ABSTRACT

A generalized inverse of a linear transformation \(A : \mathcal{V} \to \mathcal{W} \), where \(\mathcal{V} \) and \(\mathcal{W} \) are arbitrary finite dimensional vector spaces, is defined using only geometrical concepts of linear transformations. The inverse is uniquely defined in terms of specified subspaces \(\mathcal{V} \subset \mathcal{W} \), \(\mathcal{M} \subset \mathcal{V} \) and a linear transformation \(N \) satisfying some conditions. Such an inverse is called the \(\mathcal{V} \mathcal{M} \mathcal{N} \)-inverse. A Moore-Penrose type inverse is obtained by choosing \(N = 0 \). Some optimization problems are considered by choosing \(\mathcal{V} \) and \(\mathcal{W} \) as inner product spaces. Our results extend without any major modification of proofs to bounded linear operators with closed range on Hilbert spaces.

1. INTRODUCTION

Let \(\mathcal{V} \) and \(\mathcal{W} \) be finite dimensional vector spaces, and \(A : \mathcal{V} \to \mathcal{W} \) a linear transformation. We denote by \(\mathcal{A} \subset \mathcal{W} \) the range space of \(A \), by \(\mathcal{L} \) a direct complement of \(\mathcal{A} \) (i.e., \(\mathcal{A} \oplus \mathcal{L} = \mathcal{W} \)), by \(\mathcal{K} \) the kernel (or the null space) of \(A \), and by \(\mathcal{M} \) a direct complement of \(\mathcal{K} \) (i.e., \(\mathcal{M} \oplus \mathcal{K} = \mathcal{V} \)). The range space of any general transformation \(T \) will be indicated by \(R(T) \). The projection operator on \(\mathcal{A} \) along \(\mathcal{L} \) is denoted by \(P_{\mathcal{A}, \mathcal{L}} \), and that on \(\mathcal{M} \) along \(\mathcal{K} \) by \(P_{\mathcal{M}, \mathcal{K}} \). These projection operators are well defined (see [8, pp.
The following properties hold from the definitions:

\[P_{\mathcal{M}} + P_{\mathcal{N}} = I \]
(1.1)

\[P_{\mathcal{N}} + P_{\mathcal{M}} = I \]
(1.2)

\[AP_{\mathcal{M}} = A \quad \text{and} \quad AP_{\mathcal{N}} = 0. \]
(1.3)

If \(A: \mathcal{Y} \to \mathcal{W} \) is not bijective, there is no unique inverse transformation \(A^{-1}: \mathcal{W} \to \mathcal{Y} \). In such a case, an inverse can be defined only in some special sense and for specific purposes. Early attempts at defining such inverses in the case of a matrix transformation are due to Moore [3], Bjerhammar [1], Penrose [5], and Rao [6]. Bjerhammar and Rao were concerned with the applications in least squares theory. Later, Rao [7] showed that in applications such as solving consistent linear equations \(Ax = y \), an inverse transformation \(G: \mathcal{W} \to \mathcal{Y} \) should be such that \(Gy \) is a preimage of \(y \) for all \(y \in R(A) \). This implies that \(AGA = A \), or \(AG|_{\mathcal{K}} = I \), where \(AG|_{\mathcal{K}} \) is the operator \(AG \) restricted to \(\mathcal{K} \). Such a \(G \), which may not be unique, was called a \(g \)-inverse of \(A \) in [7], and represented by \(A^{-} \). Rao [7] also showed that given any \(A^{-} \), all the preimages of \(y \in R(A) \) are provided by the set \(\{ A^{-} y + (I - A^{-} A)z, \ z \ \text{arbitrary} \} \).

While Moore and Penrose used orthogonal projection operators in defining the \(g \)-inverse, Langenhop [2] used general projection operators and obtained a class of \(g \)-inverses with the reflexive type (outer inverse) as a unique member. Nashed and Votruba [4] provided a general framework for studying different types of \(g \)-inverses constructed for specific purposes. Reference may also be made to the treatise by Rao, Radhakrishna, and Mitra [8], which contains a detailed discussion of \(g \)-inverses and their applications.

