
Generalized Inverse of Linear Transformations: 
A Geometric Approach 

C. Radhakrishna Rao 
University of Pittsburgh 
Pittsburgh, Pennsylvania 15260 

and 

Haruo Yanai 
Chiba University 
Chiba, Japan 

Submitted by Richard A. Bmaldi 

ABSTRACT 

A generalized inverse of a linear transformation A: V -+ W, where 7v and Y 
are arbitrary finite dimensional vector spaces, is defined using only geometrical 
concepts of linear transformations. The inverse is uniquely defined in terms of 
specified subspaces 2 c W, .d'l C -Y and a linear transformation N satisfying some 
conditions. Such an inverse is called the ZAN-inverse. A Moore-Penrose type inverse 
is obtained by choosing N = 0. Some optimization problems are considered by 
choosing Y and W as inner product spaces. Our results extend without any major 
modification of proofs to bounded linear operators with closed range on Hilbert 
spaces. 

1. INTRODUCTION 

Let y and w be finite dimensional vector spaces, and A : V + W a 

linear transformation. We denote by S? c W the range space of A, by 2 a 
direct complement of ~4 (i.e., &‘@S = V), by X the kernel (or the null 
space) of A, and by & a direct complement of X (i.e., JV@.X = Y). The 
range space of any general transformation T will be indicated by R( T ). The 
projection operator on ~2 along y is denoted by Pd.2, and that on _,@ along 
.% by PM.ju. These projection operators are well defined (see [8, pp. 
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106-1131, [9], and [lo]). The following properties hold from the definitions: 

P d._Y + PYd = Z (identity operator), (1.1) 

4/z..y + P&H = 1, (1.2) 

A?,., = A and APX _fl = 0. (1.3) 

If A: Y + Y is not bijective, there is no unique inverse transformation 
A-’ : W -+ V. In such a case, an inverse can be defined only in some special 
sense and for specific purposes. Early attempts at defining such inverses in 
the case of a matrix transformation are due to Moore [3], Bjerhammar [l], 
Penrose [5], and Rao [6]. Bjerhammar and Rao were concerned with the 
applications in least squares theory. Later, Rao [7] showed that in applications 
such as solving consistent linear equations Ax = y, an inverse transformation 
G : W + Y’- should be such that Gy is a preimage of y for all y E R(A). This 
implies that AGA = A, or AG]& = I, where AG]&’ is the operator AG 
restricted to Sal. Such a G, which may not be unique, was called a g-inverse of 
A in [7], and represented by A-. Rao [7] also showed that given any A- , all 
the preimages of y E R(A) are provided by the set {A- y + (I - A-A)z, z 
arbitrary}. 

While Moore and Penrose used orthogonal projection operators in defin- 
ing the g-inverse, Langenhop [2] used general projection operators and 
obtained a class of g-inverses with the reflexive type (outer inverse) as a 
unique member. Nashed and Votruba [4] provided a general framework for 
studying different types of g-inverses constructed for specific purposes. 
Reference may also be made to the treatise by Rao, Radhakrishna, and Mitra 
[8], which contains a detailed discussion of g-inverses and their applications. 

In this paper, we provide a general definition of a g-inverse using only the 
geometrical concept of a linear transformation, which seems to provide a 
unified treatment of the theory of g-inverses of linear transformations and also 

characterize different types of g-inverses in terms of specified subspaces d 
and 2 in Y and W and a linear transformation N: W + Y. 

2. THE z&N-INVERSE 

Let G be such that AGJd = Z on .xJ’. Then the following hold: 

(i) If &’ = R(GA), then J? is a direct complement of X c Y, the kernel 
of A, and 

A]&: & + & is bijective, (2.1) 
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in which case there exists a unique inverse of Al JH which maps & onto A, 
and which is the same as Gl&‘. 

(ii) If 2 = R(Z - AG), then 9 c W is a direct complement of JP’ and 

where J1’ = R(G - GAG). 
(iii) If N= G - GAG, then N = R(N) and 

AN=O, NA=O, NlP’=G[9. (2.3) 

Thus, given a G E { A~ }, the class of all solutions of AGA = A, there 
exist an 2, JS@‘, N associated with it, with the properties (2.1)-(2.3). In the 
terminology of Nashed and Votruba [4], N represents the deficiency in G 
from being an outer (reflexive) inverse. Does there exist a G E { A- } for rrny 
given set of 9, .M, N as described in (i)-(iii)? The answer is contained in the 
following definition and theorems. 

