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ABSTRACT

A generalized inverse of a linear transformation A: ¥ — #°, where ¥~ and #~
are arbitrary finite dimensional vector spaces, is defined using only geometrical
concepts of linear transformations. The inverse is uniquely defined in terms of
specified subspaces £ C #, A < ¥  and a linear transformation N satisfying some
conditions. Such an inverse is called the £.# N-inverse. A Moore-Penrose type inverse
is obtained by choosing N =0. Some optimization problems are considered by
choosing ¥~ and #  as inner product spaces. Our results extend without any major
modification of proofs to bounded linear operators with closed range on Hilbert
spaces.

1. INTRODUCTION

Let " and #  be finite dimensional vector spaces, and A: 7" — #  a
linear transformation. We denote by & C #” the range space of A, by £ a
direct complement of &7 (i.e., &L =#"), by X the kernel (or the null
space) of A, and by . a direct complement of X (i.e., #£/®X =7¥"). The
range space of any general transformation T will be indicated by R(T). The
projection operator on &7 along .# is denoted by P, ., and that on # along
A by P, ,. These projection operators are well defined (see [8, pp.
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106-113], [9], and [10]). The following properties hold from the definitions:

P, 4+ Py, =I (identity operator), (1.1)
Pyy+ Py 4=1, (1.2)
AP, ,=A and AP, ,=0. (1.3)

If A: 7" —#  is not bijective, there is no unique inverse transformation
A~ Y # — ¥ . In such a case, an inverse can be defined only in some special
sense and for specific purposes. Early attempts at defining such inverses in
the case of a matrix transformation are due to Moore [3], Bjerhammar [1],
Penrose [5], and Rao [6]. Bjerhammar and Rao were concerned with the
applications in least squares theory. Later, Rao [7] showed that in applications
such as solving consistent linear equations Ax = y, an inverse transformation
G:# — ¥ should be such that Gy is a preimage of y for all y € R(A). This
implies that AGA = A, or AG|« = I, where AG|# is the operator AG
restricted to &Z. Such a G, which may not be unique, was called a g-inverse of
A in [7], and represented by A~ . Rao [7] also showed that given any A, all
the preimages of y € R(A) are provided by the set {A"y+(I — A A)z, z
arbitrary}.

While Moore and Penrose used orthogonal projection operators in defin-
ing the g-inverse, Langenhop [2] used general projection operators and
obtained a class of g-inverses with the reflexive type (outer inverse) as a
unique member. Nashed and Votruba [4] provided a general framework for
studying different types of g-inverses constructed for specific purposes.
Reference may also be made to the treatise by Rao, Radhakrishna, and Mitra
{8], which contains a detailed discussion of g-inverses and their applications.

In this paper, we provide a general definition of a g-inverse using only the
geometrical concept of a linear transformation, which seems to provide a
unified treatment of the theory of g-inverses of linear transformations and also
characterize different types of g-inverses in terms of specified subspaces .#
and £ in ¥ and #  and a linear transformation N: %" — ¥,

2. THE Z.#N-INVERSE

Let G be such that AG|.%Z =I on . Then the following hold:

(i) If # = R(GA), then  is a direct complement of #" < ¥, the kernel
of A, and

Al : M — 5 is bijective, (2.1)
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in which case there exists a unique inverse of A|.# which maps & onto /7,
and which is the same as G|.27.
(ii) If % = R(I — AG), then % C #" is a direct complement of &/ and

Gl& & —>NCH, (2.2)

where A" = R(G — GAG).
(iii) If N=G — GAG, then .4 = R(N) and

AN=0, NA=0, N|Z=G|&. (2.3)

Thus, given a G € { A~ }, the class of all solutions of AGA= A, there
exist an &, #, N associated with it, with the properties (2.1)-(2.3). In the
terminology of Nashed and Votruba [4], N represents the deficiency in G
from being an outer (reflexive) inverse. Does there exist a G € { A™ } for any
given set of &, .#, N as described in (i)—(iii)? The answer is contained in the
following definition and theorems.

Let # be any complement of 2" in 7", % be any complement of &/ in
# ,and N: #" — ¥~ be any linear transformation such that AN =0, NA=0.

