Generalized Inverse of Linear Transformations: A Geometric Approach

C. Radhakrishna Rao University of Pittsburgh Pittsburgh, Pennsylvania 15260

and

Haruo Yanai Chiba University Chiba, Japan

Submitted by Richard A. Brualdi

ABSTRACT

A generalized inverse of a linear transformation $A: \mathscr{V} \to \mathscr{W}$, where \mathscr{V} and \mathscr{W} are arbitrary finite dimensional vector spaces, is defined using only geometrical concepts of linear transformations. The inverse is uniquely defined in terms of specified subspaces $\mathscr{L} \subset \mathscr{W}$, $\mathscr{M} \subset \mathscr{V}$ and a linear transformation N satisfying some conditions. Such an inverse is called the \mathscr{LMN} -inverse. A Moore-Penrose type inverse is obtained by choosing N = 0. Some optimization problems are considered by choosing \mathscr{V} and \mathscr{W} as inner product spaces. Our results extend without any major modification of proofs to bounded linear operators with closed range on Hilbert spaces.

1. INTRODUCTION

Let \mathscr{V} and \mathscr{W} be finite dimensional vector spaces, and $A: \mathscr{V} \to \mathscr{W}$ a linear transformation. We denote by $\mathscr{A} \subset \mathscr{W}$ the range space of A, by \mathscr{L} a direct complement of \mathscr{A} (i.e., $\mathscr{A} \oplus \mathscr{L} = \mathscr{W}$), by \mathscr{K} the kernel (or the null space) of A, and by \mathscr{M} a direct complement of \mathscr{K} (i.e., $\mathscr{M} \oplus \mathscr{K} = \mathscr{V}$). The range space of any general transformation T will be indicated by R(T). The projection operator on \mathscr{A} along \mathscr{L} is denoted by $P_{\mathscr{A},\mathscr{L}}$, and that on \mathscr{M} along \mathscr{K} by $P_{\mathscr{M},\mathscr{K}}$. These projection operators are well defined (see [8, pp.

LINEAR ALGEBRA AND ITS APPLICATIONS 66:87-98 (1985)

© Elsevier Science Publishing Co., Inc., 1985 52 Vanderbilt Ave., New York, NY 10017

0024-3795/85/\$3.30

106-113], [9], and [10]). The following properties hold from the definitions:

$$P_{\mathscr{A} \cdot \mathscr{L}} + P_{\mathscr{L} \cdot \mathscr{A}} = I \text{ (identity operator)}, \tag{1.1}$$

$$P_{\mathcal{M},\mathcal{K}} + P_{\mathcal{K},\mathcal{M}} = I, \tag{1.2}$$

$$AP_{\mathcal{M},\mathcal{X}} = A \quad \text{and} \quad AP_{\mathcal{K},\mathcal{M}} = 0.$$
 (1.3)

If $A: \mathscr{V} \to \mathscr{W}$ is not bijective, there is no unique inverse transformation $A^{-1}: \mathscr{W} \to \mathscr{V}$. In such a case, an inverse can be defined only in some special sense and for specific purposes. Early attempts at defining such inverses in the case of a matrix transformation are due to Moore [3], Bjerhammar [1], Penrose [5], and Rao [6]. Bjerhammar and Rao were concerned with the applications in least squares theory. Later, Rao [7] showed that in applications such as solving consistent linear equations Ax = y, an inverse transformation $G: \mathscr{W} \to \mathscr{V}$ should be such that Gy is a preimage of y for all $y \in R(A)$. This implies that AGA = A, or $AG|\mathscr{A} = I$, where $AG|\mathscr{A}$ is the operator AG restricted to \mathscr{A} . Such a G, which may not be unique, was called a g-inverse of A in [7], and represented by A^- . Rao [7] also showed that given any A^- , all the preimages of $y \in R(A)$ are provided by the set $\{A^-y + (I - A^-A)z, z arbitrary\}$.

While Moore and Penrose used orthogonal projection operators in defining the g-inverse, Langenhop [2] used general projection operators and obtained a class of g-inverses with the reflexive type (outer inverse) as a unique member. Nashed and Votruba [4] provided a general framework for studying different types of g-inverses constructed for specific purposes. Reference may also be made to the treatise by Rao, Radhakrishna, and Mitra [8], which contains a detailed discussion of g-inverses and their applications.