In this paper, we provide a general definition of a \(g \)-inverse using only the geometrical concept of a linear transformation, which seems to provide a unified treatment of the theory of \(g \)-inverses of linear transformations and also characterize different types of \(g \)-inverses in terms of specified subspaces \(\mathcal{M} \) and \(\mathcal{N} \) in \(\mathcal{Y} \) and \(\mathcal{W} \) and a linear transformation \(N: \mathcal{W} \to \mathcal{Y} \).

2. THE \(LMN \)-INVERSE

Let \(G \) be such that \(AG|_{\mathcal{K}} = I \) on \(\mathcal{K} \). Then the following hold:

(i) If \(\mathcal{M} = R(GA) \), then \(\mathcal{M} \) is a direct complement of \(\mathcal{K} \subset \mathcal{Y} \), the kernel of \(A \), and

\[A|_{\mathcal{M}}: \mathcal{M} \to \mathcal{K} \text{ is bijective}, \]
(2.1)
in which case there exists a unique inverse of $A|\mathcal{M}$ which maps \mathcal{A} onto \mathcal{M}, and which is the same as $G|\mathcal{A}$.

(ii) If $\mathcal{L} = R(I - AG)$, then $\mathcal{L} \subset \mathcal{W}$ is a direct complement of \mathcal{A} and

$$G|\mathcal{L} : \mathcal{L} \to \mathcal{N} \subset \mathcal{X},$$

(2.2)

where $\mathcal{N} = R(G - GAG)$.

(iii) If $N = G - GAG$, then $\mathcal{N} = R(N)$ and

$$AN = 0, \quad NA = 0, \quad N|\mathcal{L} = G|\mathcal{L}. \quad (2.3)$$

Thus, given a $G \in \{ A^\dagger \}$, the class of all solutions of $AGA = A$, there exist an $\mathcal{L}, \mathcal{M}, N$ associated with it, with the properties (2.1)-(2.3). In the terminology of Nashed and Votruba [4], N represents the deficiency in G from being an outer (reflexive) inverse. Does there exist a $G \in \{ A^\dagger \}$ for any given set of $\mathcal{L}, \mathcal{M}, N$ as described in (i)-(iii)? The answer is contained in the following definition and theorems.

Let \mathcal{M} be any complement of \mathcal{X} in \mathcal{Y}, \mathcal{L} be any complement of \mathcal{A} in \mathcal{W}, and $N : \mathcal{W} \to \mathcal{V}$ be any linear transformation such that $AN = 0, NA = 0$.

Definition. Let $\mathcal{L}, \mathcal{M}, N$ be as specified above. Then a linear transformation $G : \mathcal{W} \to \mathcal{Y}$ is said to be a $\mathcal{M}N$-inverse of A iff

$$G|\mathcal{A} = T_{\#}, \quad G|\mathcal{L} = N|\mathcal{L}, \quad (2.4)$$

where $T_{\#} : \mathcal{A} \to \mathcal{M}$ is the unique inverse of $A|\mathcal{M} : \mathcal{M} \to \mathcal{A}$.

We denote an $\mathcal{M}N$-inverse by $G_{\mathcal{L},\mathcal{M},N}$ and prove the following theorems.

Theorem 2.1. $G_{\mathcal{L},\mathcal{M},N}$ defined by (2.4) exists, and the mapping $\{ \mathcal{L}, \mathcal{M}, N \} \to \{ A^\dagger \}$ is bijective.