DerFiniTioN. Let &, #, N be as specified above. Then a linear transfor-
mation G: #” — ¥ is said to be an £ N-inverse of A iff

Gl&=T,, GlZ=N|2, (2.4)

where T ,T.o/ —  is the unique inverse of A|#: M — .

We denote an .#.# N-inverse by G, ., and prove the following theorems.

Turorem 2.1. G, ,\ defined by (2.4) exists, and the mapping
(&L, M; N} — {A™ )} is bijective.

Proof. Consider the decomposition y =y, +y, (y€#", y, € &, yo €
2£), and define .

. Gy =T,y + Ny,. (2.5)
Then G is linear and satisfies (2.4), so that G, exists. Let G, and G, be
two solutions of (2.4) for given &, #,N. Then (G, —G,)y=0Vye# =
G, =G,, so that G ,» is unique.
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Suppose that Gy 4 n, = Gg, 4,n,=G. Then R(G|A)= 4 = M5, and
AG|# =1 and AG(ZL VU L)=0= Y, =%, = (say). Finally, G|& =

N||& = N,| &, so that (N — N,)|Z = 0. But (N, — N,)|.#Z =0, so that N, =
N,. The theorem is proved. n

Note. If instead of &, .#, N, we specify the three subspaces &, #, N~
where 4" = R(N) as in (2.2), the G so determined is not unique to the extent
that there may be different choices of N such that .4 = R(N). Thus an
LM Ainverse could be defined, and a general solution could be obtained by
varying N such that R(N)= A"

THEOREM 2.2.
Gono=GruoAGrao (2.6)
i.e., Gy 40 is a reflexive inverse of A, and

Goun=Ggs T N. (2.7)

Proof. If N=0 and y, is the component of y € #” in &/, then

Gewo =T o4 =Geuoth (2-8)
and
Gy noAGg gl = Gono AL 4y = Grupoly (2-9)

(2.8) and (2.9) = (2.6).
It is easily verified that

(Gyuo+ NN =Ggpot and (Ggyo+N)|L=N|Z,

which proves (2.7). [ |

Note that G, ,,, is reflexive (or outer inverse), i.e., G ynAGg gy = Goran
only if N=0.

THEOREM 2.3. The following statements are equivalent for given &, M ,
and N, where P, , and P, _, are projection operators as defined in

£
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(L1)—(13):

(i) G is the LM N-inverse, i.e., satisfies (2.4).
(i) GA=P, 4, GPy ,=N.

(iii) GA=P,. 4, AG=P, ,, P, ,G=N.
(ivi GA=P,. ,, AG=P, o, G-GAG=N.
v) AGA=A, R(G|\&)= M, GPy.,=N.

Proof. First, we show that (ii) « (iii). That (iii) = (ii) easily follows, since
Py ,G=(I-P, ,)G=(I-GA)G=G(I- AG)

=G(I-P, ,)=GCGP, .

To show that (ii) = (iii), observe that AGP, = 0, and from (1.3)

A=AP, ,=AGA,
which imply that AG = P, . Also, we have
GPy. ,=G(I-P, ,)=G(I- AG)
=(I-GA)G=(I1-Py.4)G =Py ,G,

which establishes the desired result.
That (i) = (ii) follows from

GAx =x if xe,
using the condition G|& =T ,, and
GAx=0 if xeJx,

thus establishing GA=P, ., and G|¥ = N|¥ = GP,. , = N.

To prove that (iii) = (iv), observe that P, ,=1—GA and P, ,G=G
- GAG.

It is easy to establish that (iv)= (v) and (v)= (i), which establishes
Theorem 2.3.

Note 1. It is seen that when N =0, statement (iv) of Theorem 2.3
reduces to the definition of an inverse given by Nashed and Votruba [4], so
that their inverse if G 4.
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Note 2. Let ¥" and #° be Euclidean spaces of m and n dimensions
respectively, in which case A can be represented by an m X n matrix and G
by an n X m matrix.

NotE 3. Let ¥ = R(GG). When N = 0, the conditions of (iv) of Theorem
2.3,

GA=P,,, AG=P,,,  G=GAG, (2.10)

are equivalent to
GA=7P, ,, AG=PF, ,, M=9. (2.11)
1f we consider orthogonal projection operators, then (2.11) reduces to
GA=PF,, AG=PF,, (2.12)
since # and . are uniquely determined by % and 7, which is the

definition given by Moore and Penrose.

