# Generalized Inverse of Linear Transformations: A Geometric Approach 

C. Radhakrishna Rao<br>University of Pittsburgh<br>Pittsburgh, Pennsylvania 15260

and
Haruo Yanai
Chiba University
Chiba, Japan

Submitted by Richard A. Brualdi


#### Abstract

A generalized inverse of a linear transformation $A: \mathscr{Y} \rightarrow \mathscr{W}$, where $\mathscr{Y}^{-}$and $\mathscr{W}$ are arbitrary finite dimensional vector spaces, is defined using only geometrical concepts of linear transformations. The inverse is uniquely defined in terms of specified subspaces $\mathscr{L} \subset \mathscr{F}, \mathscr{A} \subset \mathscr{Y}$ and a linear transformation $N$ satisfying some conditions. Such an inverse is called the $\mathscr{L} \cdot \mathscr{M} N$-inverse. A Moore-Penrose type inverse is obtained by choosing $N=0$. Some optimization problems are considered by choosing $\mathscr{Y}$ and $\mathscr{F}$ as inner product spaces. Our results extend without any major modification of proofs to bounded linear operators with closed range on Hilbert spaces.


## 1. INTRODUCTION

Let $\mathscr{V}$ and $\mathscr{W}$ be finite dimensional vector spaces, and $A: \mathscr{V} \rightarrow \mathscr{W}$ a linear transformation. We denote by $\mathscr{A} \subset \mathscr{W}$ the range space of $A$, by $\mathscr{L}$ a direct complement of $\mathscr{A}$ (i.e., $\mathscr{A} \oplus \mathscr{L}=\mathscr{W}$ ), by $\mathscr{K}$ the kernel (or the null space) of $A$, and by $\mathscr{M}$ a direct complement of $\mathscr{K}$ (i.e., $\mathscr{M} \oplus \mathscr{K}=\mathscr{V}$ ). The range space of any general transformation $T$ will be indicated by $R(T)$. The projection operator on $\mathscr{A}$ along $\mathscr{L}$ is denoted by $P_{\mathscr{A} \cdot \mathscr{L}}$, and that on $\mathscr{M}$ along $\mathscr{K}$ by $P_{\mathscr{M}} \cdot \mathscr{K}$. These projection operators are well defined (see [8, pp.

106-113], [9], and [10]). The following properties hold from the definitions:

$$
\begin{align*}
& P_{\mathscr{A} \cdot \mathscr{L}}+P_{\mathscr{L} \cdot \mathscr{A}}=I \text { (identity operator) },  \tag{1.1}\\
& P_{\mathscr{M} \cdot \mathscr{K}}+P_{\mathscr{K} \cdot \mathscr{M}}=I,  \tag{1.2}\\
& A P_{\mathscr{M} \cdot \mathscr{K}}=A \quad \text { and } \quad A P_{\mathscr{K} \cdot \mathscr{M}}=0 . \tag{1.3}
\end{align*}
$$

If $A: \mathscr{V} \rightarrow \mathscr{W}$ is not bijective, there is no unique inverse transformation $A^{-1}: \mathscr{W} \rightarrow \mathscr{V}$. In such a case, an inverse can be defined only in some special sense and for specific purposes. Early attempts at defining such inverses in the case of a matrix transformation are due to Moore [3], Bjerhammar [1], Penrose [5], and Rao [6]. Bjerhammar and Rao were concerned with the applications in least squares theory. Later, Rao [7] showed that in applications such as solving consistent linear equations $A x=y$, an inverse transformation $G: \mathscr{W} \rightarrow \mathscr{V}$ should be such that $G y$ is a preimage of $y$ for all $y \in R(A)$. This implies that $A G A=A$, or $A G \mid \mathscr{A}=I$, where $A G \mid \mathscr{A}$ is the operator $A G$ restricted to $\mathscr{A}$. Such a $C$, which may not be unique, was called a $g$-inverse of $A$ in [7], and represented by $A^{-}$. Rao [7] also showed that given any $A^{--}$, all the preimages of $y \in R(A)$ are provided by the set $\left\{A^{-} y+\left(I-A^{-} A\right) z, z\right.$ arbitrary $\}$.

While Moore and Penrose used orthogonal projection operators in defining the g-inverse, Langenhop [2] used general projection operators and obtained a class of $g$-inverses with the reflexive type (outer inverse) as a unique member. Nashed and Votruba [4] provided a general framework for studying different types of g-inverses constructed for specific purposes. Reference may also be made to the treatise by Rao, Radhakrishna, and Mitra [8], which contains a detailed discussion of $g$-inverses and their applications.