Let ..H be any complement of X in ^Y-, 9 be any complement of XJ’ in 
77, and N: W + v be any linear transformation such that AN= 0, h’A = 0. 

DEFINITION. Let 2, A, N be as specified above. Then a linear transfor- 
mation G: W ---f Y is said to be an ~J?h-inverse of A iff 

Gld = Tg> G(c!Y= N(cPa, (2.4) 

where 7:/f ?s?’ + k’ is the unique inverse of AJJ?‘: k’ 4 &. 

We denote an 9MhT-inverse by GP,,/p’,, and prove the following theorems. 

T&OREM 2.1. Gy_,,, defined hy (2.4) exists, cmd tlze mnpping 
{ 2, .k’:N } + {A- } is hijectiue. 

proof. Consider the decomposition Y = Y1-k Y? (Y f w3 YI E d, Yz E 

F), and define 

GY = T,Y, + NY,. (2.5) . 

Then G is linear and satisfies (2.4), so that G,.,, exists. Let G, and G2 be 
two solutions of (2.4) for given 2, J?, N. Then (G, - G,)y = 0 V y E W * 
G, = G,, so that G,.,. is unique. 
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Suppose that G_Y,_H~.~, = G_Y~_Q~~ = G. Then R(GIA)= &‘i = d2, and 
AGl& = Z and AGl(Si U dp,) = 0 j L3i = LEz = S? (say). Finally, GlLY = 
Nil-P = N,ILY, so that (Ni - N,)lL? = 0. But (Ni - N2)\d = 0, so that Ni = 
N,. The theorem is proved. n 

NOTE. If instead of 3, A, N, we specify the three subspaces 3, J%‘, JV 
where JV = R(N) as in (2.2), the G so determined is not unique to the extent 
that there may be different choices of N such that Jlr = R(N). Thus an 
.S?_,&‘.Snverse could be defined, and a general solution could be obtained by 
varying N such that R(N) = JV+ 

THEOREM 2.2. 

i.e., G,,, is a reflexive inverse of A, and 

Proof. If N = 0 and yi is the component of y E W in L@‘, then 

G 2woY - MY1 - -T -G _YJmYl 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.8) and (2.9) =) (2.6). 
It is easily verified that 

(Gwo +N)(~&‘=G~,,csl and (G,,,+N)(LP’=NI.Y, 

which proves (2.7). n 

Note that GPMo is reflexive (or outer inverse), i.e., G,,,AG,,, = G2dN 
only if N = 0. 

THEOREM 2.3. The following statements are equivalent for given 9, A, 
and N, where Pdg.x and Py_& are projection operators as defined in 
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(l-l)-(1.3): 

(i) G is the 9&N-inverse, i.e., satisfies (2.4). 
(ii) GA = PdK.X, GP6y.d = N. 
(iii) GA = <K,x, AG = Pdiy, p,._,G = N. 
(iv) GA = <w.x, AG = P=8.y, G - GAG = N. 
(v) AGA = A, R(G(&‘)= M, GP,., = IV. 

Proof. First, we show that (ii) = (iii). That (iii) 3 (ii) easily follows, since 

P x.MG = (I - P,.,)G = (I - GA)G = G(I - AG) 

= G( Z - Pd.,) = GP,.,. 

To show that (ii) * (iii), observe that AGP,., = 0, and from (1.3) 

A = AZ’*(.x = AGA, 

which imply that AG = Pd.y. Also, we have 

GP,., = G( Z - Pd.& = G( Z - AC) 

= (I - GA)G = (z - P~~_~)G = <,,,G, 

which establishes the desired result. 
That (i) * (ii) follows from 

GAx=x if xgM, 

using the condition G]& = Tda, and 

GAx=O if xEX. 

thus establishing GA = PM.x, and G(_!? = NIP’ = GP,., = N. 
To prove that (iii) * (iv), observe that Px.& = Z - GA and P3y.MG = G 

- GAG. 
It is easy to establish that (iv)- (v) and (v) j (i), which establishes 

Theorem 2.3. 

NOTE 1. It is seen that when N = 0, statement (iv) of Theorem 2.3 
reduces to the definition of an inverse given by Nashed and Votruba [4], so 
that their inverse if G,“,,. 
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NOTE 2. Let Y and w be Euclidean spaces of m and n dimensions 
respectively, in which case A can be represented by an m x n matrix and G 
by an n x m matrix. 

