CONCLUSIONS FF treatment restored autophagy in the WT diabetic mice but not in the FGF21-KO diabetic mice. Mechanistic study with H9c2 cells in vitro showed that autophagy, measured by cytoplasmic form microtubule-associated protein 1A/1B-light chain 3 (LC3) expression, was significantly inhibited by high glucose (HG, 30 mM) that also significantly increased inflammation, oxidative stress, and fibrosis. These HG effects were prevented by FF treatment. Inhibition of autophagy by 3-methyladenine (3MA) or inhibition of Sirt1 by sirtinol abolished FF protection against HG-induced effects. Together, these results suggested that FF could prevent DCM by inducing FGF21, which in turn enhances the Sirt1-mediated autophagy.

GW26-e1079
Comparative Proteomics Reveals Abnormal Binding of ATGL and Dysferlin on Dysfunctional Cardiac Lipid Droplets
Huina Zhang,1 Linghai Li,2 Pingsheng Liu1
1National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences; 2Department of Anesthesiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute

OBJECTIVES Excessive retention of neutral lipids in cardiac lipid droplets (LDs) is a common observation in cardiomyopathy. We anticipate that the systematic investigation of the cardiac LD proteome will help to dissect the underlying mechanisms linking cardiac steatosis and myocardial dysfunction.

METHODS LDs isolated from Sprague-Dawley rat hearts were analyzed using morphological and biochemical approaches and then subjected to iTRAQ quantitative proteomic analysis. The LD localization of the identified LD proteins was verified by immunofluorescence assays. The set of dysferlin truncation mutants were used to determine the LD-binding structure.

RESULTS 771 heart LD proteins were identified and categorized into 10 functional groups, including 467 proteins previously unreported on LDs. The LD localization of these proteins was verified by immunofluorescence assays. The most noteworthy finding was the identification of the membrane reassembling protein, dysferlin. An analysis of dysferlin truncation mutants indicated that its C2 domain was responsible for its LD localization. Using the iTRAQ quantitative proteomic method we determined that the quantity of 30 proteins was increased and 16 proteins was decreased in LDs from pressure overload-induced dysfunctional heart, compared with normal hearts. Notably, adipose triacylglycerol lipase (ATGL) was dramatically decreased and dysferlin was substantially increased on dysfunctional cardiac LDs, a finding that was confirmed using immunoblotting.

CONCLUSIONS This study for the first time reveals the dataset of the heart LD proteome in healthy tissue and the variation of it under cardiac dysfunction. These findings highlight an association between altered LD protein localization of dysferlin and ATGL and myocardial dysfunction.

GW26-e1360
Effects of Sirt1 on Protection Against Atherosclerosis Plaque via Anti-angiogenesis in Mice
Zhenhua Jiang,1 Sai Ma,1 Dong Han,1 Jiangwei Chen,1 Ran Zhang,1 Feng Cao2
1Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaan Xi, China; 2Cardiology Department, Chinese PLA General Hospital, Beijing, China

OBJECTIVES Atherosclerosis (AS) is an age-related disease attributed to vascular endothelial cell injury. Angiogenesis might contribute to vascular remodeling occurring in AS. We firstly investigated the effect of Sirt1 on angiogenesis and the variation of it under atherosclerosis progress via anti-angiogenesis.

METHODS 25 Apolipoprotein E-knockout mice were divided into three groups: control group (n = 5) with normal diet, high-fat diet (HFD) group (n = 10) for 16 weeks, high-fat diet (16 weeks)+resveratrol (2 months) group (HFD+RES) (n = 10) following with resveratrol intra-peritoneal injection (100 mg/kg/day, i.p) for two months Body weight, serum total cholesterol (TC), triglyceride(TG), LDL-C, HDL-C level and oil red O stain were performed to determine the establishment of atherosclerosis model. Immunofluorescence staining of CD31 was used to detect angiogenesis in atherosclerotic plaque. In vitro HUVECs study included six groups: control group, H2O2 treated group (HO), H2O2+resveratrol group (HO + RES), sh-SIRT1 group, sh-SIRT1+ H2O2 group (sh-SIRT1+HO) and sh-SIRT1 + H2O2+resveratrol group (sh-SIRT1+ HO+ RES). Oxidative stress damage was induced by H2O2. HUVECs proliferation was evaluated with wound assay and transwell migration assay. HUVECs apoptosis was assessed with TUNEL. Intra-cellular production of reactive oxygen species (ROS) was detected by a fluorescence probe-2',7'-dichlorofluorescin diacetate (DCFH-DA). Furthermore, Western Blot was performed to determine relative changes of proteins such as SIRTI, HIF-1α and VEGF. We also explored the dose-dependent effect of resveratrol on HUVECs subjected to oxidative stress.

