 1) and c&(n) = 7p(7n - 2) for n a positive 
integer. 

As an immediate corollary we will have 

COROLLARY. For M a positive integer, c#,(5”-‘n + (6, + 1)/5) E 0 
(mod 5”+‘) and c&(7”-‘n + (A, + 2)/7) = 0 (mod 7C’a+4)‘21) where S, and 
1, are the reciprocals of 24 module 5” and 7”, respectively. 

The corollary follows from the fact that p(5% + 6,) E 0 (mod 5”) and 
~(7% + A,) E 0 (mod 7G(x’2)‘21 ). The former congruence was conjectured 
by Ramanujan in 1919 and was proved by G. N. Watson [6] in 1938. The 
latter congruence is a minor variation of a conjecture by Ramanujan and 
was also proved by Watson [6]. 

The theorem is based on the following two lemmas 

LEMMA 1. 

(9; 4)’ f c#,(n) 4” = 1+ 25 ?g, 
fl=O 0 

i (1 @,)2 - 5 rg, (i) & 

LEMMA 2. 

and the following identities due to Ramanujan [2,4] 

qr (q5; q5)L 

u-q’)2=q (ci;qL 

f-5 f r Iqr= 
,=I 0 5 

(4; 4)5, 
1-q’ (45?75L 

= dq; d3, (4’; 4’13, + 8q 
2 (q7; 4’17, 

(4; 4)m 

- 49dq; 413, (q7; q7)3,. 

To prove Lemmas 1 and 2 we begin by looking at the generating 
functions for cdg(n) and c-i’(n) in the form 

.lfo cd&) 4” = IX,“=, rk(2n, 0) 4” 
b?;dk, ’ 
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where r,(2n, 0) = the number of solutions of n = C 1 d iC jGk-, xixj [ 11. For 
n > 0, r,(2n, 0) = 25n( 1 - (n$5) 5-8) Cd,,, (d/5)( l/d) where n = 58- ‘n, with 
(n,,, 5) = 1 and r,(2n, 0) = YTZ”(~ - (nJ7) 7T2p) CdJn (d/7)( 1/d2) where 
n = 78-1,0 with (n,, 7) = 1 [4]. 

Hence 

(4; 415, f 45(n) 4” 
II=0 

= 1+ f f q5h758+1 

/T=l m=l 
(m,5)= 1 

= 1+25 f f sq” ; 
r=l s=l 0 n=l r=l 

=1+25f L 4’ 
,=l 5 (1 0 

-52 I ‘4r 
0 ,=l 5 1-q” 

Similarly we can show that 

Furthermore some additional results [ 51 

(q5;i5) =nzop(n)q5” and 25q(~~~~~!‘= f  5p(5n-1)q” 
02 3 cc ‘I=1 

(q7; Iq’)_ = co p(n) q’” 

and 

4gq (q7’ 4’): + 343q2 
(4; 414, 
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provide the connection with the ordinary partition functions necessary to 
establish our theorem. 

Combining Lemmas 1 and 2, the four identities due to Ramanujan, and 
the four results just stated we have 

and 

f (cd,(n)-p(t))q*= f 7p(7n-2)qn, 
n=l n=l 

where p(n/S) and p(n/7) are zero if n/5 and n/7, respectively, are not 
integers. Therefore we conclude that c#Jn) = c#,(n) - p(n/5) = 5p(5n - I) 
and s(n) = c&(n) - p(n/7) = 7p(7n - 2) for all positive integers n. 
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