In this paper, we provide a general definition of a g-inverse using only the geometrical concept of a linear transformation, which seems to provide a unified treatment of the theory of g-inverses of linear transformations and also characterize different types of g-inverses in terms of specified subspaces \mathcal{M} and \mathcal{L} in \mathcal{V} and \mathcal{W} and a linear transformation $N: \mathcal{W} \to \mathcal{V}$.

2. THE *LMN*-INVERSE

Let *G* be such that $AG| \mathscr{A} = I$ on \mathscr{A} . Then the following hold:

(i) If $\mathcal{M} = R(GA)$, then \mathcal{M} is a direct complement of $\mathcal{K} \subset \mathcal{V}$, the kernel of A, and

$$A|\mathcal{M}: \mathcal{M} \to \mathcal{A} \text{ is bijective}, \qquad (2.1)$$

in which case there exists a unique inverse of $A|\mathcal{M}$ which maps \mathcal{A} onto \mathcal{M} , and which is the same as $G|\mathcal{A}$.

(ii) If $\mathscr{L} = R(I - AG)$, then $\mathscr{L} \subset \mathscr{W}$ is a direct complement of \mathscr{A} and

$$G|\mathscr{L}:\mathscr{L}\to\mathscr{N}\subset\mathscr{K},\tag{2.2}$$

where $\mathcal{N} = R(G - GAG)$. (iii) If N = G - GAG, then $\mathcal{N} = R(N)$ and

$$AN = 0, \qquad NA = 0, \qquad N|\mathscr{L} = G|\mathscr{L}.$$
 (2.3)

Thus, given a $G \in \{A^-\}$, the class of all solutions of AGA = A, there exist an $\mathscr{L}, \mathscr{M}, N$ associated with it, with the properties (2.1)–(2.3). In the terminology of Nashed and Votruba [4], N represents the deficiency in G from being an outer (reflexive) inverse. Does there exist a $G \in \{A^-\}$ for any given set of $\mathscr{L}, \mathscr{M}, N$ as described in (i)–(iii)? The answer is contained in the following definition and theorems.

Let \mathscr{M} be any complement of \mathscr{K} in \mathscr{V} , \mathscr{L} be any complement of \mathscr{A} in \mathscr{W} , and $N: \mathscr{W} \to \mathscr{V}$ be any linear transformation such that AN = 0, NA = 0.

DEFINITION. Let $\mathscr{L}, \mathscr{M}, N$ be as specified above. Then a linear transformation $G: \mathscr{W} \to \mathscr{V}$ is said to be an \mathscr{LMN} -inverse of A iff

$$G|\mathscr{A} = T_{\mathscr{M}}, \qquad G|\mathscr{L} = N|\mathscr{L},$$

$$(2.4)$$

where $T_{\mathscr{M}} \colon \mathscr{A} \to \mathscr{M}$ is the unique inverse of $A | \mathscr{M} \colon \mathscr{M} \to \mathscr{A}$.

We denote an \mathscr{LMN} -inverse by $G_{\mathscr{LMN}}$ and prove the following theorems.

THEOREM 2.1. $G_{\mathcal{LHN}}$ defined by (2.4) exists, and the mapping $\{\mathcal{L}, \mathcal{M}, N\} \rightarrow \{A^-\}$ is bijective.

Proof. Consider the decomposition $y = y_1 + y_2$ ($y \in \mathcal{W}$, $y_1 \in \mathcal{A}$, $y_2 \in \mathcal{L}$), and define

$$Gy = T_{\mathscr{M}} y_1 + N y_2. \tag{2.5}$$

Then G is linear and satisfies (2.4), so that $G_{\mathcal{LMN}}$ exists. Let G_1 and G_2 be two solutions of (2.4) for given $\mathcal{L}, \mathcal{M}, N$. Then $(G_1 - G_2)y = 0 \forall y \in \mathcal{M} \Rightarrow G_1 = G_2$, so that $G_{\mathcal{LMN}}$ is unique.

Suppose that $G_{\mathscr{L}_1\mathscr{M}_1N_1} = G_{\mathscr{L}_2\mathscr{M}_2N_2} = G$. Then $R(G|A) = \mathscr{M}_1 = \mathscr{M}_2$, and $AG|\mathscr{A} = I$ and $AG|(\mathscr{L}_1 \cup \mathscr{L}_2) = 0 \Rightarrow \mathscr{L}_1 = \mathscr{L}_2 = \mathscr{L}$ (say). Finally, $G|\mathscr{L} = N_1|\mathscr{L} = N_2|\mathscr{L}$, so that $(N_1 - N_2)|\mathscr{L} = 0$. But $(N_1 - N_2)|\mathscr{A} = 0$, so that $N_1 = N_2$. The theorem is proved.