Proof. Consider the decomposition $y = y_1 + y_2$ ($y \in \mathcal{W}$, $y_1 \in \mathcal{A}$, $y_2 \in \mathcal{L}$), and define

$$Gy = T_{\#}y_1 + Ny_2. \quad (2.5)$$

Then G is linear and satisfies (2.4), so that $G_{\mathcal{L},\mathcal{M},N}$ exists. Let G_1 and G_2 be two solutions of (2.4) for given $\mathcal{L}, \mathcal{M}, N$. Then $(G_1 - G_2)y = 0 \forall y \in \mathcal{W} \Rightarrow G_1 = G_2$, so that $G_{\mathcal{L},\mathcal{M},N}$ is unique.
Suppose that $G_{\mathcal{L}, \mathcal{M}} N_1 = G_{\mathcal{L}, \mathcal{M}} N_2 = G$. Then $\mathcal{R}(G|\mathcal{A}) = \mathcal{M}_1 = \mathcal{M}_2$, and $AG|\mathcal{A} = I$ and $AG|(\mathcal{L}_1 \cup \mathcal{L}_2) = 0 \Rightarrow \mathcal{L}_1 = \mathcal{L}_2 = \mathcal{L}$ (say). Finally, $G|\mathcal{L} = N_1|\mathcal{L} = N_2|\mathcal{L}$, so that $(N_1 - N_2)|\mathcal{A} = 0$. But $(N_1 - N_2)|\mathcal{L} = 0$, so that $N_1 = N_2$. The theorem is proved.

NOTE. If instead of $\mathcal{L}, \mathcal{M}, N$, we specify the three subspaces $\mathcal{L}, \mathcal{M}, \mathcal{N}$ where $\mathcal{N} = \mathcal{R}(N)$ as in (2.2), the G so determined is not unique to the extent that there may be different choices of N such that $\mathcal{N} = \mathcal{R}(N)$. Thus an $\mathcal{L}\mathcal{M}\mathcal{N}$-inverse could be defined, and a general solution could be obtained by varying N such that $\mathcal{R}(N) = \mathcal{N}$.

THEOREM 2.2.

$$G_{\mathcal{L}, \mathcal{M}} = G_{\mathcal{L}, \mathcal{M}} AG_{\mathcal{L}, \mathcal{M}}$$

(2.6)

i.e., $G_{\mathcal{L}, \mathcal{M}}$ is a reflexive inverse of A, and

$$G_{\mathcal{L}, \mathcal{M}} = G_{\mathcal{L}, \mathcal{M}} + N.$$

(2.7)

Proof. If $N = 0$ and y_1 is the component of $y \in \mathcal{W}$ in \mathcal{A}, then

$$G_{\mathcal{L}, \mathcal{M}} y = T_{\mathcal{M}} y_1 = G_{\mathcal{L}, \mathcal{M}} y_1$$

(2.8)

and

$$G_{\mathcal{L}, \mathcal{M}} AG_{\mathcal{L}, \mathcal{M}} y = G_{\mathcal{L}, \mathcal{M}} A T_{\mathcal{M}} y_1 = G_{\mathcal{L}, \mathcal{M}} y_1.$$

(2.9)

(2.8) and (2.9) \Rightarrow (2.6).

It is easily verified that

$$(G_{\mathcal{L}, \mathcal{M}} + N)|\mathcal{A} = G_{\mathcal{L}, \mathcal{M}}|\mathcal{A} \quad \text{and} \quad (G_{\mathcal{L}, \mathcal{M}} + N)|\mathcal{L} = N|\mathcal{L},$$

which proves (2.7).

Note that $G_{\mathcal{L}, \mathcal{M}}$ is reflexive (or outer inverse), i.e., $G_{\mathcal{L}, \mathcal{M}} AG_{\mathcal{L}, \mathcal{M}} = G_{\mathcal{L}, \mathcal{M}}$ only if $N = 0$.