NOTE 3. Let S = R(G). When N = 0, the conditions of (iv) of Theorem 
2.3, 

GA = ?,l.x> AC = Pti_Y, G=GAG, (2.10) 

are equivalent to 

GA = f&, AG = Pd.p, &&ii = 9. (2.11) 

If we consider orthogonal projection operators, then (2.11) reduces to 

GA= P9, AG=P,, (2.12) 

since &J and Y are uniquely determined by X and ~2, which is the 
definition given by Moore and Penrose. 

In the next sections we consider classes of inverses obtained by not 
specifying one or more of .Y, A, N. 

3. THE ZA-INVERSE 

If in the definition (2.4), iYe do not specify N but only require Gl9a: 9 
+ X, then we can write the conditions in the form 

. . Gl-ca=T,, and AG(.Y = 0. (3.1) 

We represent a sol&ion of (3.1) b’y GYUa, which may not be unique, and call 
it an 5!&inverse. We have the following theorem. 

THEOREM 3.1. The following statements are equivalent for given 22’ and 
A, any direct complements of z2 and X respectively: 

(i) G is an _.!?&I-inverse. 
(ii) GA = PWif,Jv, AG = Pd.,. . 
(iii) AGA = A, R(GJ&) = A,. AGP,., = 0. 

The,results are proved in the same way as in Theorem 2.3. 
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NOTE 1. The definition given in (ii) of Theorem 3.1 was proposed by 

Langenhop [2], who also provided a general solution for G as the sum of two 
parts, one of which is the P&@inverse. However, an alternative construction 
is provided by Theorem 3.2, which is a restatement of Theorem 2.4 of 
Langenhop [2]. 

THEOREM 3.2. Let Am be any g-inverse of A, i.e., AA-A = A. 77ren 

G %1/O - - ?n x-A-P,.,,> (3.2) 

and 

is a general solution for an Y&-inverse, where Z: W + V is arbitrary. 

Proof. To prove (3.2), we verify the conditions (ii) of Theorem 2.:3, 
putting N = 0. The second condition GY.l[,,PF._, = 0 is trivially true. To 
prove the first condition observe that 

A(Z’,.,A-A-Z)x=O - (Z’,f.,,-A-A-Z)x~X. 

But (P _fr,A A-Z)xEh’if xEJ. Hence 

Since GYd,,, Ax = 0 if x E -X, it follows that GY.,(,,A = I’[{ ,iy, which is the 
first condition in (ii) of Theorem 2.3. The result (3.2) is proved. 

Since GYM0 is a particular g&?-inverse, we need only add a term which 
reduces to the null operator by both pm- and postmultiplications by A. 
Obviously a general expression for such a term is the second part of (3.3). 
Thus (3.3) is proved. n 

4. OTHER CLASSES OF INVERSES 

dKlnverse 

An &inverse of A is G satisfying the condition 

GA = 9//.x (4.1) 
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with the equivalent conditions 

AGA=A and R(GA)=A. (4.2) 

A general sohition of (4.1) is 

G = P,,.,A- + ZP,.,, (4.3) 

where AAA = A, and Z is arbitrary. We represent an &inverse by A,;$ (to 
be consistent with the notation developed in [8]). 

If V is a vector space endowed with an imier product, then we may 
choose & to be the orthogonal complement of X. In such a case, if Ax = y 
is a consistent equation, then 

.:t-‘“b I I x I I = I I A 2; Y I I ) 

SO that A, y is the minimum norm solution of Ax = y, 

(4.4) 

2Tnverse 
An Sinverse of A, denoted by A,, is G satisfying the equation 

AG = ?d_y (4.51 

with the equivalent conditions 

AGA = A and AGt2>.., = 0. (4.6) 

‘4 general solution of (4.5) is 

G = A E’+F + Px _/{Z. (4.7) 

An PO-inverse is G satisfying the equivalent conditions 

AG = Pd.P, G=GAGoAG=Pd.p, GA=P,., (4.8) 

If W is an inner product vector space, we may choose 9 to be an 
orthogonal complement of ~2. In such a case 

m,lnlIY - Axll = IIY - AA,~ YIL (4.9) 

so that A, y is a general least squares solution. 

Let us consider imier product spaces T and W”, and the problem of 
minimizing J/x/J subject to x being a least squares solution of Ax = y. If 
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yr = P’.Yy, then the problem reduces to minimizing l]xll subject to the 
consistent equation Ax = yi. Then the optimum x is obtained by using an 
&inverse. The solution is x = Ai yI = A,P’.,y. It is seen that if G = 
A;; Pd_y, then 

GA = F'll.x and GP,.,=O, 

so that G is the 9&N-inverse of A with N = 0. This inverse (when N = 0, 
9=AAl,A=xi)maybedenotedbyA +; it is the Moore-Penrose inverse. 