NOTE. If instead of \mathscr{L} , \mathscr{M} , N, we specify the three subspaces \mathscr{L} , \mathscr{M} , \mathscr{N} where $\mathscr{N} = R(N)$ as in (2.2), the G so determined is not unique to the extent that there may be different choices of N such that $\mathscr{N} = R(N)$. Thus an \mathscr{LMN} -inverse could be defined, and a general solution could be obtained by varying N such that $R(N) = \mathscr{N}$.

Theorem 2.2.

$$G_{\mathcal{QM}0} = G_{\mathcal{QM}0} A G_{\mathcal{QM}0} \tag{2.6}$$

i.e., $G_{\mathscr{L},\mathscr{M}_0}$ is a reflexive inverse of A, and

$$G_{\mathcal{LMN}} = G_{\mathcal{LM0}} + N. \tag{2.7}$$

Proof. If N = 0 and y_1 is the component of $y \in \mathcal{W}$ in \mathcal{A} , then

$$G_{\mathcal{LM}0} \boldsymbol{y} = T_{\mathcal{M}} \boldsymbol{y}_1 = G_{\mathcal{LM}0} \boldsymbol{y}_1 \tag{2.8}$$

and

$$G_{\mathcal{LM}0}AG_{\mathcal{LM}0}y = G_{\mathcal{LM}0}AT_{\mathcal{M}}y_1 = G_{\mathcal{LM}0}y_1.$$
(2.9)

(2.8) and $(2.9) \Rightarrow (2.6)$.

It is easily verified that

$$(G_{\mathscr{LM}0} + N)|\mathscr{A} = G_{\mathscr{LM}0}\mathscr{A} \text{ and } (G_{\mathscr{LM}0} + N)|\mathscr{L} = N|\mathscr{L},$$

which proves (2.7).

Note that $G_{\mathcal{LM}0}$ is reflexive (or outer inverse), i.e., $G_{\mathcal{LM}N}AG_{\mathcal{LM}N} = G_{\mathcal{LM}N}$ only if N = 0.

THEOREM 2.3. The following statements are equivalent for given \mathscr{L} , \mathscr{M} , and N, where $P_{\mathscr{M},\mathscr{K}}$ and $P_{\mathscr{L},\mathscr{M}}$ are projection operators as defined in

(1.1)-(1.3):

(i) G is the LMN-inverse, i.e., satisfies (2.4).
(ii) GA = P_{M·X}, GP_{L·A} = N.
(iii) GA = P_{M·X}, AG = P_{A·L}, P_{X·M}G = N.
(iv) GA = P_{M·X}, AG = P_{A·L}, G - GAG = N.
(v) AGA = A, R(G|A) = M, GP_{L·A} = N.

Proof. First, we show that (ii) \Leftrightarrow (iii). That (iii) \Rightarrow (ii) easily follows, since

$$P_{\mathcal{K} \cdot \mathcal{M}}G = (I - P_{\mathcal{M} \cdot \mathcal{K}})G = (I - GA)G = G(I - AG)$$
$$= G(I - P_{\mathcal{M} \cdot \mathcal{L}}) = GP_{\mathcal{L} \cdot \mathcal{M}}.$$

To show that (ii) \Rightarrow (iii), observe that $AGP_{\mathcal{L},\mathcal{A}} = 0$, and from (1.3)

$$A = AP_{\mathcal{M} \cdot \mathcal{K}} = AGA,$$

which imply that $AG = P_{\mathscr{A} \cup \mathscr{L}}$. Also, we have

$$GP_{\mathscr{L}\cdot\mathscr{A}} = G(I - P_{\mathscr{A}\cdot\mathscr{L}}) = G(I - AG)$$
$$= (I - GA)G = (I - P_{\mathscr{M}\cdot\mathscr{K}})G = P_{\mathscr{K}\cdot\mathscr{M}}G$$

which establishes the desired result.