THEOREM 2.3. The following statements are equivalent for given \mathcal{L}, \mathcal{M}, and N, where $P_{\mathcal{M}}$ and $P_{\mathcal{L}}$ are projection operators as defined in
(1.1)–(1.3):

(i) \(G \) is the \(\mathcal{M} \mathcal{N} \)-inverse, i.e., satisfies (2.4).
(ii) \(GA = P_{\mathcal{M} \mathcal{X}}, \ \text{GP}_{\mathcal{L} \mathcal{M}} = N \).
(iii) \(GA = P_{\mathcal{M} \mathcal{X}}, \ \text{AG} = P_{\mathcal{L} \mathcal{M}}, \ \text{P}_{\mathcal{X} \mathcal{M}} G = N \).
(iv) \(GA = P_{\mathcal{M} \mathcal{X}}, \ \text{AG} = P_{\mathcal{L} \mathcal{M}}, \ \text{G} \ - \text{GAG} = N \).
(v) \(AGA = A, \ \text{R}(G|_{\mathcal{A}}) = \mathcal{M}, \ \text{GP}_{\mathcal{L} \mathcal{M}} = N \).

Proof. First, we show that (ii) \(\Leftrightarrow \) (iii). That (iii) \(\Rightarrow \) (ii) easily follows, since

\[
P_{\mathcal{X} \mathcal{M}} G = (I - P_{\mathcal{M} \mathcal{X}}) G = (I - GA) G = G (I - AG) = G (I - P_{\mathcal{L} \mathcal{M}}) = \text{GP}_{\mathcal{L} \mathcal{M}}.
\]

To show that (ii) \(\Rightarrow \) (iii), observe that \(AGP_{\mathcal{L} \mathcal{M}} = 0 \), and from (1.3)

\[
A = AP_{\mathcal{M} \mathcal{X}} = AGA,
\]

which imply that \(AG = P_{\mathcal{L} \mathcal{M}} \). Also, we have

\[
\text{GP}_{\mathcal{L} \mathcal{M}} = G (I - P_{\mathcal{L} \mathcal{M}}) = G (I - AG) = (I - GA) G = (I - P_{\mathcal{M} \mathcal{X}}) G = P_{\mathcal{X} \mathcal{M}} G,
\]

which establishes the desired result.

That (i) \(\Rightarrow \) (ii) follows from

\[
GAx = x \quad \text{if} \quad x \in \mathcal{M},
\]

using the condition \(G|_{\mathcal{A}} = T_{\mathcal{M}} \), and

\[
GAx = 0 \quad \text{if} \quad x \in \mathcal{X},
\]

thus establishing \(GA = P_{\mathcal{M} \mathcal{X}} \), and \(G|_{\mathcal{L}} = N|_{\mathcal{L}} \Rightarrow \text{GP}_{\mathcal{L} \mathcal{M}} = N \).

To prove that (iii) \(\Rightarrow \) (iv), observe that \(P_{\mathcal{X} \mathcal{M}} = I - GA \) and \(P_{\mathcal{X} \mathcal{M}} G = G \ - GAG \).

It is easy to establish that (iv) \(\Rightarrow \) (v) and (v) \(\Rightarrow \) (i), which establishes Theorem 2.3.

Note 1. It is seen that when \(N = 0 \), statement (iv) of Theorem 2.3 reduces to the definition of an inverse given by Nashed and Votruba [4], so that their inverse if \(G_{|_{\mathcal{L} \mathcal{M}} 0} \).
Note 2. Let \(\mathcal{Y} \) and \(\mathcal{W} \) be Euclidean spaces of \(m \) and \(n \) dimensions respectively, in which case \(A \) can be represented by an \(m \times n \) matrix and \(G \) by an \(n \times m \) matrix.