In this paper, we provide a general definition of a $g$-inverse using only the geometrical concept of a linear transformation, which seems to provide a unified treatment of the theory of g-inverses of linear transformations and also characterize different types of $g$-inverses in terms of specified subspaces $\mathscr{M}$ and $\mathscr{L}$ in $\mathscr{V}$ and $\mathscr{W}$ and a linear transformation $N: \mathscr{W} \rightarrow \mathscr{V}$.

## 2. THE $\mathscr{L} \mathscr{M} N$-INVERSE

Let $G$ be such that $A G \mid \mathscr{A}=I$ on $\mathscr{A}$. Then the following hold:
(i) If $\mathscr{M}=R(G A)$, then $\mathscr{M}$ is a direct complement of $\mathscr{K} \subset \mathscr{V}$, the kernel of $A$, and

$$
\begin{equation*}
A \mid \mathscr{M}: \mathscr{M} \rightarrow \mathscr{A} \text { is bijective } \tag{2.1}
\end{equation*}
$$

in which case there exists a unique inverse of $A \mid \mathscr{M}$ which maps $\mathscr{A}$ onto $\mathscr{M}$, and which is the same as $G \mid \mathscr{A}$.
(ii) If $\mathscr{L}=R(I-A G)$, then $\mathscr{L} \subset \mathscr{W}$ is a direct complement of $\mathscr{A}$ and

$$
\begin{equation*}
G \mid \mathscr{L}: \mathscr{L} \rightarrow \mathscr{N} \subset \mathscr{K} \tag{2.2}
\end{equation*}
$$

where $\mathscr{N}=R(G-G A G)$.
(iii) If $N=G-G A G$, then $\mathscr{N}=R(N)$ and

$$
\begin{equation*}
A N=0, \quad N A=0, \quad N|\mathscr{L}=G| \mathscr{L} \tag{2.3}
\end{equation*}
$$

Thus, given a $G \in\left\{A^{-}\right\}$, the class of all solutions of $A G A=A$, there exist an $\mathscr{L}, \mathscr{M}, N$ associated with it, with the properties (2.1)-(2.3). In the terminology of Nashed and Votruba [4], $N$ represents the deficiency in $G$ from being an outer (reflexive) inverse. Does there exist a $G \in\left\{A^{-}\right\}$for any given set of $\mathscr{L}, \mathscr{M}, N$ as described in (i)-(iii)? The answer is contained in the following definition and theorems.

Let $\mathscr{M}$ be any complement of $\mathscr{K}$ in $\mathscr{V}, \mathscr{L}$ be any complement of $\mathscr{A}$ in $\mathscr{W}$, and $N: \mathscr{W} \rightarrow \mathscr{Y}$ be any linear transformation such that $A N=0, N A=0$.

Definition. Let $\mathscr{L}, \mathscr{M}, N$ be as specified above. Then a linear transformation $G: \mathscr{W} \rightarrow \mathscr{V}$ is said to be an $\mathscr{L} \mathscr{M} N$-inverse of $A$ iff

$$
\begin{equation*}
G\left|\mathscr{A}=T_{\mathscr{H}}, \quad G\right| \mathscr{L}=N \mid \mathscr{L}, \tag{2.4}
\end{equation*}
$$

where $T_{\mathscr{H}}: \mathscr{A} \rightarrow \mathscr{M}$ is the unique inverse of $A \mid \mathscr{M}: \mathscr{M} \rightarrow \mathscr{A}$.
We denote an $\mathscr{L} \mathscr{A} N$-inverse by $G_{\mathscr{L} \cdot \mathscr{N}}$ and prove the following theorems.

Theorem 2.1. G $\mathscr{P}_{\mathscr{A}} \mathrm{N}$ defined by (2.4) exists, and the mapping $\{\mathscr{L}, \mathscr{M}, N\} \rightarrow\left\{A^{-}\right\}$is bijective.

Proof. Consider the decomposition $y=y_{1}+y_{2}\left(y \in \mathscr{W}, y_{1} \in \mathscr{A}, y_{2} \in\right.$ $\mathscr{L}$ ), and define

$$
\begin{equation*}
G y=T_{\mathscr{A}} y_{1}+N y_{2} \tag{2.5}
\end{equation*}
$$

Then $G$ is linear and satisfies (2.4), so that $G_{\mathscr{L}, \mathbb{N}:}$ exists. Let $G_{1}$ and $G_{2}$ be two solutions of (2.4) for given $\mathscr{L}, \mathscr{M}, N$. Then $\left(G_{1}-G_{2}\right) y=0 \forall y \in \mathscr{W} \Rightarrow$ $G_{1}=G_{2}$, so that $G_{\mathscr{L}_{\mathscr{A}}}$ is unique.