That (i) \Rightarrow (ii) follows from

$$GAx = x$$
 if $x \in \mathcal{M}$,

using the condition $G|\mathscr{A} = T_{\mathscr{M}}$, and

$$GAx = 0$$
 if $x \in \mathscr{K}$,

thus establishing $GA = P_{\mathcal{M} \cdot \mathcal{K}}$, and $G|\mathcal{L} = N|\mathcal{L} \Rightarrow GP_{\mathcal{L} \cdot \mathcal{A}} = N$.

To prove that (iii) \Rightarrow (iv), observe that $P_{\mathscr{K} \cdot \mathscr{M}} = I - GA$ and $P_{\mathscr{K} \cdot \mathscr{M}}G = G - GAG$.

It is easy to establish that $(iv) \Rightarrow (v)$ and $(v) \Rightarrow (i)$, which establishes Theorem 2.3.

NOTE 1. It is seen that when N = 0, statement (iv) of Theorem 2.3 reduces to the definition of an inverse given by Nashed and Votruba [4], so that their inverse if $G_{\mathcal{LM}0}$.

NOTE 2. Let \mathscr{V} and \mathscr{W} be Euclidean spaces of m and n dimensions respectively, in which case A can be represented by an $m \times n$ matrix and G by an $n \times m$ matrix.

NOTE 3. Let $\mathscr{G} = R(G)$. When N = 0, the conditions of (iv) of Theorem 2.3,

$$GA = P_{\mathcal{M} \cdot \mathcal{K}}, \qquad AG = P_{\mathcal{A} \cdot \mathcal{L}}, \qquad G = GAG, \qquad (2.10)$$

are equivalent to

$$GA = P_{\mathscr{G},\mathscr{K}}, \qquad AG = P_{\mathscr{A},\mathscr{G}}, \qquad \mathscr{M} = \mathscr{G}.$$
 (2.11)

If we consider orthogonal projection operators, then (2.11) reduces to

$$GA = P_{\mathscr{G}}, \qquad AG = P_{\mathscr{A}}, \qquad (2.12)$$

since \mathcal{M} and \mathcal{L} are uniquely determined by \mathcal{K} and \mathcal{A} , which is the definition given by Moore and Penrose.

In the next sections we consider classes of inverses obtained by not specifying one or more of \mathcal{L} , \mathcal{M} , N.

3. THE *LM*-INVERSE

If in the definition (2.4), we do not specify N but only require $G|\mathscr{L}:\mathscr{L} \to \mathscr{K}$, then we can write the conditions in the form

$$G|\mathscr{A} = T_{\mathscr{M}} \quad \text{and} \quad AG|\mathscr{L} = 0.$$
 (3.1)

We represent a solution of (3.1) by $G_{\mathcal{LM}}$, which may not be unique, and call it an \mathcal{LM} -inverse. We have the following theorem.

THEOREM 3.1. The following statements are equivalent for given \mathscr{L} and \mathscr{M} , any direct complements of \mathscr{A} and \mathscr{K} respectively:

- (i) G is an \mathcal{LM} -inverse. (ii) $GA = P_{\mathcal{M} \cup \mathcal{K}}, AG = P_{\mathcal{A} \cup \mathcal{L}}$.
- (iii) AGA = A, $R(G|\mathscr{A}) = \mathscr{M}$, $AGP_{\mathscr{L} \cdot \mathscr{A}} = 0$.

The results are proved in the same way as in Theorem 2.3.

GENERALIZED INVERSES

NOTE 1. The definition given in (ii) of Theorem 3.1 was proposed by Langenhop [2], who also provided a general solution for G as the sum of two parts, one of which is the \mathcal{LM} 0-inverse. However, an alternative construction is provided by Theorem 3.2, which is a restatement of Theorem 2.4 of Langenhop [2].

THEOREM 3.2. Let A^- be any g-inverse of A, i.e., $AA^-A = A$. Then

$$G_{\mathcal{LM}0} = P_{\mathcal{M} \cdot \mathcal{K}} A^{-} P_{\mathcal{M} \cdot \mathcal{L}}, \qquad (3.2)$$

and

$$G_{\mathscr{LM}} = G_{\mathscr{LM0}} + P_{\mathscr{K} \cdot \mathscr{M}} Z P_{\mathscr{L} \cdot \mathscr{A}}$$
(3.3)

is a general solution for an \mathcal{LM} -inverse, where $Z: \mathcal{W} \to \mathcal{V}$ is arbitrary.