Note 3. Let \(\mathcal{G} = R(G) \). When \(N = 0 \), the conditions of (iv) of Theorem 2.3,

\[
GA = P_{\mathcal{M} \cdot \mathcal{X}}, \quad AG = P_{\mathcal{A} \cdot \mathcal{Y}}, \quad G = GAG,
\]

are equivalent to

\[
GA = P_{\mathcal{G} \cdot \mathcal{X}}, \quad AG = P_{\mathcal{A} \cdot \mathcal{Y}}, \quad \mathcal{M} = \mathcal{G}.
\]

If we consider orthogonal projection operators, then (2.11) reduces to

\[
GA = P_{\mathcal{G}}, \quad AG = P_{\mathcal{A}},
\]

since \(\mathcal{M} \) and \(\mathcal{L} \) are uniquely determined by \(\mathcal{X} \) and \(\mathcal{A} \), which is the definition given by Moore and Penrose.

In the next sections we consider classes of inverses obtained by not specifying one or more of \(\mathcal{L}, \mathcal{M}, N \).

3. THE \(\mathcal{L}, \mathcal{M} \)-INVERSE

If in the definition (2.4), we do not specify \(N \) but only require \(G|\mathcal{L}: \mathcal{L} \rightarrow \mathcal{X} \), then we can write the conditions in the form

\[
G|\mathcal{A} = T_{\mathcal{M}} \quad \text{and} \quad AG|\mathcal{L} = 0.
\]

We represent a solution of (3.1) by \(G_{\mathcal{L}, \mathcal{M}} \), which may not be unique, and call it an \(\mathcal{L}, \mathcal{M} \)-inverse. We have the following theorem.

Theorem 3.1. The following statements are equivalent for given \(\mathcal{L} \) and \(\mathcal{M} \), any direct complements of \(\mathcal{A} \) and \(\mathcal{X} \) respectively:

(i) \(G \) is an \(\mathcal{L}, \mathcal{M} \)-inverse.

(ii) \(GA = P_{\mathcal{A} \cdot \mathcal{X}}, \ AG = P_{\mathcal{A} \cdot \mathcal{Y}} \).

(iii) \(AGA = A, \ R(G|\mathcal{A}) = \mathcal{M}, \ AGP_{\mathcal{L} \cdot \mathcal{M}} = 0 \).

The results are proved in the same way as in Theorem 2.3.
Note 1. The definition given in (ii) of Theorem 3.1 was proposed by Langenhop [2], who also provided a general solution for \(G \) as the sum of two parts, one of which is the \(\mathcal{L}\mathcal{M} \)-inverse. However, an alternative construction is provided by Theorem 3.2, which is a restatement of Theorem 2.4 of Langenhop [2].

Theorem 3.2. Let \(\mathcal{A}^{-} \) be any g-inverse of \(\mathcal{A} \), i.e., \(\mathcal{A}\mathcal{A}^{-} \mathcal{A} = \mathcal{A} \). Then

\[
G_{\mathcal{L}\mathcal{M}0} = \mathcal{P}_{\mathcal{A}\mathcal{X}} \mathcal{A}^{-} \mathcal{P}_{\mathcal{A}\mathcal{X}'}, \tag{3.2}
\]

and

\[
G_{\mathcal{L}\mathcal{M}} = G_{\mathcal{L}\mathcal{M}0} + \mathcal{P}_{\mathcal{X}\mathcal{M}} \mathcal{Z} \mathcal{P}_{\mathcal{L}\mathcal{A}} \tag{3.3}
\]

is a general solution for an \(\mathcal{L}\mathcal{M} \)-inverse, where \(Z: \mathcal{W} \to \mathcal{V} \) is arbitrary.

Proof. To prove (3.2), we verify the conditions (ii) of Theorem 2.3, putting \(N = 0 \). The second condition \(G_{\mathcal{L}\mathcal{M}0} \mathcal{P}_{\mathcal{A}\mathcal{X}'} = 0 \) is trivially true. To prove the first condition observe that

\[
\mathcal{A}(\mathcal{P}_{\mathcal{A}\mathcal{X}'} \mathcal{A}^{-} \mathcal{A} - I)x = 0 \quad \Rightarrow \quad (\mathcal{P}_{\mathcal{A}\mathcal{X}'} \mathcal{A}^{-} \mathcal{A} - I)x \in \mathcal{K}.
\]