Suppose that $G_{\mathscr{L}_{1} \mathscr{H}_{1} N_{1}}=G_{\mathscr{L}_{2} \mathscr{M}_{2} N_{2}}=G$. Then $R(G \mid A)=\mathscr{M}_{1}=\mathscr{M}_{2}$, and $A G \mid \mathscr{A}=I$ and $A G \mid\left(\mathscr{L}_{1} \cup \mathscr{L}_{2}\right)=0 \Rightarrow \mathscr{L}_{1}=\mathscr{L}_{2}=\mathscr{L}$ (say). Finally, $G \mid \mathscr{L}=$ $N_{1}\left|\mathscr{L}=N_{2}\right| \mathscr{L}$, so that $\left(N_{1}-N_{2}\right) \mid \mathscr{L}=0$. But $\left(N_{1}-N_{2}\right) \mid \mathscr{A}=0$, so that $N_{1}=$ $N_{2}$. The theorem is proved.

Note. If instead of $\mathscr{L}, \mathscr{M}, N$, we specify the three subspaces $\mathscr{L}, \mathscr{M}, \mathscr{N}$ where $\mathscr{N}=R(N)$ as in (2.2), the $G$ so determined is not unique to the extent that there may be different choices of $N$ such that $\mathscr{N}=R(N)$. Thus an $\mathscr{L}, \mathscr{M} \mathscr{N}$-inverse could be defined, and a general solution could be oblained by varying $N$ such that $R(N)=\mathscr{N}$.

Theorem 2.2.
i.e., $G_{\mathscr{L} M}$ is a reflexive inverse of $A$, and

$$
\begin{equation*}
G_{\mathscr{L} \mathscr{M N}^{N}}=G_{\mathscr{L} \mathscr{M} \mathrm{O}}+N . \tag{2.7}
\end{equation*}
$$

Proof. If $N=0$ and $y_{1}$ is the component of $y \in \mathscr{W}$ in $\mathscr{A}$, then

$$
\begin{equation*}
G_{\mathscr{P} \mathscr{M} 0} y=T_{\mathscr{H}} y_{1}=G_{\mathscr{L} \mathscr{M} 0} y_{1} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{\mathscr{L} M 0} A G_{\mathscr{L},} y=G_{\mathscr{L} M} A T_{\mathscr{M}} y_{1}=G_{\mathscr{L} M 0} y_{1} . \tag{2.9}
\end{equation*}
$$

(2.8) and (2.9) $\Rightarrow(2.6)$.

It is easily verified that

$$
\left(G_{\mathscr{L} \mathscr{M} 0}+N\right) \mid \mathscr{A}=G_{\mathscr{L} \mathscr{K} 0} \mathscr{A} \quad \text { and } \quad\left(G_{\mathscr{L} \mathscr{K} 0}+N\right)|\mathscr{L}=N| \mathscr{L},
$$

which proves (2.7).
 only if $N=0$.

Theorem 2.3. The following statements are equivalent for given $\mathscr{L}, \mathscr{M}$, and $N$, where $P_{\mathscr{A} \cdot \mathscr{X}}$ and $P_{\mathscr{L} \cdot \mathscr{A}}$ are projection operators as defined in
(1.1)-(1.3):
(i) $G$ is the $\mathscr{L} \mathscr{M} N$-inverse, i.e., satisfies (2.4).
(ii) $G A=P_{\mathscr{A} \cdot \mathscr{K}}, G P_{\mathscr{L} \cdot \mathscr{A}}=N$.
(iii) $G A=P_{\mathscr{H} \cdot \mathscr{K}}, A G=P_{\mathscr{A}} \cdot \mathscr{L}, P_{\mathscr{K} \cdot \mathscr{H}} G=N$.
(iv) $G A=P_{\mathscr{H} \cdot \mathscr{K}}, A G=P_{\mathscr{A} \cdot \mathscr{L}}, G-G A G=N$.
(v) $\mathrm{AGA}=\mathrm{A}, R(\mathrm{G} \mid \mathscr{A})=\mathscr{M}, G P_{\mathscr{L} \cdot \mathscr{A}}=N$.