All the above results can be extended without any major modification of 
the proofs to bounded linear operators with closed range of Hilbert spaces. 

5. EXPRESSIONS FOR g-INVERSES OF MATRICES 

We derive explicit expressions for g-inverses of matrices, for which we 
consider the linear transformation A as an m x n matrix and take -Y = E” 
and YY = E I". We prove the following lemma, where A’ represents the 
transpose of A; K(T), the kernel of a matrix transformation T; and R(T), the 
range space of T. 

LEMMA 5.1. Let a matrix C be such that R(A')n R(C') = 0, the null 
vector, and 

R(A')@R(C')= E". (5.1) 

Then K(A)nK(C)=0 and 

K(A)@K(C)=E". (5.2) 

Proof Let x E K( A )n K(C). Then Ax = 0, Cx = 0 3 x = 0 in view of 
(5.1), i.e., K(A)n K(C) = 63. Further note that 

dimK(A)+dimK(C)= [n-rank(A)]+[n-rank(C)] =n, 

which establishes (5.2). 

The following theorem is a consequence of Lemma 5.1. 

THEOREM 4.1. Let C be such that (5.1) holds, and F be a matrix such 
that R(F) is the direct complement of K(A). Then 

P R(F).R(A) = P~(C.).h.(A)C.CPR(F)-h.(A)= 0. (5.3) 
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Proof. (3.3) is easy to establish. To prove (5.4), we may observe that 
R( 1 - P’) = K(A) and R( P’) = K(C), implying that PA’ = A’ and PC = C’, 
where P = P,~~,,.~.A~~..~. W 

P R(.\).li(I3) = A&A) S,, (5.5) 

= A( A’Q,,A) A’Q,<, (5.6) 

= AA’( AA’+ BB’) ‘. (5.7) 

A proof of Lemma 5.2 is given in [!-I]. Using Theorem 5.1 and Lemma 5.2, 
it is easy to establish the following lemma. 

LEMMA 5.3. Lpt S,. = I - C C untl Q(,, = I - C’( CC’) C. l?m 

P h(( I ht.\) = SJAS,.) A, (5.8) 

= Q,..A’( AQ<-A’) A’, (5.9) 

= (‘4’A + C’C) ‘A’A. (5.10) 

Using these results, we give representations of g-inverses of matrices. 

A ,?I = S,44) + =!I,,, I((.\) (5.11) 

= Q,-A’( AQ,-A’) + zP,,(,,, j(,.,j (5.12) 

= (A’A + C’C) ‘A’+ ZP,,,,,,.,,(.,,, (5.1:3) 
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(ii) With B us defined in Lemm 5.2 [i.e., .2 = R(B)], the 2%nverw of A 
can he written us 

A, = &A) S,+ + PAC.,, ,,(c)Z (5.14) 

= ( A’Qd) A% + Ph,.\,-htc ,Z (5.15) 

= A’(AA’+ BB’) ‘+ P,,,,,.,,,.,Z. (5.16) 

(iii) With 2 = R(B) unrl J = K(C), N = 0, the Z/l~V-inwr.w of A cm 

he written us 

A,;,, = S,.( L4S,.) A( S,jA) S, (5.17) 

= Q,:.A’( AQ<.,A’) A( A’Q,<A) A’Qn (5.18) 

=(A’A+C’C) ‘A’AA’(AA’+ BB’)~~‘. (5.19) 

COROLLARY. 

A,;,, = Q,..A’( AQ,..A’) A( A’A) A’= (A’A + CC) ‘A’. (5.20) 

(ii) If K(C)= K(A)l, tlwn 

A,:,, = A’( AA’) A( A’Q,,A) .4’QH = A’( Ail’+ BH’) I. (Fi.21) 

A,;,, = A’( AA’) A( A’A ) A’, (5.22) 

which is e.mctly the Moore-Pmrme inomc of A. 
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NOTE. Azr as obtained in Theorem 5.2 is the Moore-Penrose inverse of 
the matrix (QBAQcz), since AZ1 satisfies the following conditions: 

(9 (Q~AQc~)A~r(QBAQc~) = GA% 
(ii) AXQBAQ~~b%L = Aii 
(iii> (QBAQCX,~)‘= QBAQPC,,, 
(iv> (ALQBAQc,)’ = 4hQdQc~~. 

Thus, A$ is uniquely determined for any choices of matrices R and C 
spanning .Y = R(B) and JS%’ = K(C) respectively. 

The authors would like to thank the referee for useful comments which led 
to an improved version of the paper. 
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