Proof. To prove (3.2), we verify the conditions (ii) of Theorem 2.3, putting N = 0. The second condition $G_{\mathcal{LM}0}P_{\mathcal{L}' \cdot \mathcal{A}} = 0$ is trivially true. To prove the first condition observe that

$$A(P_{\mathscr{M},\mathscr{K}}A^{-}A-I)x = 0 \quad \Rightarrow \quad (P_{\mathscr{M},\mathscr{K}}A^{-}A-I)x \in \mathscr{K}.$$

But $(P_{\mathcal{M},\mathcal{K}}A^{*}A - I)x \in \mathcal{M}$ if $x \in \mathcal{M}$. Hence

$$G_{\mathscr{L}\mathcal{M}0}Ax = P_{\mathscr{M}\mathcal{K}}A^{-}Ax = x \quad \text{if} \quad x \in \mathscr{M}.$$
(3.4)

Since $G_{\mathcal{LM}0}Ax = 0$ if $x \in \mathcal{K}$, it follows that $G_{\mathcal{LM}0}A = P_{\mathcal{M} \setminus \mathcal{K}}$, which is the first condition in (ii) of Theorem 2.3. The result (3.2) is proved.

Since $G_{\mathcal{LM}0}$ is a particular \mathcal{LM} -inverse, we need only add a term which reduces to the null operator by both pre- and postmultiplications by A. Obviously a general expression for such a term is the second part of (3.3). Thus (3.3) is proved.

4. OTHER CLASSES OF INVERSES

M-Inverse

An *M*-inverse of A is G satisfying the condition

$$GA = P_{\mathscr{M} \cdot \mathscr{K}} \tag{4.1}$$

with the equivalent conditions

$$AGA = A$$
 and $R(GA) = \mathcal{M}$. (4.2)

A general solution of (4.1) is

$$G = P_{\mathscr{M} \cdot \mathscr{K}} A^{-} + Z P_{\mathscr{L} \cdot \mathscr{A}}, \qquad (4.3)$$

where $AA^{-}A = A$, and Z is arbitrary. We represent an \mathcal{M} -inverse by A_{m}^{-} (to be consistent with the notation developed in [8]).

If \mathscr{V} is a vector space endowed with an inner product, then we may choose \mathscr{M} to be the orthogonal complement of \mathscr{K} . In such a case, if Ax = y is a consistent equation, then

$$\min_{Ax = y} ||x|| = ||A_m^- y||, \tag{4.4}$$

so that $A_m^- y$ is the minimum norm solution of Ax = y.

L'Inverse

An \mathcal{L} inverse of A, denoted by A_l^- , is G satisfying the equation

$$AG = P_{\mathscr{A},\mathscr{L}} \tag{4.5}$$

with the equivalent conditions

$$AGA = A$$
 and $AGP_{\mathcal{L},\mathcal{A}} = 0.$ (4.6)

A general solution of (4.5) is

$$G = A^{+} P_{\mathscr{A} \cup \mathscr{L}} + P_{\mathscr{K} \cup \mathscr{M}} Z.$$

$$(4.7)$$

An \mathcal{L} 0-inverse is G satisfying the equivalent conditions

$$AG = P_{\mathscr{A} \cdot \mathscr{L}}, \quad G = GAG \Leftrightarrow AG = P_{\mathscr{A} \cdot \mathscr{L}}, \quad GA = P_{\mathscr{G} \cdot \mathscr{K}}$$
(4.8)

If \mathscr{W} is an inner product vector space, we may choose \mathscr{L} to be an orthogonal complement of \mathscr{A} . In such a case

$$\min_{x} ||y - Ax|| = ||y - AA_{l} y||, \qquad (4.9)$$

so that $A_l^- y$ is a general least squares solution.

LMN-Inverse

Let us consider inner product spaces \mathscr{V} and \mathscr{W} , and the problem of minimizing ||x|| subject to x being a least squares solution of Ax = y. If

 $y_1 = P_{\mathscr{A} \cdot \mathscr{L}} y$, then the problem reduces to minimizing ||x|| subject to the consistent equation $Ax = y_1$. Then the optimum x is obtained by using an \mathscr{M} -inverse. The solution is $x = A_m^- y_1 = A_m^- P_{\mathscr{A} \cdot \mathscr{L}} y$. It is seen that if $G = A_m^- P_{\mathscr{A} \cdot \mathscr{L}}$, then

$$GA = P_{\mathscr{H} \times \mathscr{K}}$$
 and $GP_{\mathscr{H} \times \mathscr{A}} = 0$,

so that G is the \mathcal{LMN} -inverse of A with N = 0. This inverse (when N = 0, $\mathcal{L} = A^{\perp}$, $\mathcal{M} = \mathcal{K}^{\perp}$) may be denoted by A^+ ; it is the Moore-Penrose inverse.