Proof. First, we show that (ii) $\Leftrightarrow$ (iii). That (iii) $\Rightarrow$ (ii) easily follows, since

$$
\begin{aligned}
P_{\mathscr{X} \cdot \mathscr{M}} G & =\left(I-P_{\mathscr{M} \cdot \mathscr{K}}\right) G=(I-G A) G=G(I-A G) \\
& =G\left(I-P_{\mathscr{A} \cdot \mathscr{L}}\right)=G P_{\mathscr{L} \cdot \mathscr{A}} .
\end{aligned}
$$

To show that (ii) $\Rightarrow$ (iii), observe that $A G P_{\mathscr{L} \cdot \mathscr{A}}=0$, and from (1.3)

$$
A=A P_{\mathscr{H} \cdot \mathscr{K}}=A G A
$$

which imply that $A G=P_{\mathscr{A} \cdot \mathscr{L}}$. Also, we have

$$
\begin{aligned}
G P_{\mathscr{L} \cdot \mathscr{A}} & =G\left(I-P_{\mathscr{L} \cdot \mathscr{L}}\right)=G(I-A G) \\
& =(I-G A) G=\left(I-P_{\mathscr{H} \cdot \mathscr{K}}\right) G=P_{\mathscr{K} \cdot \mathscr{M}} G
\end{aligned}
$$

which establishes the desired result.
That (i) $\Rightarrow$ (ii) follows from

$$
G A x=x \quad \text { if } \quad x \in \mathscr{M},
$$

using the condition $G \mid \mathscr{A}=T_{\mathscr{M}}$, and

$$
G A x=0 \quad \text { if } \quad x \in \mathscr{K}
$$

thus establishing $G A=P_{\mathscr{M} \cdot \mathscr{K}}$, and $G|\mathscr{L}=N| \mathscr{L} \Rightarrow G P_{\mathscr{L} \cdot \mathscr{L}}=N$.
To prove that (iii) $\Rightarrow$ (iv), observe that $P_{\mathscr{K} \cdot \boldsymbol{M}}=I-G A$ and $P_{\mathscr{K} \cdot \boldsymbol{M}} G=G$ - GAG.

It is easy to establish that (iv) $\Rightarrow(\mathrm{v})$ and $(\mathrm{v}) \Rightarrow(\mathrm{i})$, which establishes Theorem 2.3.

Note 1. It is seen that when $N=0$, statement (iv) of Theorem 2.3 reduces to the definition of an inverse given by Nashed and Votruba [4], so that their inverse if $G_{\mathscr{L} \mathscr{M} O}$.

Note 2. Let $\mathscr{V}$ and $\mathscr{W}$ be Euclidean spaces of $m$ and $n$ dimensions respectively, in which case $A$ can be represented by an $m \times n$ matrix and $G$ by an $n \times m$ matrix.

Note 3. Let $\mathscr{G}=R(G)$. When $N=0$, the conditions of (iv) of Theorem 2.3,

$$
\begin{equation*}
G A=P_{\mathscr{H} \cdot \mathscr{H}}, \quad A G=P_{\mathscr{2} \cdot \mathscr{L}}, \quad G=G A G \tag{2.10}
\end{equation*}
$$

are equivalent to

$$
\begin{equation*}
G A=P_{\mathscr{G} \cdot \mathscr{H}}, \quad A G=P_{\mathscr{S} \cdot \mathscr{L}}, \quad \mathscr{M}=\mathscr{G} . \tag{2.11}
\end{equation*}
$$

If we consider orthogonal projection operators, then (2.11) reduces to

$$
\begin{equation*}
G A=P_{G G}, \quad A G=P_{\mathscr{G}}, \tag{2.12}
\end{equation*}
$$

since $\mathscr{A}$ and $\mathscr{L}$ are uniquely determined by $\mathscr{K}$ and $\mathscr{A}$, which is the definition given by Moore and Penrose.

In the next sections we consider classes of inverses obtained by not specifying one or more of $\mathscr{L}, \mathscr{M}, N$.

## 3. THE $\mathscr{L} \mathscr{M}$-INVERSE

If in the definition (2.4), we do not specify $N$ but only require $G \mid \mathscr{L}: \mathscr{L}$ $\rightarrow \mathscr{K}$, then we can write the conditions in the form

$$
\begin{equation*}
\therefore \quad . \quad G \mid \mathscr{A}=T_{\mathscr{M}} \quad \text { and } \quad A G \mid \mathscr{L}=0 \tag{3.1}
\end{equation*}
$$

We represent a solution of (3.1, by $G_{\mathscr{P} \mathscr{H}}$, which may not be unique, and call it an $\mathscr{L} \mathscr{M}$-inverse. We have the following theorem.