In the next sections we consider classes of inverses obtained by not
specifying one or more of &, #, N.

3. THE Z.#-INVERSE

If in the definition (2.4), we do not specify N but only require G|.£: Z
— ¥, then we can write the conditions in the form

Gls/ =T, and AG|.Z=0. (3.1)

We represent a solution of (3.1) k;y Gy, 4, which may not be unique, and call
it an L.A-inverse. We have the following theorem.

TueoreM 3.1.  The following statements are equivalent for giveﬁ & and
M, any direct complements of &/ and X respectively:

(i) G is an L.M-inverse.

(i) GA=Fy 5, AG=P, ¢ .

(ili) AGA=A, R(G|)= M, AGP, ,=0.

The,results are proved in the same way as in Theorem 2.3.
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Note 1. The definition given in (ii) of Theorem 3.1 was proposed by
Langenhop [2], who also provided a general solution for G as the sum of two
parts, one of which is the #.# (-inverse. However, an alternative construction
is provided by Theorem 3.2, which is a restatement of Theorem 2.4 of
Langenhop [2].

THEOREM 3.2.  Let A~ be any g-inverse of A, i.e., AA"A= A. Then
Gono=PyyA Py, (3.2)
and
Con=Couot Py 4ZPy (3.3)

is a general solution for an L M-inverse, where Z: %W — ¥ is arbitrary.

Proof. To prove (3.2), we verify the conditions (ii) of Theorem 2.3,
putting N =0. The second condition G ,,P,. ., =0 is trivially true. To
prove the first condition observe that

A(P, yA"A-T)x=0 = (P, ,A A-I)xcxX.

But (P, ,A"A—I)xe # if x € .#. Hence
GyroAx=P, A Ax=x if rex. (3.4)

Since Gy 40Ax =0 if x € ¢, it follows that G, ,,A = P, -, which is the
first condition in (ii) of Theorem 2.3. The result (3.2) is proved.

Since Gy 4 is a particular Z.#-inverse, we need only add a term which
reduces to the null operator by both pre- and postmultiplications by A.
Obviously a general expression for such a term is the second part of (3.3).
Thus (3.3) is proved. [ |

4. OTHER CLASSES OF INVERSES

M-Inverse
An Ainverse of A is G satisfying the condition

GA=P, 4 (4.1)
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with the equivalent conditions
AGA=A and R(GA)= .. (4.2)
A general solution of (4.1) is
G=P, yA" +ZPy . (4.3)

where AA"A = A, and Z is arbitrary. We represent an #-inverse by A
be consistent with the notation developed in [8]).

If ¥ is a vector space endowed with an inner product, then we may
choose .# to be the orthogonal complement of 2#". In such a case, if Ax =y
is a consistent equation, then

—(to

m

min |ix]| = || A, yl|, (4.4)
Ax =y
so that A y is the minimum norm solution of Ax = y.

Llnverse
An Zinverse of A, denoted by A, , is G satisfying the equation

AG=P, , (4.5)
with the equivalent conditions
AGA=A and AGP, ,=0. (4.6)
A general solution of (4.5) is
G=AP,,+tP, ,7Z (4.7)

An & (O-inverse is G satisfying the equivalent conditions
AG=P,,, G=CGAG=AG=P,,, GA=P, , (4.8)

If # is an inner product vector space, we may choose .# to be an
orthogonal complement of /. In such a case

minfly ~ Azl = |ly — AA, yll, (4.9)
so that A, y is a general least squares solution.
LM N-Inverse

Let us consider inner product spaces ¥~ and %7, and the problem of
minimizing ||x|| subject to x being a least squares solution of Ax =y. If
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y; =P, 4y, then the problem reduces to minimizing ||x|| subject to the
consistent equation Ax =y,. Then the optimum x is obtained by using an
A-inverse. The solution is x=A,y, = A, P, »y. It is seen that if G=
AP, ,, then

GA=P, , and GPy ,=0,

so that G is the £ N-inverse of A with N = 0. This inverse (when N =0,

P =A*t, # =X *) may be denoted by A™; it is the Moore-Penrose inverse.
All the above results can be extended without any major modification of

the proofs to bounded linear operators with closed range of Hilbert spaces.