All the above results can be extended without any major modification of the proofs to bounded linear operators with closed range of Hilbert spaces.

5. EXPRESSIONS FOR g-INVERSES OF MATRICES

We derive explicit expressions for g-inverses of matrices, for which we consider the linear transformation A as an $m \times n$ matrix and take $\mathscr{V} = E^n$ and $\mathscr{W} = E^m$. We prove the following lemma, where A' represents the transpose of A; K(T), the kernel of a matrix transformation T; and R(T), the range space of T.

LEMMA 5.1. Let a matrix C be such that $R(A') \cap R(C') = \emptyset$, the null vector, and

$$R(A') \oplus R(C') = E^n. \tag{5.1}$$

Then $K(A) \cap K(C) = \emptyset$ and

$$K(A) \oplus K(C) = E^n. \tag{5.2}$$

Proof. Let $x \in K(A) \cap K(C)$. Then Ax = 0, $Cx = 0 \Rightarrow x = 0$ in view of (5.1), i.e., $K(A) \cap K(C) = \emptyset$. Further note that

$$\dim K(A) + \dim K(C) = [n - \operatorname{rank}(A)] + [n - \operatorname{rank}(C)] = n,$$

which establishes (5.2).

The following theorem is a consequence of Lemma 5.1.

THEOREM 4.1. Let C be such that (5.1) holds, and F be a matrix such that R(F) is the direct complement of K(A). Then

$$P_{R(F) \cdot K(A)} = P_{K(C) \cdot K(A)} \Leftrightarrow CP_{R(F) \cdot K(A)} = 0.$$
(5.3)

Further

$$(P_{R(A')+R(C')})' = P_{K(C)+K(A)}.$$
(5.4)

Proof. (5.3) is easy to establish. To prove (5.4), we may observe that R(I - P') = K(A) and R(P') = K(C), implying that PA' = A' and PC' = C', where $P = P_{R(A') + R(C')}$.

LEMMA 5.2. Let B be a matrix such that R(B) is a direct complement of R(A), and define $S_B = I - BB^-$ and $Q_B = I - B(B'B)^-B'$. Then

$$P_{B(A) \cdot B(B)} = A(S_B A)^\top S_B, \tag{5.5}$$

$$= A(A'Q_BA) \quad A'Q_B, \tag{5.6}$$

$$= AA'(AA' + BB')^{-1}.$$
 (5.7)

A proof of Lemma 5.2 is given in [9]. Using Theorem 5.1 and Lemma 5.2, it is easy to establish the following lemma.

LEMMA 5.3. Let $S_C = I - C^- C$ and $Q_{C'} = I - C'(CC')$ C. Then

$$P_{K(C) \cdot K(A)} = S_C(AS_C)^{-} A, \qquad (5.8)$$

$$= Q_{C'}A'(AQ_{C'}A')^{-}A', (5.9)$$

$$= (A'A + C'C)^{-1}A'A.$$
(5.10)

Using these results, we give representations of g-inverses of matrices.

Theorem 5.2.

(i) If we choose $\mathcal{M} = K(C)$, then the \mathcal{M} -inverse of A can be written as

$$A_m^{\sim} = S_C(AS_C) + ZP_{R(B) \cdot R(A)}$$
(5.11)

$$= Q_{C'}A'(AQ_{C'}A')^{\top} + ZP_{R(B) \cdot R(A)}$$
(5.12)

$$= (A'A + C'C)^{-1}A' + ZP_{R(B) \cdot R(A)},$$
(5.13)

where Z is an arbitrary matrix.