Theorem 3.1. The following statements are equivalent for given $\mathscr{L}$ and $\mathscr{M}$, any direct complements of $\mathscr{A}$ and $\mathscr{K}$ respectively:
(i) $G$ is an $\mathscr{L} \mathscr{M}$-inverse.
(ii) $G A=P_{\mathscr{A} \cdot \mathscr{X}}, A G=P_{\mathscr{A} \cdot \mathscr{L}}$.
(iii) $A G A=A, R(G \mid \mathscr{A})=\mathscr{M}, A G P_{\mathscr{L} \cdot \mathscr{A}}=0$.

The, results are proved in the same way as in Theorem 2.3.

Note 1. The definition given in (ii) of Theorem 3.1 was proposed by Langenhop [2], who also provided a general solution for $G$ as the sum of two parts, one of which is the $\mathscr{L} \mathscr{M}$ (-inverse. However, an alternative construction is provided by Theorem 3.2, which is a restatement of Theorem 2.4 of Langenhop [2].

Theorem 3.2. Let $A^{-}$be any g-inverse of $A$, i.e., ${A A^{-}}^{-}=A$. Then

$$
\begin{equation*}
\mathrm{G}_{\mathscr{L} \mathscr{H} 0}=P_{\mathscr{H} \cdot \mathscr{H}} A^{-} P_{\mathscr{S}, \mathscr{L}}, \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{\mathscr{L} \mathscr{M}}=G_{\mathscr{L} \mathscr{M} 0}+P_{\mathscr{K} \cdot \boldsymbol{M}} Z P_{\mathscr{L} \cdot \mathscr{A}} \tag{3.3}
\end{equation*}
$$

is a general solution for an $\mathscr{L}$ M-inverse, where $\mathbb{Z}: \mathscr{W} \rightarrow \mathscr{V}$ is arbitrary.
Proof. To prove (3.2), we verify the conditions (ii) of Theorem 2.3, putting $N=0$. The second condition $G_{\mathscr{L} \cdot /!0} P_{\mathscr{L}^{\prime} \cdot \mathscr{A}}=0$ is trivially true. To prove the first condition observe that

$$
A\left(P_{\mathscr{H} \cdot \mathscr{H}} A^{-} A-I\right) x=0 \quad \Rightarrow \quad\left(P_{\mathscr{H} \cdot \mathscr{K}} A^{-} A-I\right) x \in \mathscr{K} .
$$

But $\left(P_{\mathscr{H} \cdot \mathscr{X}} A^{-} A-I\right) x \in \mathscr{M}$ if $x \in \mathscr{M}$. Hence

$$
\begin{equation*}
G_{\mathscr{L} \cdot \mathscr{M} 0} A x=P_{\mathscr{H} \cdot \mathscr{H}} A^{-} A x=x \quad \text { if } \quad x \in \mathscr{M} . \tag{3.4}
\end{equation*}
$$

Since $G_{\mathscr{L} \mathscr{H} 0} A x=0$ if $x \in \mathscr{K}$, it follows that $G_{\mathscr{L} \mathscr{M})} A=P_{\mathscr{A}, \mathscr{K}}$, which is the first condition in (ii) of Theorem 2.3. The result (3.2) is proved.

Since $G_{\mathscr{L} \mathscr{M} 0}$ is a particular $\mathscr{L} \mathscr{M}$-inverse, we need only add a term which reduces to the null operator by both pre- and postmultiplications by $A$. Obviously a general expression for such a term is the second part of (3.3). Thus (3.3) is proved.

## 4. OTHER CLASSES OF INVERSES

M-Inverse
An $\mathscr{M}$-inverse of $A$ is $G$ satisfying the condition

$$
\begin{equation*}
G A=P_{a f \cdot \mathscr{H}} \tag{4.1}
\end{equation*}
$$

with the equivalent conditions

$$
\begin{equation*}
A G A=A \quad \text { and } \quad R(G A)=\mathscr{M} \tag{4.2}
\end{equation*}
$$

A general solution of (4.1) is

$$
\begin{equation*}
G=P_{\mathscr{H} \cdot \mathscr{K}} A^{-}+Z P_{\mathscr{L} \cdot \mathscr{A}} \tag{4.3}
\end{equation*}
$$

where $A A^{-} A=A$, and $Z$ is arbitrary. We represent an $\mathscr{A}$-inverse by $A_{m}^{-}$(to be consistent with the notation developed in [8]).