RESULTS As compared with control group mice, HFD mice showed increased body weight, serum TC, TG, LDL-C level and reduced HDL-C. The size of tissues positive for oil red O expression was higher in the HFD mice (P < 0.05), indicating the model of AS was established successfully. Subsequently, immunofluorescence staining of CD31 showed that angiogenesis in HFD+RES group significantly decreased compared with the HFD only group, indicating that resveratrol was capable of inhibiting angiogenesis in AS plaque. In vitro results revealed that H2O2 induced oxidative stress damage on HUVECs, evidenced by increased ROS generation. Furthermore, HIF-1α and VEGF expression were increased whereas Sirt1 expression was reduced (P < 0.05). Results showed that angiogenic changes in HO group, however this effect was diminished in sh-SIRT1+ HO group. Moreover, high-concentration resveratrol inhibited tube formation and cell migration in HUVECs by contributing to apoptosis (P < 0.05).

CONCLUSIONS High-concentration resveratrol prevents against angiogenesis and improves cardiac dysfunction in vivo through anti-angiogenesis in plaque. Sirt1 plays an important role in the resveratrol beneficial effects against atherosclerosis.

GW26-e1553
Long-Term Treatment With Ilovabradine in Transgenic Atrial Fibrillation Mice Counteracts HCN Channel Overexpression and Reduces Atrial Fibrillation Incidence
Jian Wang,1 Yang Li,1 Jun Zhu,1 Chao Zhu,2 Bi Huang,1 Xuehong Shao,1 Han Zhang,1 Huabin Wan,1 Yannan Yang1
1Emergency and Intensive Care Center, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College; 2Department of Cardiology, Chinese PLA General Hospital

OBJECTIVES Current studies show that ibivadrine, a specific heart rate lowering drug, it selective inhibitor of funny (Ii), performing anti-arrhythmic effect of some disease condition, such as heart failure, myocardial ischemia, and so on. But little is known regarding the long-term icvabradine treatment on Ii current and prevention of atrial fibrillation (AF).

METHODS We firstly investigated the Ii current and the HCN channels expression between the wild-type (WT) mice and the transgenic mice overexpressing heart-specific (pro) renin receptor (TG), a useful mouse model of AF, and then examined the effects of ibivadrine on the Ii current and HCN channels expression, and the prevention of AF episode.

RESULTS Compared with WT mice, the enhanced Ii current density (at -170mV: TG, -3.0pA/pF, WT, -26.9±3.0pA/pF, p < 0.001) and the faster activation kinetics (V1/2: TG, -109.4±5.15 mV; WT, -128.20±1.65 mV), as well as the mRNA of HCN2 and HCN4, accompany with the HCN4 protein were significantly increased in atrial myocytes from TG mice. After treatment with ibivadrine for 4 months (7mg/kg per day orally), it partially reverses the electrophysiological remodeling occurring in TG mice, and the Ii density was reduced in the atrial myocytes (at -170mV: TG, -17.7±3.0pA/pF, WT, -18.0±3.1pA/pF, p > 0.89). The effects of ibivadrine on electrophysiological remodeling were accompanied by an inhibition of upregulation of HCN2 and HCN4 protein in atrium tissue. Furthermore, we found that ibivadrine significantly reduce the incidence of AF among TG mice (41.2% in TG mice vs 16.7% in TG-ibivadine mice, p < 0.001), most likely by suppressing an increase in automaticity.

CONCLUSIONS Thus, our findings provide the first evidence that ibivadrine reduced the incidence of AF in mice, and the anti-arrhythmic of ibivadrine was beyond the hate rate reduction, it partially due to counteract the HCN overexpression and reverse electrophysiological cardiac remodeling by reducing Ii gain-of-function.