But \((\mathcal{P}_{\mathcal{A}\mathcal{X}'} \mathcal{A}^{-} \mathcal{A} - I)x \in \mathcal{M} \) if \(x \in \mathcal{M} \). Hence

\[
G_{\mathcal{L}\mathcal{M}0} \mathcal{A}x = \mathcal{P}_{\mathcal{A}\mathcal{X}'} \mathcal{A}^{-} \mathcal{A}x = x \quad \text{if} \, \, x \in \mathcal{M}. \tag{3.4}
\]

Since \(G_{\mathcal{L}\mathcal{M}0} \mathcal{A}x = 0 \) if \(x \in \mathcal{X}' \), it follows that \(G_{\mathcal{L}\mathcal{M}0} \mathcal{A} = \mathcal{P}_{\mathcal{A}\mathcal{X}} \), which is the first condition in (ii) of Theorem 2.3. The result (3.2) is proved.

Since \(G_{\mathcal{L}\mathcal{M}0} \) is a particular \(\mathcal{L}\mathcal{M} \)-inverse, we need only add a term which reduces to the null operator by both pre- and postmultiplications by \(\mathcal{A} \). Obviously a general expression for such a term is the second part of (3.3). Thus (3.3) is proved.

4. OTHER CLASSES OF INVERSES

\(\mathcal{M} \)-Inverse

An \(\mathcal{M} \)-inverse of \(\mathcal{A} \) is \(\mathcal{G} \) satisfying the condition

\[
\mathcal{G} \mathcal{A} = \mathcal{P}_{\mathcal{A}\mathcal{X}} \tag{4.1}
\]
with the equivalent conditions
\[AGA = A \quad \text{and} \quad R(GA) = \mathcal{M}. \]
(4.2)

A general solution of (4.1) is
\[G = P_{\mathcal{M}^\perp} A^\perp + ZP_{\mathcal{M}}, \]
(4.3)

where \(AA^\perp A = A \), and \(Z \) is arbitrary. We represent an \(\mathcal{M} \)-inverse by \(A^- \) (to be consistent with the notation developed in [8]).

If \(\mathcal{Y} \) is a vector space endowed with an inner product, then we may choose \(\mathcal{M} \) to be the orthogonal complement of \(\mathcal{X} \). In such a case, if \(Ax = y \) is a consistent equation, then
\[\min_{Ax = y} \| x \| = \| A^- y \|, \]
(4.4)

so that \(A^- y \) is the minimum norm solution of \(Ax = y \).

\(\mathcal{L} \)-Inverse

An \(\mathcal{L} \)-inverse of \(A \), denoted by \(A^\perp \), is \(G \) satisfying the equation
\[AG = P_{\mathcal{L}^\perp}, \]
(4.5)

with the equivalent conditions
\[AGA = A \quad \text{and} \quad AGP_{\mathcal{L}^\perp} = 0. \]
(4.6)

A general solution of (4.5) is
\[G = A^\perp P_{\mathcal{L}^\perp} + P_{\mathcal{L}^\perp} Z. \]
(4.7)

An \(\mathcal{L} \)-0-inverse is \(G \) satisfying the equivalent conditions
\[AG = P_{\mathcal{L}^\perp}, \quad G = GAG \iff AG = P_{\mathcal{L}^\perp}, \quad GA = P_{\mathcal{L}^\perp}. \]
(4.8)

If \(\mathcal{W} \) is an inner product vector space, we may choose \(\mathcal{L} \) to be an orthogonal complement of \(\mathcal{D} \). In such a case
\[\min_{x} \| y - Ax \| = \| y - AA^\perp y \|, \]
(4.9)

so that \(A^\perp y \) is a general least squares solution.