If $\mathscr{V}$ is a vector space endowed with an inner product, then we may choose $\mathscr{M}$ to be the orthogonal complement of $\mathscr{K}$. In such a case, if $\Lambda x=y$ is a consistent equation, then

$$
\begin{equation*}
\min _{A x=y}\|x\|=\left\|A_{m}^{-} y\right\| \tag{4.4}
\end{equation*}
$$

so that $A_{m}^{-} y$ is the minimum norm solution of $A x=y$.
$\mathscr{L}$ Inverse
An $\mathscr{L}_{\text {-inverse }}$ of $A$, denoted by $A_{l}^{-}$, is $G$ satisfying the equation

$$
\begin{equation*}
A G=P_{\mathscr{\prime} \cdot \mathscr{L}} \tag{4.5}
\end{equation*}
$$

with the equivalent conditions

$$
\begin{equation*}
A G A=A \quad \text { and } \quad A G P_{\mathscr{L} \cdot \mathscr{I}}=0 \tag{4.6}
\end{equation*}
$$

A general solution of (4.5) is

$$
\begin{equation*}
G=\mathrm{A}^{\prime \prime} P_{\mathscr{S}^{\prime} \cdot \mathscr{L}}+P_{\mathscr{Y} \cdot \mathscr{M}} \mathrm{Z} \tag{4.7}
\end{equation*}
$$

An $\mathscr{L} 0$-inverse is $G$ satisfying the equivalent conditions

$$
\begin{equation*}
A G=P_{\mathscr{A} \cdot \mathscr{L}}, \quad G=G A G \Leftrightarrow A G=P_{\mathscr{S} \cdot \mathscr{L}}, \quad G A=P_{\mathscr{G} \cdot \mathscr{Y}} \tag{4.8}
\end{equation*}
$$

If $\mathscr{W}$ is an inner product vector space, we may choose $\mathscr{L}$ to be an orthogonal complement of $\mathscr{A}$. In such a case

$$
\begin{equation*}
\min _{x}\|y-A x\|=\left\|y-A A_{l}^{-} y\right\| \tag{4.9}
\end{equation*}
$$

so that $A_{l}^{-} y$ is a general least squares solution.

## $\mathscr{L} \cdot \mathscr{M}$ N-Inverse

Let us consider inner product spaces $\mathscr{V}$ and $\mathscr{W}$, and the problem of minimizing $\|x\|$ subject to $x$ being a least squares solution of $A x=y$. If
$y_{1}=P_{\mathscr{A} \cdot \mathscr{L}} \boldsymbol{y}$, then the problem reduces to minimizing $\|x\|$ subject to the consistent equation $A x=y_{1}$. Then the optimum $x$ is obtained by using an $\mathscr{M}$-inverse. The solution is $x=A_{m}^{-} y_{1}=A_{m}^{-} P_{\mathscr{A} \cdot \mathscr{L}} y$. It is seen that if $G=$ $A_{m}^{--} P_{\mathscr{A} \cdot \mathscr{L}}$, then

$$
G A=P_{\mathscr{H} \cdot \mathscr{H}} \quad \text { and } \quad G P_{\mathscr{L} \cdot \mathscr{A}}=0,
$$

so that $G$ is the $\mathscr{L} \mathscr{M} N$-inverse of A with $N=0$. This inverse (when $N=0$, $\mathscr{L}=A^{\perp}, \mathscr{M}=\mathscr{K}^{\perp}$ ) may be denoted by $A^{+}$; it is the Moore-Penrose inverse.

All the above results can be extended without any major modification of the proofs to bounded linear operators with closed range of Hilbert spaces.

## 5. EXPRESSIONS FOR $g$-INVERSES OF MATRICES

We derive explicit expressions for $g$-inverses of matrices, for which we consider the linear transformation $A$ as an $m \times n$ matrix and take $\mathscr{V}=E^{n}$ and $\mathscr{W}=E^{m}$. We prove the following lemma, where $A^{\prime}$ represents the transpose of $A ; K(T)$, the kernel of a matrix transformation $T$; and $R(T)$, the range space of $T$.

Lemma 5.1. Let a matrix $C$ be such that $R\left(A^{\prime}\right) \cap R\left(C^{\prime}\right)=\varnothing$, the null vector, and

$$
\begin{equation*}
R\left(A^{\prime}\right) \oplus R\left(C^{\prime}\right)=E^{n} \tag{5.1}
\end{equation*}
$$

Then $K(A) \cap K(C)=\varnothing$ and

$$
\begin{equation*}
K(A) \oplus K(C)=E^{n} \tag{5.2}
\end{equation*}
$$

Proof. Let $x \in K(A) \cap K(C)$. Then $A x=0, C x=0 \Rightarrow x=0$ in view of (5.1), i.e., $K(A) \cap K(C)=\varnothing$. Further note that

$$
\operatorname{dim} K(A)+\operatorname{dim} K(C)=[n-\operatorname{rank}(A)]+[n-\operatorname{rank}(C)]=n,
$$

which establishes (5.2).
The following theorem is a consequence of Lemma 5.1.