5. EXPRESSIONS FOR g-INVERSES OF MATRICES

We derive explicit expressions for g-inverses of matrices, for which we
consider the linear transformation A as an m X n matrix and take ¥~ = E"
and # = E™ We prove the following lemma, where A’ represents the
transpose of A; K(T), the kernel of a matrix transformation T; and R(T), the
range space of T.

LemMma 5.1.  Let a matrix C be such that R(AYNR(C)=@&, the null
vector, and

R(A")®R(C’)=E™. (5.1)
Then K(AYNK(C)=0 and
K(A)®K(C)=E". (5.2)

Proof. Let x € K(A)YNK(C). Then Ax =0, Cx=0=x =0 in view of
(5.1), i.e., K(A)N K(C)=4. Further note that

dim K(A)+dim K(C) = [n — rank(A)] +[n — rank(C)] = n,

which establishes (5.2). ]

The following theorem is a consequence of Lemma 5.1.

TueoreM 4.1.  Let C be such that (5.1) holds, and F be a matrix such
that R(F) is the direct complement of K(A). Then

PH(F)'K(A) = PK(C)‘K(A) hnd CPR(F)-K(A] =0. (5'3)
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Further

(PH(;\’)-R((.”)),=PI\'((')-I\‘(;\)' (5.4)

Proof. (5.3) is easy to establish. To prove (5.4), we may observe that
R(I - P’)= K(A) and R(P’)= K(C), implying that PA'= A’ and PC’=C’,
where P = Py y oy [ |

LEmMa 5.2. Let B be a matrix such that R(B) is a direct complement of
R(A), and define Sy =1~ BB~ and Qp=1— B(B'B) " B’. Then

PH(;\)J{(B):A(SBA) S[;, (5.5)
= A(A'QgA) A'Qy, (5.6)
= AA(AA'+ BB . (5.7)

A proof of Lemma 5.2 is given in [9]. Using Theorem 5.1 and Lemma 5.2,
it is easy to establish the following lemma.

LEmMMma 5.3, Let S =1—-C Cand Q.. =1—-C(CC") C. Then

Puicyoxin = Sc{AS:) ™ A, (5.8)
= QA (AQLA) A, (5.9)
—(AA+CC) 'AaA. (5.10)

Using these results, we give representations of g-inverses of matrices.

THEOREM 5.2,

(i) If we choose # = K(C), then the #-inverse of A can be written as

A, =Sc(ASC)  + 7Py pea) (5.11)
= QuA(AQA") + 7Py i a) (5.12)
=(AA+CC) A+ ZPuy,nnrs (5.13)

where 7, is an arbitrary matrix.
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(ii) With B as defined in Lemma 5.2 [i.e., & = R(B)], the Linverse of A
can be written as

A; =(SpA) Sp+ Py k)2 (5.14)

=(AQgA) A'Qp+ Py g2 (5.15)

1

= A(AA'+ BB') '+ Py, i 2 (5.16)

(iil) With & = R(B) and # = K(C), N=0, the L.# N-incverse of A cun
be written as

A =5-(AS.) A(SzA) Sy (5.17)
= Q(;’A,( AQ(:'A,) A( A/QBA) R A'Qp (5-18)
=(AA+CC) "AAA(AA + BB . (5.19)

COROLLARY.

(i) If, in particular, R(B)= R(A)* under the Euclidean inner product,
then

1

AL = QnA(AQLA) T A(AA) A'=(AA+CC) A (5.20)

(il) If K(C)= K(A)™*, then

Al =A(AA) A(AQuA) AQ,=A(AAN+BB) . (5.21)

ml =
(iii) If R(B)= R(A)* and K(C)= K(A)* hold simultaneously, then

N
Am[

= A(AA) A(A'A) A, (5.22)

which is exactly the Moore-Penrose inverse of A.
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NorTE. w1 as obtained in Theorem 5.2 is the Moore-Penrose inverse of

the matrix (Q3 AQ ), since A, satisfies the following conditions:

(1) (QpAQc)AL(QsAQ:) = Qg AQ.,
(i) A, (QpAQC)AL=AL,

(iii) (QpAQcA) = QsA0-A
(iv) (A, 03A00) = A, 05A0..

Thus, A}, is uniquely determined for any choices of matrices B and C
spanning & = R(B) and # = K(C) respectively.

The authors would like to thank the referee for useful comments which led
to an improved version of the paper.
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