(ii) With B as defined in Lemma 5.2 [i.e., $\mathcal{L} = R(B)$], the Linverse of A can be written as

$$A_{l}^{-} = (S_{B}A)^{-} S_{B} + P_{K(A) \cdot K(C)}Z$$
(5.14)

$$= (A'Q_BA) \quad A'Q_B + P_{K(A) \cdot K(C)}Z \tag{5.15}$$

$$= A'(AA' + BB')^{-1} + P_{K(A) + K(C)}Z.$$
 (5.16)

(iii) With $\mathcal{L} = R(B)$ and $\mathcal{M} = K(C)$, N = 0, the $\mathcal{LM}N$ -inverse of A can be written as

$$A_{ml}^{+} = S_{C}(AS_{C}) \quad A(S_{B}A)^{-}S_{B}$$

$$(5.17)$$

$$= Q_{C'}A'(AQ_{C'}A')^{\top}A(A'Q_{B}A)^{\top}A'Q_{B}$$
(5.18)

$$= (A'A + C'C)^{-1} A'AA' (AA' + BB')^{-1}.$$
 (5.19)

COROLLARY.

(i) If, in particular, $R(B) = R(A)^{\perp}$ under the Euclidean inner product, then

$$A_{ml}^{+} = Q_{C'} A' (A Q_{C'} A')^{-} A (A'A)^{-} A' = (A'A + C'C)^{-1} A'.$$
(5.20)

(ii) If $K(C) = K(A)^{\perp}$, then

$$A_{ml}^{+} = A'(AA')^{-} A(A'Q_{B}A)^{-} A'Q_{B} = A'(AA' + BB')^{-1}.$$
 (5.21)

(iii) If $R(B) = R(A)^{\perp}$ and $K(C) = K(A)^{\perp}$ hold simultaneously, then

$$A_{ml}^{+} = A'(AA')^{\top} A(A'A)^{\top} A', \qquad (5.22)$$

which is exactly the Moore-Penrose inverse of A.

NOTE. A_{ml}^+ as obtained in Theorem 5.2 is the Moore-Penrose inverse of the matrix $(Q_B A Q_{C'})$, since A_{ml}^+ satisfies the following conditions:

(i)
$$(Q_B A Q_{C'}) A_{ml}^+ (Q_B A Q_{C'}) = Q_B A Q_{C'},$$

(ii) $A_{ml}^+ (Q_B A Q_{C'}) A_{ml}^+ = A_{ml}^+,$
(iii) $(Q_B A Q_{C'} A_{ml}^+)' = Q_B A Q_{C'} A_{ml}^+,$
(iv) $(A_{ml}^+ Q_B A Q_{C'})' = A_{ml}^+ Q_B A Q_{C'}.$

Thus, A_{ml}^+ is uniquely determined for any choices of matrices B and C spanning $\mathscr{L} = R(B)$ and $\mathscr{M} = K(C)$ respectively.

The authors would like to thank the referee for useful comments which led to an improved version of the paper.

REFERENCES

- 1 A. Bjerhammar, Application of calculus of matrices to method of least squares; with special references to geodetic calculations, *Trans. Roy. Inst. Tech. Stockholm* 49:1-86 (1951).
- 2 C. E. Langenhop, On generalized inverse of matrices, SIAM J. Appl. Math. 15:1239-1246 (1967).
- 3 E. H. Moore, On the reciprocal of the general algebraic matrix (Abstract), *Bull. Amer. Math. Soc.* 26:394–395 (1920).
- 4 M. Z. Nashed and G. F. Votruba, A unified operator theory of generalized inverses, in *Generalized Inverses and Applications*, (M. Z. Nashed, Ed.), Academic, 1976, pp. 1–110.
- 5 R. Penrose, A generalized inverse for matrices, *Proc. Cambridge Philos. Soc.* 51:406-413 (1955).
- 6 C. Radhakrishna Rao, Analysis of dispersion for multiple classified data with unequal numbers in cells, $Sankhy\bar{a}$ 15:253–280 (1955).
- 7 C. Radhakrishna Rao, A note on the generalized inverse of a matrix with applications to problems in mathematical statistics, J. Roy. Statist. Soc. Ser. B 24:152–158 (1962).
- 8 C. Radhakrishna Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applications, Wiley, New York, 1971.
- 9 C. Radhakrishna Rao and H. Yanai, General definition and decomposition of projectors and some applications to statistical problems, J. Statist. Plann. Inference 3:1-17 (1979).
- 10 K. Takeuchi, H. Yanai, and B. N. Mukerjee, *The Foundation of Multivariate Analysis*, Wiley Eastern, 1982.

Received 1 August 1983; revised 2 February 1984