\(\mathcal{L} \mathcal{M} \mathcal{N} \)-Inverse

Let us consider inner product spaces \(\mathcal{Y} \) and \(\mathcal{W} \), and the problem of minimizing \(\| x \| \) subject to \(x \) being a least squares solution of \(Ax = y \). If
\(y_1 = P_{\mathcal{M}^\perp}y \), then the problem reduces to minimizing \(||x|| \) subject to the consistent equation \(Ax = y_1 \). Then the optimum \(x \) is obtained by using an \(\mathcal{M} \)-inverse. The solution is \(x = \Lambda^{-}_m y_1 = \Lambda^{-}_m P_{\mathcal{M}^\perp}y \). It is seen that if \(G = \Lambda^{-}_m P_{\mathcal{M}^\perp} \), then

\[
GA = P_{\mathcal{M}^\perp} \quad \text{and} \quad GP_{\mathcal{M}^\perp} = 0,
\]

so that \(G \) is the \(\mathcal{LMN} \)-inverse of \(A \) with \(N = 0 \). This inverse (when \(N = 0 \), \(\mathcal{L} = A^\perp \), \(\mathcal{M} = \mathcal{N}^\perp \)) may be denoted by \(A^+ \); it is the Moore-Penrose inverse.

All the above results can be extended without any major modification of the proofs to bounded linear operators with closed range of Hilbert spaces.

5. EXPRESSIONS FOR \(g \)-INVERSES OF MATRICES

We derive explicit expressions for \(g \)-inverses of matrices, for which we consider the linear transformation \(A \) as an \(m \times n \) matrix and take \(\mathcal{N} = E^n \) and \(\mathcal{M} = E^m \). We prove the following lemma, where \(A' \) represents the transpose of \(A \); \(K(T) \), the kernel of a matrix transformation \(T \); and \(R(T) \), the range space of \(T \).

Lemma 5.1. Let a matrix \(C \) be such that

\[
R(A') \cap R(C') = 0, \quad R(A') \cap K(C) = 0, \quad R(A') \cap R(C') = E^n. \quad (5.1)
\]

Then \(K(A) \cap K(C) = 0 \) and

\[
K(A) \oplus K(C) = E^n. \quad (5.2)
\]

Proof. Let \(x \in K(A) \cap K(C) \). Then \(Ax = 0 \), \(Cx = 0 \) \(\Rightarrow x = 0 \) in view of (5.1), i.e., \(K(A) \cap K(C) = 0 \). Further note that

\[
\dim K(A) + \dim K(C) = [n - \operatorname{rank}(A)] + [n - \operatorname{rank}(C)] = n,
\]

which establishes (5.2). \(\square \)

The following theorem is a consequence of Lemma 5.1.

Theorem 4.1. Let \(C \) be such that (5.1) holds, and \(F \) be a matrix such that \(R(F) \) is the direct complement of \(K(A) \). Then

\[
P_{R(F) \cdot K(A)} = P_{K(C) \cdot K(A)} \Leftrightarrow CP_{R(F) \cdot K(A)} = 0. \quad (5.3)
\]
Further

\[(P_{R(A')} - R(C')) = p_{K(C) - K(A)}. \quad (5.4)\]

Proof. (5.3) is easy to establish. To prove (5.4), we may observe that
\[R(1 - P') = K(A) \quad \text{and} \quad R(P') = K(C),\]
implies that \(PA' = A'\) and \(PC' = C'\), where \(P = p_{R(A')} - R(C')\).

Lemma 5.2. Let \(B\) be a matrix such that \(R(B)\) is a direct complement of \(R(A)\), and define \(S_B = I - BB'\) and \(Q_B = I - B(B'B)^{-1} B'\). Then

\[p_{R(A')} - R(B) = A(S_B A)^{-} S_B, \quad (5.5)\]

\[= A(A'Q_B A) A'Q_B, \quad (5.6)\]

\[= AA'(AA' + BB')^{-1}. \quad (5.7)\]

A proof of Lemma 5.2 is given in [9]. Using Theorem 5.1 and Lemma 5.2, it is easy to establish the following lemma.