Theorem 4.1. Let $C$ be such that (5.1) holds, and $F$ be a matrix such that $R(F)$ is the direct complement of $K(A)$. Then

$$
\begin{equation*}
P_{R(F) \cdot K(A)}=P_{K(C) \cdot K(A)} \Leftrightarrow C P_{R(F) \cdot K(A)}=0 \tag{5.3}
\end{equation*}
$$

Further

$$
\begin{equation*}
\left(P_{R\left(A^{\prime}\right) \cdot R\left(\mathrm{C}^{\prime}\right)}\right)^{\prime}=P_{K(\mathrm{C}) \cdot \mathrm{K}^{\prime}(\mathrm{A})} \tag{5.4}
\end{equation*}
$$

Proof. (5.3) is easy to establish. To prove (5.4), we may observe that $R\left(I-P^{\prime}\right)=K(A)$ and $R\left(P^{\prime}\right)=K(C)$, implying that $P A^{\prime}=A^{\prime}$ and $P C^{\prime}=C^{\prime}$, where $P=P_{R(A) \cdot R\left(C^{\prime}\right)}$.

Lemma 5.2. Let $B$ be a matrix such that $R(B)$ is a direct complement of $R(A)$, and define $S_{B}=I-B B^{-}$and $Q_{B}=I-B\left(B^{\prime} B\right)^{-} B^{\prime}$. Then

$$
\begin{align*}
P_{R(A) \cdot R(B)} & =A\left(S_{B} A\right) S_{B}  \tag{5.5}\\
& =A\left(A^{\prime} Q_{B} A\right) A^{\prime} Q_{B}  \tag{5.6}\\
& =A A^{\prime}\left(A A^{\prime}+B B^{\prime}\right)^{-1} \tag{5.7}
\end{align*}
$$

A proof of Lemma 5.2 is given in [9]. Using Theorem 5.1 and Lemma 5.2, it is easy to establish the following lemma.

Lemma 5.3. Let $S_{\mathrm{G}}=I-C^{-} C$ and $Q_{C^{\prime \prime}}=I-C^{\prime}\left(\mathrm{CC}^{\prime}\right) \quad$ C. Then

$$
\begin{align*}
P_{K(C) \cdot K(A)} & =S_{C}\left(A S_{C}\right)^{-} A,  \tag{5.8}\\
& =Q_{C^{\prime}} A^{\prime}\left(A Q_{C} A^{\prime}\right)^{-\cdots} A^{\prime}  \tag{5.9}\\
& =\left(A^{\prime} A+C^{\prime} C\right)^{-1} A^{\prime} A \tag{5.10}
\end{align*}
$$

Using these results, we give representations of $g$-inverses of matrices.

## Theorem 5.2.

(i) If we choose $\mathscr{M}=K(C)$, then the $\mathscr{M}$-inverse of $A$ can be written as

$$
\begin{align*}
A_{m} & =S_{C}\left(A S_{C}\right)+Z P_{R(B) \cdot R(A)}  \tag{5.11}\\
& =Q_{C^{\prime}} A^{\prime}\left(A Q_{C^{\prime}} A^{\prime}\right)+Z P_{R(B) \cdot R(\cdot A)}  \tag{5.12}\\
& =\left(A^{\prime} A+C^{\prime} C\right)^{1} A^{\prime}+Z P_{R(B) \cdot R(A)} \tag{5.13}
\end{align*}
$$

where Z is an arbitrary matrix.
(ii) With $B$ as defined in Lemma 5.2 [i.e., $\mathscr{L}=R(B)]$, the L्Linverse of $A$ can be written as

$$
\begin{align*}
& A_{\zeta}^{-}=\left(S_{B} A\right)^{-} S_{B}+P_{\text {K(H) K(C) }} Z  \tag{5.14}\\
& =\left(A^{\prime} Q_{B} A\right) \quad A^{\prime} Q_{B}+P_{\text {K(A) }} \text { K(C) } Z^{Z}  \tag{5.15}\\
& =A^{\prime}\left(A A^{\prime}+B B^{\prime}\right)^{1}+P_{\text {K(.) }) \cdot \text { H(C) })} Z . \tag{5.16}
\end{align*}
$$

(iii) With $\mathscr{L}=R(B)$ and $\mathscr{M}=K(C), N=0$, the $\mathscr{L} \mathscr{M} N$-inverse of $A$ can be written as

$$
\begin{align*}
A_{m l}^{+} & =S_{C}\left(A S_{C}\right) \quad A\left(S_{B} A\right) S_{B}  \tag{5.17}\\
& =Q_{C^{\prime}} A^{\prime}\left(A Q_{C^{\prime}} A^{\prime}\right) \quad A\left(A^{\prime} Q_{B} A\right)^{-} A^{\prime} Q_{B}  \tag{5.18}\\
& =\left(A^{\prime} A+C^{\prime} C\right)^{-1} A^{\prime} A A^{\prime}\left(A A^{\prime}+B B^{\prime}\right)^{-1} . \tag{5.19}
\end{align*}
$$

## Conollary.

(i) If, in particular, $R(B)=R(A)^{\perp}$ under the Euclidean inner product, then

$$
\begin{equation*}
A_{m l}^{-}=Q_{C^{\prime}} A^{\prime}\left(A Q_{C^{\prime}} A^{\prime}\right)^{-} A\left(A^{\prime} A\right)^{-\quad} A^{\prime}=\left(A^{\prime} A+C^{\prime} C\right)^{-1} A^{\prime} \tag{5.20}
\end{equation*}
$$

(ii) If $K(C)=K(A)^{\perp}$, then

$$
\begin{equation*}
A_{m l}^{+}=A^{\prime}\left(A A^{\prime}\right) \quad A\left(A^{\prime} Q_{B} A\right)^{-} A^{\prime} Q_{R}=A^{\prime}\left(A A^{\prime}+B B^{\prime}\right) \tag{5.21}
\end{equation*}
$$

(iii) If $R(B)=R(A)^{\perp}$ and $K(C)=K(A)^{\perp}$ hold simultaneously, then

$$
\begin{equation*}
A_{m l}^{+}=A^{\prime}\left(A A^{\prime}\right) A\left(A^{\prime} A\right) \quad A^{\prime} \tag{5.22}
\end{equation*}
$$

which is exactly the Moore-Penrose inverse of A.

Note. $\quad A_{m l}^{+}$as obtained in Theorem 5.2 is the Moore-Penrose inverse of the matrix ( $Q_{B} A Q_{C^{\prime}}$ ), since $A_{m l}^{+}$satisfies the following conditions:
(i) $\left(Q_{B} A Q_{C^{\prime}}\right) A_{m l}^{\prime}\left(Q_{B} A Q_{C^{\prime}}\right)=Q_{B} A Q_{C^{\prime}}$,
(ii) $A_{m l}^{+}\left(Q_{B} A Q_{C^{\prime}}\right) A_{m l}^{+}=A_{m l}^{+}$,
(iii) $\left(Q_{B} A Q_{C^{\prime}} A_{m l}^{+}\right)^{\prime}=Q_{B} A Q_{C^{\prime}} A_{m l}^{+}$,
(iv) $\left(A_{m l}^{+} Q_{B} A Q_{C^{\prime}}\right)^{\prime}=A_{m l}^{+} Q_{B} A Q_{C^{\prime}}$

Thus, $A_{m l}^{+}$is uniquely determined for any choices of matrices $B$ and $C$ spanning $\mathscr{L}=R(B)$ and $\mathscr{M}=K(C)$ respectively.

The authors would like to thank the referee for useful comments which led to an improved version of the paper.

## REFERENCES

1 A. Bjerhammar, Application of calculus of matrices to method of least squares; with special references to geodetic calculations, Trans. Roy. Inst. Tech. Stockholm 49:1-86 (1951).
2 C. E. Langenhop, On generalized inverse of matrices, SIAM J. Appl. Math. 15:1239-1246 (1967).
3 E. H. Moore, On the reciprocal of the general algebraic matrix (Abstract), Bull. Amer. Math. Soc. 26:394-395 (1920).
4 M. Z. Nashed and G. F. Votruba, A unified operator theory of generalized inverses, in Generalized Inverses and Applications, (M. Z. Nashed, Ed.), Academic, 1976, pp. 1-110.
5 R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51:406-413 (1955).
6 C. Radhakrishna Rao, Analysis of dispersion for multiple classified data with unequal numbers in cells, Sankhyāa 15:253-280 (1955).
7 C. Radhakrishna Rao, A note on the generalized inverse of a matrix with applications to problems in mathematical statistics, J. Roy. Statist. Soc. Ser. B 24:152-158 (1962).
8 C. Radhakrishna Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applications, Wiley, New York, 1971.
9 C. Radhakrishna Rao and H. Yanai, General definition and decomposition of projectors and some applications to statistical problems, I. Statist. Plann. Inference 3:1-17 (1979).
10 K. Takeuchi, H. Yanai, and B. N. Mukerjee, The Foundation of Multivariate Analysis, Wiley Eastern, 1982.