Lemma 5.3. Let \(S_C = I - C'C\) and \(Q_C = I - C'(CC')^{-1} C\). Then

\[p_{K(C) - K(A)} = S_C (AS_C) - A, \quad (5.8)\]

\[= Q_C A'(AQ_C A') - A', \quad (5.9)\]

\[= (A'A + C'C)^{-1} A'A. \quad (5.10)\]

Using these results, we give representations of \(g\)-inverses of matrices.

Theorem 5.2.

(i) If we choose \(M = K(C)\), then the \(M\)-inverse of \(A\) can be written as

\[A_m = S_C (AS_C) + ZP_{R(B) - R(A)} \quad (5.11)\]

\[= Q_C A'(AQ_C A') + ZP_{R(B) - R(A)} \quad (5.12)\]

\[= (A'A + C'C)^{-1} A' + ZP_{R(B) - R(A)}, \quad (5.13)\]

where \(Z\) is an arbitrary matrix.
(ii) With \(B \) as defined in Lemma 5.2 \([i.e., \mathcal{L} = R(B)]\), the \(L \)-inverse of \(A \) can be written as

\[
A^*_L = (S_B A)^{-} S_B + P_{K(A), K(C)} Z \tag{5.14}
\]

\[
= (A'Q_B A) A'Q_B + P_{K(A), K(C)} Z \tag{5.15}
\]

\[
= A'(AA' + BB')^{-1} + P_{K(A), K(C)} Z. \tag{5.16}
\]

(iii) With \(\mathcal{L} = R(B) \) and \(\mathcal{M} = K(C) \), \(N = 0 \), the \(\mathcal{L}\mathcal{M}\)-inverse of \(A \) can be written as

\[
A^*_{\mathcal{L}\mathcal{M}} = S_C (AS_C) A (S_B A)^{-} S_B \tag{5.17}
\]

\[
= Q_C A'(AQ_C A')^{} A (A'Q_B A)^{-} A'Q_B \tag{5.18}
\]

\[
= (A'A + C'C)^{-1} A'AA'(AA' + BB')^{-1}. \tag{5.19}
\]

Corollary.

(i) If, in particular, \(R(B) = R(A)^{\perp} \) under the Euclidean inner product, then

\[
A^*_{\mathcal{M}l} = Q_C A'(AQ_C A')^{} A (A'A)^{-} A' = (A'A + C'C)^{-1} A'. \tag{5.20}
\]

(ii) If \(K(C) = K(A)^{\perp} \), then

\[
A^*_{\mathcal{M}l} = A'(AA')^{} A (A'Q_B A)^{-} A'Q_B = A'(AA' + BB')^{-1}. \tag{5.21}
\]

(iii) If \(R(B) = R(A)^{\perp} \) and \(K(C) = K(A)^{\perp} \) hold simultaneously, then

\[
A^*_{\mathcal{M}l} = A'(AA')^{} A (A'A)^{-} A', \tag{5.22}
\]

which is exactly the Moore-Penrose inverse of \(A \).
NOTE. A^+_{ml} as obtained in Theorem 5.2 is the Moore-Penrose inverse of the matrix $(Q_B A Q_C)$, since A^+_{ml} satisfies the following conditions:

1. $(Q_B A Q_C) A^+_{ml} (Q_B A Q_C) = Q_B A Q_C,$
2. $A^+_{ml} (Q_B A Q_C) A^+_{ml} = A^+_{ml},$
3. $(Q_B A Q_C) A^+_{ml} = Q_B A Q_C A^+_{ml},$
4. $(A^+_{ml} Q_B A Q_C)^t = A^+_{ml} Q_B A Q_C.$

Thus, A^+_{ml} is uniquely determined for any choices of matrices B and C spanning $\mathcal{L} = R(B)$ and $\mathcal{M} = K(C)$ respectively.

The authors would like to thank the referee for useful comments which led to an improved version of the paper.

REFERENCES